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Structural and thermal properties of binary Ni
100−𝑥

Zr
𝑥
(30 < 𝑥 < 75) alloys obtained by melt spinning and copper mold casting

methods were investigated. The fully amorphous samples in a bulk form cannot be obtained in the binary Ni-Zr alloys over a wide
composition range, though they have𝑇

𝑔
/𝑇
𝑙
and 𝛾 values close to or even higher than those of the binary Cu-Zr bulkmetallic glasses

(BMGs).The low thermal stability of the supercooled liquid against crystallization and the formation of the equilibrium crystalline
phases with a high growth rate are responsible for their low glass-forming abilities (GFAs). Relatively low thermal conductivities of
Ni-based alloys are also considered to be another factor to limit their GFAs. The GFA of the binary Ni

65.5
Zr
34.5

alloy alloyed with
4% or 5% Al was enhanced, and a fully glassy rod with a diameter of 0.5mm was formed.

1. Introduction

Bulk metallic glasses (BMGs) have attracted much attention
due to their excellent properties compared with their crys-
talline counterparts and potential applications as structural
materials [1–3]. A variety of BMGs with high glass-forming
ability (GFA) based on multiple components have been
developed over the past two decades or so [4–10]. Among
these BMGs, ordinary Ni-based BMGs are very attractive for
engineering applications because of their ultrahigh strength
and relatively low cost. Ni-based amorphous alloys with
diameters of more than 1mm have also been produced
since 1999 [11–16]. These Ni-based BMGs belong mainly to
LTM-ETM (LTM-late transition metals, ETM-early transi-
tion metals) group of alloys. Now, their critical value of
thickness is up to 15mm, but metalloids included in some
alloy systems have tampered their manufacturability. So,
it is necessary to develop new Ni-based BMGs including
only common metallic elements. Developing new Ni-based
BMGs is expected to expand engineering applications and is
important for understanding the long-standing issues of glass
formation mechanism.

Various empirical methods have been proposed to guide
the discovery of BMGs with higher GFA [1, 10, 17]. The
𝑇rg criterion widely used as a long-standing guideline has
predicted that deep eutectics are preferable for glass for-
mation upon cooling a liquid, so the compositions near

the eutectics have been chosen preferentially to obtain BMG
in either simple binary or multiple component systems. It is
generally known that binary alloys must have a very high
critical cooling rate required to avoid crystallization upon
cooling from liquid state because of the simplicity of their
chemical compositions. However, some binary alloys such
as Ni-Nb, Cu-Zr, and Cu-Hf can be bulk glass formers
[18–22], though nanocrystalline phases are included. These
binary metallic glasses provided an important guidance to
search for ordinary multicomponent BMGs with extremely
good GFA [14–17]. As well as Ni-Nb and Cu-Zr binary alloy
systems, the Ni-Zr one has been also known to be a system
in which the amorphous phase can be formed over wide
composition ranges by rapid quenching techniques.However,
no systematic studies were preformed on the mold casting of
this system. In the current work, the alloys with near eutectic
composition (Ni

64
Zr
36
) have been chosen by analogy with

the similar Cu-Zr bulk glassy alloys. The GFA and thermal
properties of the Ni

100−𝑥
Zr
𝑥
(30 < 𝑥 < 75) alloys have been

investigated. Besides, the influence of Al addition on the GFA
and thermal stability of the binary Ni-Zr alloys was studied.

2. Experimental

The alloy ingots studied in this work were prepared by arc
meltingmixtures of Ni, Zr, andAl with purities of 99.97wt.%,
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Figure 1: XRD patterns of the as-cast Ni
100−𝑥

Zr
𝑥
(30 < 𝑥 < 75) alloy

rods with a diameter of 1mm.

99.9 wt.%, and 99.99wt.%, respectively, in a Ti-gettered high
purity argon atmosphere. The ingots were remelted at least
three times to ensure the homogeneity of the samples. The
alloyed ingots were then remelted in an evacuated state
in a quartz tube using an induction heating coil followed
by injection through a nozzle with a diameter of 0.5 or
1mm. The ribbon samples were fabricated using a single-
roller melt spinning apparatus. The structures of the as-cast
samples were studied using X-ray diffraction (XRD) with
Cu-K𝛼 radiation. The thermal properties were examined by
a differential scanning calorimeter (DSC) at a heating rate of
0.67K/s and differential thermal analysis (DTA) at a heating
rate of 0.33 K/s.

3. Result and Discussion

In the Ni-Zr alloy system, the compositions that we have
primarily focused on are close to the eutectic point Ni

64
Zr
36

by analogy with Cu-Zr bulk glassy alloys. In addition, other
compositions like Ni

40
Zr
60
, Ni
35
Zr
65
, and Ni

26
Zr
74
were also

investigated. Figure 1 shows XRD patterns of the as-cast
Ni
100−𝑥

Zr
𝑥
(30 < 𝑥 < 75) alloy rods with a diameter of

1mm. It is seen that all these binary alloy specimens exhibit
crystalline Bragg peaks, corresponding to different crystalline
phases such as Ni

21
Zr
8
, Ni
10
Zr
7
, Ni
11
Zr
9
, and Ni

7
Zr
2
, indi-

cating that they cannot have a fully amorphous structure
in a bulk form. The equilibrium Ni

10
Zr
7
compound, which

is typical in some Ni-based alloys [23], and eutectic-type
Ni
21
Zr
8
phase can be observed in those alloys near eutectic

compositions. If the nucleation and growth of these inter-
metallic compounds can be restrained, a fully amorphous
structure will be obtained in Ni-Zr alloy system. Figure 2
presents XRD patterns of the Ni

67
Zr
33

melt spun ribbons
prepared at different spinning velocities. At the spinning
velocity of 4000 rpm, corresponding to the thickness of about
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Figure 2: XRD patterns of the as-cast Ni
67
Zr
33
melt spun ribbons at

different spinning velocities.The inset is DSC curve of Ni
67
Zr
33
melt

spun ribbon at 4000 rpm.

Table 1: Critical thickness 𝑑
𝐶
, reduced glass transition temperature

𝑇rg, supercooled liquid region width Δ𝑇, and 𝛾 of typical binary
BMGs and Ni67Zr33 metallic glasses.

Alloy composition
(at.%) 𝑑

𝐶
(mm) Δ𝑇 (K) 𝑇rg 𝛾

Ni67Zr33 0.03 39 0.60 0.39
Cu50Zr50 2 58 0.555 0.387
Cu64Zr36 2 48 0.64 0.41
Ni62Nb38 2 40 0.60 0.392

15 𝜇m, the as-cast ribbon exhibits typical broad diffraction
maxima of amorphous structure, and no obvious crystalline
peaks can be observed with the XRD resolution limits. When
the spinning velocity decreases from 4000 rpm to 2500 rpm,
corresponding to the thickness of about 35 𝜇m, some small
crystalline peaks appear in the XRD pattern, indicating
the formation of nanocrystalline phases in glassy matrix.
This shows that the formation of these crystalline phases
is very sensitive to the cooling rate. The inset is the DSC
curve of the Ni

67
Zr
33

ribbon prepared at 4000 rpm. It is
noted that a distinct endothermic characteristic of the glass
transition followed by a sharp crystallization peak is clearly
exhibited. The values of the glass transition temperature 𝑇

𝑔

and onset temperature of crystallization 𝑇
𝑥
are measured

to be 835K and 860K, respectively. Figure 3 presents DTA
curve of the as-cast Ni

100−𝑥
Zr
𝑥
(65.5 < 𝑥 < 68) alloy rods.

With the addition of Ni, the onset melting temperature 𝑇
𝑚

of Ni
100−𝑥

Zr
𝑥
alloys also increases, but not the values of the

liquid temperature 𝑇
𝑙
(𝑇
𝑙
is somewhat overestimated as it is

obtained on heating at 0.33 K/s).
Table 1 lists the parameters denoting GFA of typical

binary BMGs and Ni
67
Zr
33

metallic glasses. It is seen that
the 𝑇
𝑔
/𝑇
𝑙
and 𝛾 values of binary Ni

67
Zr
33

are close or even
higher than those of Cu-Zr andNi-NbBMGs, though no bulk
glassy alloys were obtained in the studied binary Ni-Zr alloys.
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Figure 3: DTA curves of the as-cast Ni
100−𝑥

Zr
𝑥
(65.5 < 𝑥 < 68)

alloy rods with a diameter of 1mm.

The reasons for the lowerGFAof binaryNi-Zr alloysmight be
explained as follows. Recently, thermodynamic simulations
of the Ni-Zr and Cu-Zr alloy systems have been assessed
in the relation with short range ordering in the liquid [24].
The critical cooling rates in the Cu-Zr alloys are predicted
to be smaller than those in Ni-Zr alloys, suggesting that
Cu-Zr alloys have higher GFA than Ni-Zr alloys. While the
driving force for crystallization in the Ni-Zr alloys may be
much higher than those in the Cu-Zr and Ni-Nb alloys, this
means that crystalline phases in Ni-Zr alloys can nucleate
and grow up more easily than those in Cu-Zr and Ni-Nb
alloys in an undercooled alloy melt. The difference in the
atomic configuration ofNi-Zr andCu-Zrmetallic glasses also
plays an important role in their GFAs. An icosahedron-like
structure in Cu-Zr BMGs makes glassy phase more stable,
but Ni-Zr metallic glasses do not have the same structure
[25]. Otherwise, the thermal conductivity of themolten alloy,
indicating its ability to transfer heat upon cooling, also affects
the GFA of the alloy. It has been reported that Ni-based alloys
have much lower thermal conductivity than Cu-based alloys
[26].

To improve theGFAof the binaryNi-Zr alloys, Al element
as the third component was added in binary Ni-Zr alloy
system. Since the atomic radius of Zr is 18% larger than
that of Ni, it is predicted that maximum packing density in
the undercooled liquid is obtained at around 35 at.% Zr in
binary Ni-Zr alloys. So, the compositionNi

65.5
Zr
34.5

has been
selected as the starting point. In contrast, the off-eutectic
composition Ni

67
Zr
33
has also been selected. Figure 4 shows

XRD patterns of the as-cast (Ni
65.5

Zr
34.5
)
100−𝑥

Al
𝑥
(𝑥 ≤

8) alloys. All the 1mm-diameter rods exhibit an apparent
evidence of crystalline Bragg peaks, corresponding to differ-
ent crystalline phases such as Ni

21
Zr
8
, Ni
10
Zr
7
, Ni
2
Zr, and

AlNi
2
Zr, while the 0.5mm (Ni

65.5
Zr
34.5

)
96
Al
4
rod has a fully

amorphous structure. Figure 5 presents DSC curves of the
as-cast (Ni

65.5
Zr
34.5
)
100−𝑥

Al
𝑥
(𝑥 ≤ 8) alloys at a heating
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Figure 5: DSC curves of the as-cast (Ni
65.5

Zr
34.5
)
100−𝑥

Al
𝑥
(𝑥 ≤ 8)

alloys at a heating rate of 40K/min.

rate of 40K/min. It is found that only (Ni
65.5

Zr
34.5

)
96
Al
4

and (Ni
65.5

Zr
34.5

)
95
Al
5
alloys exhibit an obvious endothermic

characteristic of the glass transition followed by a character-
istic exothermic heat event indicating the successive stepwise
transformations from supercooled liquid state to crystalline
phases. The DTA curves of the as-cast (Ni

65.5
Zr
34.5
)
100−𝑥

Al
𝑥

(𝑥 ≤ 8) alloys at a heating rate of 10 K/min are shown in
Figure 6. With the addition of Al in these alloys, the values of
𝑇
𝑚
and 𝑇

𝑙
will decrease. Figure 7 presents a DSC curve of the

as-cast (Ni
65.5

Zr
34.5

)
96
Al
4
alloy rodwith a diameter of 0.5mm

scanned at a heating rate of 40K/min, and the inset is a DTA
curve of this alloy at a heating rate of 20K/min. The ternary
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Zr
34.5

)
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with

a diameter of 0.5mm.

(Ni
65.5

Zr
34.5

)
96
Al
4
alloy shows a clear glass transition at 𝑇

𝑔
=

819K, followed by crystallization with 𝑇
𝑥
= 868K, giving a

supercooled liquid region Δ𝑇 = 𝑇
𝑥
− 𝑇
𝑔
= 49K, and the

values of 𝑇
𝑚
and 𝑇

𝑙
are determined to be 1320K and 1410K,

respectively. The values of 𝑇rg and 𝛾 of (Ni
65.5

Zr
34.5

)
96
Al
4

alloy can be determined to be 0.58 and 0.389 from these
measured temperatures, respectively. Although the values of
𝑇rg and 𝛾 are still not much improved compared with those
of the binary Ni-Zr alloys, the (Ni

65.5
Zr
34.5

)
96
Al
4
alloy shows

a larger supercooled liquid region of 49K. This means that
the influence of the stability of the supercooled liquid on the
GFAmight be larger than 𝑇rg and 𝛾 in the present Ni-Zr-(Al)
alloys.

4. Conclusions

The fully glassy sample in a bulk form cannot be obtained in
the Ni-Zr alloys over a wide composition range, though they
have𝑇

𝑔
/𝑇
𝑙
and 𝛾 values close or even higher than those of the

binary Cu-Zr BMGs studied earlier. The low stability of the
supercooled liquid against crystallization and the formation
of crystalline phases with large nucleation and growth rate of
Ni-Zr alloys have led to their low GFAs compared with those
of the Cu-Zr counterparts. Otherwise, their considerably
lower thermal conductivities compared with Cu-Zr alloys are
also responsible for their low GFAs. The minor addition of
Al can improve the GFAs of binary Ni-Zr alloys. The GFA of
the binary Ni

65.5
Zr
34.5

alloy alloyed with 4 or 5 at.% Al was
enhanced and a fully glassy rod with a diameter of 0.5mm
was formed.
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