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Recent technology and experiments have fabricated high-quality superconducting MgB
2
nanoparticles. We investigate properties

of two-gap superconductivity in nanosized systems by using a two-sublevel model. In the present work, we analyze the results
obtained for superconducting granules in the case of multiband superconductivity. We discuss the finite size effect in multiband
superconductors. A definition of the critical level spacing of two-gap superconductivity is also presented, and we discuss the
condensation energy and the parity gap of two-gap superconductivity in relation to the size dependence of those properties with
two bulk gaps and the effective pair scattering process between two sublevels.

1. Introduction

Recent advances in nanoscience have demonstrated that fun-
damentally newphysical phenomena are foundwhen systems
are reduced in size to dimensions that become comparable
to the fundamental microscopic length scales of a material
under study. Superconductivity is a macroscopic quantum
phenomenon, and therefore, it is especially interesting to see
how this quantum state is influenced when the samples are
reduced to nanometer sizes. In such systems, new states of
matter can be engineered that do not occur in bulk materials.

The properties of superconducting materials with ultra-
small sizes differ from those in bulk [1]. The characteristics
of a superconducting granule depend on the discrete energy
spectrum, the parity of the number of electrons, and quantum
fluctuations [2]. The dependence of superconducting prop-
erties on the parity of the number of electrons participating
in the Cooper coupling was called the “parity effect” [3]. The
analogous phenomenon is known in nuclear physics. The
parity effect was experimentally observed in small supercon-
ducting aluminum granules [4, 5].

After the discovery of multiband superconductors such
as MgB

2
with 𝑇

𝑐
= 39K [6] and iron pnictides with 𝑇

𝑐
=

45K [7], the physicists were faced with the question about
the influence of the number of bands on the properties of
superconducting granules. This problem was discussed in
recent works [8–11]. Here, we plan to generalize the results
of calculations of the thermodynamics of superconducting
granules to the case of a two-band model of superconductiv-
ity.

Recent discovery of superconductivity ofMgB
2
hasmuch

attracted great interest with multigap superconductivity [6].
Although multigap superconductivity had been discussed
theoretically [12] in 1958, the multigap superconductivity has
been observed experimentally in the 1980s [13].

MgB
2
is the first material whose effects are so dominant

and implications are so thoroughly explored. Magnesium
diboride is reported to be an anisotropic superconductorwith
conventional Bardeen-Cooper-Schrieffer electron-phonon
coupling [7, 14]. The band structure of MgB

2
calculated in

several works since the discovery of the superconductivity
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is similar to that of graphite and is formed by by the 𝜎

and 𝜋 zones. Magnesium diboride has two superconducting
gaps, 4meV and 7.5meV, due to the 𝜋 and 𝜎 electron bands.
The two-gap structure was established in a number of
experiments, and the two-gap superconductivity has been
also discussed by many groups.

In the recent years, great efforts have been devoted to
the fabrication of MgB

2
nanostructures that could play a

crucial role in the field of applied superconductivity [7].
The ideal candidate is one-dimensional (1D) nanostructures
including nanotubes, nanowires, and nanoparticles. As for
MgB
2
, nanoparticles of approximately 20–100 nm in size are

available (see Figure 1) [8].
For ultra-small superconducting grains, the experiments

[4, 5] by Black et al. have also generated much interest
in the size dependence of superconductivity. Properties of
ultra-small superconducting grains have been theoretically
investigated by many groups [10, 11, 15–20]. Such ultra-
small grains were considered by Anderson [1]. The standard
BCS theory gives a good description of the phenomenon
of superconductivity in large samples. For ultra-small Al
grains [4, 5], the bulk gap has been discussed in relation to
physical properties of ultra-small grains such as the parity
gap [3], condensation energy [18], electron correlation [16],
and as well as the size dependence of the level spacing [17]
of samples. In this paper, we investigate the properties of
two-gap superconductivity in a nanosized system by using
a two-sublevel model in the case of strong interaction. We
discuss the condensation energy and the parity gap of two-
gap superconductivity in relation to the size dependence of
those properties in the case of two bulk gaps and the effective
pair scattering process between two sublevels.

2. The Model and the Solution

In the case of a two-gap superconductor, we can consider a
model with two sublevels corresponding to two independent
bands.We consider a pairing Hamiltonian with two sublevels
] = 1, 2 corresponding to two bands 1 and 2 written as

𝐻 = 𝐻
0
+ 𝐻int, (1)

where

𝐻
0
= ∑

𝑗,𝜎,]

[𝜀]𝑗 − 𝜇] 𝑎
†

]𝑗𝜎𝑎]𝑗𝜎, (2)

𝐻int = − ∑

]
𝑔] ∑

𝑗,𝑗
󸀠
∈𝐼]

𝑎
†

]𝑗↑𝑎
†

]𝑗↓𝑎]𝑗󸀠↓𝑎]𝑗󸀠↑

+ 𝑔
12

∑

𝑗∈𝐼
1
,𝑘∈𝐼
2

𝑎
†

1𝑗↑
𝑎
†

1𝑗↓
𝑎
2𝑘↓

𝑎
2𝑘↑

+ H.c.,
(3)

where 𝑎
†

]𝑗𝜎(𝑎]𝑗𝜎) is the creation (annihilation) operator in
sublevels ] with spin 𝜎 and the energies 𝜀]𝑗. Here, the
operators for each sublevel satisfy the anticommutation
relations, the operators between sublevels are independent,
and 𝜇 is the chemical potential. The sums of 𝑗 and 𝑘 in (3)
are over the set 𝐼

1
of 𝑁
1𝐼
1

states corresponding to a half-
filled band 1 with fixed width 2𝜔

1𝐷
and the set 𝐼

2
of 𝑁
2𝐼
2

100 nm

Figure 1: The micrograph of 20–100 nm nanoparticles of MgB
2
.

states for band 2, respectively. The second term in (1) is
the interaction Hamiltonian, 𝑔

1
and 𝑔

2
are the effective

electron-electron interaction constants including the e-p
interaction for each sublevel, respectively, and 𝑔

12
is the

effective interaction constant that corresponds to the pair
scattering process including the phonon scattering between
two bands. Note that, in the bulk limit of (1), we can derive a
similar coupled gap equation presented in [9].

In this study, we assume that the Debye energies for
two sublevels are the same 𝜔

1𝐷
= 𝜔
2𝐷

= 𝜔
𝐷
. Within

this assumption,𝑁
1𝐼
1

and𝑁
2𝐼
2

are relatively estimated by the
density of state (DOS) for two bands as 𝑁

1𝐼
1

/𝑁
2𝐼
2

= 𝜌
1
/𝜌
2
,

where 𝜌
1
and 𝜌

2
are DOSs for two bands, respectively. The

interaction constants 𝑔
1
and 𝑔

2
can be written as 𝑑

1
𝜆
1
and

𝑑
2
𝜆
2
, respectively, 𝑑

1
= 2𝜔

𝐷
/𝑁
1𝐼
1

and 𝑑
2

= 2𝜔
𝐷
/𝑁
2𝐼
2

mean the mean energy level spacing, and 𝜆
1
and 𝜆

2
are

the dimensionless parameters for two sublevels. We consider
the intersublevel interaction constant 𝑔

12
= √𝑑

1
𝑑
2
𝜆
12
. In

summary, we obtain a relation of 𝜌
1
/𝜌
2
= 𝑁
1𝐼
1

/𝑁
2𝐼
2

= 𝑑
2
/𝑑
1
.

It is convenient to apply the path integral approach to the
treatment of fluctuations of the order parameters. In works
[16, 17], the problem of ultra-small superconducting grains
was considered within the path integral method

𝑍 (𝜇, 𝑇) = ∫𝐷
2
Δ (𝜏) 𝑒

−𝑆[Δ]
, (4)

where 𝑇 is the temperature and 𝑆[Δ] is the action.
We now adapt the developed technique of path integra-

tion in the case of two-gap superconductivity. Inwhat follows,
we will use this method to study the influence of fluctuations
on the two-gap superconductivity in ultra-small supercon-
ducting grains. This approach gives an exact expression for
the canonical partition function of a superconductor [3].
Within the path integral approach, we obtain the canonical
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partition function for the Hamiltonian of (1) in the following
form:

𝑍 (𝜇, 𝑇) = ∫𝐷Δ
1
𝐷Δ
∗

1
𝐷Δ
2
𝐷Δ
∗

2
𝑒
−𝑆[Δ
1
,Δ
2
]
, (5)

where the action 𝑆[Δ
1
, Δ
2
] is defined as

𝑆 [Δ
1
, Δ
2
]

= −∑

𝑗

[Tr ln𝐺
−1

1𝑗
−

𝜉
1𝑗

𝑇
] − ∑

𝑘

[Tr ln𝐺
−1

2𝑘
−

𝜉
2𝑘

𝑇
]

+ ∫

1/𝑇

0

𝑑𝜏
1

𝑔
1
𝑔
2
− 𝑔
2

12

× [𝑔
2

󵄨󵄨󵄨󵄨Δ 1 (𝜏)
󵄨󵄨󵄨󵄨

2

+ 𝑔
1

󵄨󵄨󵄨󵄨Δ 2 (𝜏)
󵄨󵄨󵄨󵄨

2

+ 𝑔
12

(Δ
1
(𝜏) Δ
2
(𝜏)
∗
+ Δ
1
(𝜏)
∗
Δ
2
(𝜏))] .

(6)

Here, Δ
1
and Δ

2
are bulk gaps for sublevels 1 and 2, respec-

tively, 𝜉]𝑗 = 𝜀]𝑗 − 𝜇, and 𝐺
−1

]𝑗 (𝜏, 𝜏
󸀠
) = [−𝑑/𝑑𝜏 − 𝜉]𝑗𝜎

𝑧
−

Δ ](𝜏)𝜎
+
−Δ
∗

](𝜏)𝜎
−
]𝛿(𝜏−𝜏

󸀠
), where𝜎± = 𝜎

𝑥
±𝑖𝜎
𝑦 and𝜎

𝑥,𝑦,𝑧 are
the Pauli matrices.𝐺−1

1
and𝐺

−1

2
satisfy antiperiodic boundary

conditions.
In the case of stronger interaction, Δ

1
≫ 𝑑
1
and Δ

2
≫

𝑑
2
can be considered in the mean-field approximation for

the order parameters within the path integral approach.
Substituting the time-independent order parameters into the
action of (6), we have

Ω(𝜇) = ∑

𝑗,]

(𝜉]𝑗 − 𝜖]𝑗) +
1

𝑔
1
𝑔
2
− 𝑔
2

12

× [𝑔
2
Δ
2

1
+ 𝑔
1
Δ
2

2
+ 𝑔
12

(Δ
∗

1
Δ
2
+ Δ
1
Δ
∗

2
)] ,

(7)

where 𝜖
1𝑗

= (𝜉
2

1𝑗
+ Δ
2

1
)
1/2 and 𝜖

2𝑘
= (𝜉
2

2𝑘
+ Δ
2

2
)
1/2. In (7), the

values of Δ
1
and Δ

2
must be chosen in a way that minimizes

Ω. From the minimization of Ω, we obtain the coupled gap
equation at zero temperature for a two-gap system:

(
Δ
1

Δ
2

) = (

𝑔
1
∑

𝑗

1

2𝜖
1𝑗

−𝑔
12
∑

𝑘

1

2𝜖
2𝑘

−𝑔
12
∑

𝑗

1

2𝜖
1𝑗

𝑔
2
∑

𝑘

1

2𝜖
2𝑘

)(
Δ
1

Δ
2

) . (8)

From this equation, we formally obtain an expression for a
bulk gap at zero temperature in the case of two-gap super-
conductivity:

Δ̃
1
= 𝜔 sinh−1 ( 1

𝜂
1

) , Δ̃
2
= 𝜔 sinh−1 ( 1

𝜂
2

) , (9)

where 1/𝜂] = (𝜆]󸀠+𝛼
(−1)

]󸀠

±
[𝜂
1
, 𝜂
2
]𝜆
12
)/(𝜆
1
𝜆
2
−𝜆
2

12
) (] ̸= ]󸀠) and

𝛼
±
[𝜂
1
, 𝜂
2
] = ± sinh(1/𝜂

1
)/ sinh(1/𝜂

2
). For two-band super-

conductivity, we can consider two cases for the phases of the
gaps: sgn(Δ̃

1
) = sgn(Δ̃

2
) and sgn(Δ̃

1
) = − sgn(Δ̃

2
). For

the same phase, 𝛼
+
is used in (8), and we use 𝛼

−
for the

opposite phases. Note that Δ̃
1

= −Δ̃
2
in the limit of strong

intersublevel coupling 𝜆
12
, that is, for the opposite phases. At

𝜆
12

= 0, we find the same results of two bulk gaps derived
from the conventional BCS theory for two independent
sublevels.

In nanosized single-band superconductivity, the con-
densation energy can be defined as 𝐸

𝐶

𝑁,𝑏
(𝜆) = 𝐸

𝐺

𝑁,𝑏
(0) −

𝐸
𝐺

𝑁,𝑏
(𝜆) − 𝑛𝜆𝑑, where 𝐸

𝐺

𝑁,𝑏
is the ground state energy of an

𝑁-electron system in the interaction band, 𝑏 is the number
of electrons on single occupied levels, and 𝜆 and 𝑛 are
the dimensionless coupling parameter and the number of
pair occupied levels, respectively. In the case of a nanosized
two-band system, the condensation energy can be writ-
ten in a similar way as follows: 𝐸

𝐶

𝑁
1
,𝑏
1
;𝑁
2
,𝑏
2

(𝜆
1
, 𝜆
2
, 𝜆
12
) =

𝐸
𝐺

𝑁
1
,𝑏
1
;𝑁
2
,𝑏
2

(0, 0, 0) − 𝐸
𝐺

𝑁
1
,𝑏
1
;𝑁
2
,𝑏
2

(𝜆
1
, 𝜆
2
, 𝜆
12
) − ∑] 𝑛]𝜆]𝑑],

where 𝐸
𝐺

𝑁
1
,𝑏
1
;𝑁
2
,𝑏
2

(𝜆
1
, 𝜆
2
, 𝜆
12
) means the ground state energy

of the (𝑁
1
+ 𝑁
2
)-electron system. From (5) and (7), the con-

densation energy of a two-sublevel system can be expressed
in terms of the condensation energies of independent single
level systems:

𝐸
𝐶

𝑁
1
,𝑏
1
;𝑁
2
,𝑏
2

(𝜆
1
, 𝜆
2
, 𝜆
12
)

= 𝐸
𝐶

𝑁
1
,𝑏
1

(𝜆
1
) + 𝐸
𝐶

𝑁
2
,𝑏
2

(𝜆
2
)

−
𝜆
2

12

𝜆
1
𝜆
2
− 𝜆
2

12

(
Δ
2

1

𝑑
1
𝜆
1

+
Δ
2

2

𝑑
2
𝜆
2

+
2 (Δ
∗

1
Δ
2
+ Δ
1
Δ
∗

2
)

√𝑑
1
𝑑
2
𝜆
12

) ,

(10)

where 𝐸
𝐶

𝑁
1
,𝑏
1

(𝜆
1
) and 𝐸

𝐶

𝑁
2
,𝑏
2

(𝜆
2
) correspond to the condensa-

tion energies for single band cases and the third term means
the cross term between two bands. At the same phases of
Δ
1
and Δ

2
, the condensation energy of (10) decreases; that

is, there appears the instability by the coupling constant 𝜆
12
.

On the other hand, at the opposite phases, the condensation
energy becomes larger, because Δ

∗

1
Δ
2
+ Δ
1
Δ
∗

2
< 0. We can

expect that the condensation energy of two-gap supercon-
ductivity becomes more stable than that of two independent
systems due to the intersublevel coupling𝜆

12
and the opposite

phases.
To discuss the critical level spacing for a two-gap system,

we start from the coupled gap equation of (8). For the case of
the critical level spacing of a two-gap system, we have

1 = 𝜆
1
∑

𝑗

1

2
󵄨󵄨󵄨󵄨󵄨
𝜉
1𝑗

󵄨󵄨󵄨󵄨󵄨

+ 𝜆
2
∑

𝑘

1

2
󵄨󵄨󵄨󵄨󵄨
𝜉
2𝑘

󵄨󵄨󵄨󵄨󵄨

− (𝜆
1
𝜆
2
− 𝜆
2

12
)∑

𝑗

1

2
󵄨󵄨󵄨󵄨󵄨
𝜉
1𝑗

󵄨󵄨󵄨󵄨󵄨

∑

𝑘

1

2
󵄨󵄨󵄨󵄨󵄨
𝜉
2𝑘

󵄨󵄨󵄨󵄨󵄨

,

(11)

where 𝜉
𝑖
= 𝜉
𝑖
/𝑑
𝑖
for sublevels 𝑖 = 1, 2. For the odd or even

grain, (11) can be approximately solved by using the digamma
function: for the odd case, the critical level spacing becomes

𝑑
𝑜

1𝑐
= 𝜔
𝐷
𝑒
𝛾 exp [−

1

𝜆
] , 𝑑

𝑜

2𝑐
=

𝑑
2

𝑑
1

𝑑
𝑜

1𝑐
, (12)
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and, for the even case,

𝑑
𝑒

1𝑐
= 4𝜔
𝐷
𝑒
𝛾 exp [−

1

𝜆
] , 𝑑

𝑒

2𝑐
=

𝑑
2

𝑑
1

𝑑
𝑒

1𝑐
. (13)

Here, we use

1

𝜆
=

1

2𝑥
[𝜆
1
+ 𝜆
2
− 𝑎𝑥 + √(𝜆

1
− 𝜆
2
− 𝑎𝑥)

2

+ 4𝜆
2

12
]

(14)

with 𝑥 = 𝜆
1
𝜆
2
−𝜆
2

12
, 𝑎 = log(𝑑

1
/𝑑
2
). From these expressions,

we find the relations

𝑑
𝑒

1𝑐
= 4𝑑
𝑜

1𝑐
, 𝑑
𝑒

2𝑐
= 4𝑑
𝑜

2𝑐
, (15)

𝑑
𝑜

1/2𝑐
≈

𝑒
𝛾

2
exp[

1

𝜂
1/2

−
1

𝜆
] Δ̃
1/2

. (16)

In the case of |𝜆
1
− 𝜆
2
| ≫ 𝜆

12
, (16) can be approximately

rewritten as

𝑑
𝑜

1/2𝑐
≈

𝑒
𝛾

2
exp[

𝜆
2
− 𝜆
1
+ 2𝛼𝜆

12

𝜆
1
𝜆
2
− 𝜆
2

12

] Δ̃
1/2

. (17)

On the other hand, in the limit of |𝜆
1
− 𝜆
2
| = 𝜆
12
, we have

𝑑
𝑜

1/2𝑐
≈

𝑒
𝛾

2
exp[

(1 + 𝛼) 𝜆
12

𝜆
1
𝜆
2
− 𝜆
2

12

] Δ̃
1/2

. (18)

For the case of 𝜆
12

= 0, (16) can be rewritten as 𝑑
𝑜

1/2𝑐
≈

exp[𝛾]/2 exp[1/𝜆
1
−1/𝜆
2
]Δ̃
1/2

.Therefore, when the coupling
constants𝜆

1
and𝜆

2
become the same value,we have a relation

similar to that for a single level system: 𝑑
𝑜

1/2𝑐
≈ 0.89Δ̃

1/2
.

These results suggest that the critical level spacing strongly
depends on 𝜆

12
and the difference between the effective

interaction constants for the sublevels. The relation in (15)
is the same relation as in the conventional nanosized BCS
theory.

In the case of two sublevel spacings, the chemical poten-
tial lies halfway between the highest occupied and the lowest
unoccupied levels with smaller level spacing in the half-filled
case as shown in Figure 2(a). We assume that 𝑑

1
< 𝑑
2
and

that the numbers of occupied levels corresponding to each
sublevel are 𝑛

1
and 𝑛

2
, respectively. Then, the total number

of electrons becomes 𝑁 = 2𝑛
1

+ 2𝑛
2
. When we consider

𝑁 = 2𝑛
1
+ 2𝑛
2
+ 1, the chemical potential lies on the level

𝜀
1𝑛
1
+1
, as shown in Figure 2(b). Figure 2(c) shows the position

of the chemical potential in the case of𝑁 = 2𝑛
1
+2𝑛
2
+2.The

parity gap of nanosized two-gap superconductivity is written
as

Δ
1

𝑝
= 𝐸
𝐺

2𝑛
1
+1+2𝑛

2
,1

−
1

2
(𝐸
𝐺

2𝑛
1
+2𝑛
2
,0

+ 𝐸
𝐺

2(𝑛1+1)+2𝑛2 ,0
) . (19)

From (7) and the ground state energy 𝐸
𝐺

𝑁,𝑏
= Ω
𝜇
𝑁

+ 𝜇
𝑁
𝑁, we

obtain

Δ
1

𝑝
= Δ
1
−

𝑑
1

4
(
𝜌
1

𝜌
2

− 1) . (20)

In view of Figures 2(c), 2(d), and 2(e), we can obtain another
formula for a parity gap:

Δ
2

𝑝
= 𝐸
𝐺

2(𝑛1+1)+2𝑛2+1,1

−
1

2
(𝐸
𝐺

2(𝑛1+1)+2𝑛2 ,0
+ 𝐸
𝐺

2(𝑛1+1)+2(𝑛2+1),0
) ,

(21)

which yields

Δ
2

𝑝
= Δ
2
−

𝑑
2

4
(
3𝜌
2

𝜌
1

− 1) . (22)

The present results suggest two kinds of the dependence of
the parity gap on the level spacing. We note that the parity
gap does not depend upon the effective interaction 𝜆

12
, and

the structure around the Fermi level plays an important role,
by contributing to the size dependence of the parity gap.

3. Conclusion

Thus, we have investigated the properties of nanosized two-
gap superconductivity by using a two-sublevel model in the
framework of the mean-field approximation. In view of the
discussion for the condensation energy in nanosized two-gap
superconductivity, the phases of the gaps are very important
to stabilize the superconductivity. At the same phases, the
two-gap superconductivity is instable by the coupling con-
stant 𝜆

12
. On the other hand, at the opposite phases, the

superconductivity becomes stable. We can expect that the
condensation energy of two-gap superconductivity becomes
more stable than that of two independent systems due to the
intersublevel coupling 𝜆

12
and to the opposite phases.

The parity effect can be observed only at sufficiently low
temperatures. It becomes especially significant in ultra-small
granules about 10 Å in size. The experimental investigation
of superconductivity in such granules becomes possible now
due to the developed elegant experimental technique [6, 7].
The relations concerning the parity effect and the energy
condensation in the case of multiband superconductivity,
which are obtained in the present work, can be verified in the
same experiments as in [6, 7] butwith the use of nanogranules
made of MgB

2
.

In summary, a model corresponding to nanosized two-
gap superconductivity has been presented, and the expression
of the partition function of a nanosized system has been
analytically derived by using the path integral approach.
A definition of the critical level spacing of the two-gap
superconductivity has been also presented, and we discuss
the condensation energy and the parity gap of the two-gap
superconductivity in relation to the size dependence of those
properties with two bulk gaps and the effective pair scattering
process between two sublevels.The results of this work can be
tested in the tunneling experiments withMgB

2
nanoparticles

[2, 4]. Inwork [19], the limits of the application of calculations
to one-band nanosuperconductors were considered in detail.
In the next article, we will plan to study such limits for
two-band nanosuperconductors, as well as the influence of
fluctuations on the two-gap superconductivity in ultra-small
superconducting grains.
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Figure 2: Positioning of the chemical potential relative to the electronic energy levels in a two-gap superconducting grain. Solid and dotted
lines mean two sublevels. (a) Half-filled system with 2𝑛

1
+2𝑛
2
electrons, (b) 2𝑛

1
+1+2𝑛

2
-electron system, (c) 2(𝑛

1
+1)+2𝑛

2
-electron system,

(d) 2(𝑛
1
+ 1) + 2𝑛

2
+ 1-electron system, and (e) 2(𝑛

1
+ 1) + 2(𝑛

2
+ 1)-electron system.
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