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We validate the new Basel liquidity standards as encapsulated by the net stable funding ratio in a quantitativemanner. In this regard,
we consider the dynamics of inverse net stable funding ratio as a measure to quantify the bank’s prospects for a stable funding over
a period of a year. In essence, this justifies how Basel III liquidity standards can be effectively implemented in mitigating liquidity
problems. We also discuss various classes of available stable funding and required stable funding. Furthermore, we discuss an
optimal control problem for a continuous-time inverse net stable funding ratio. In particular, we make optimal choices for the
inverse net stable funding targets in order to formulate its cost. This is normally done by obtaining analytic solution of the value
function. Finally, we provide a numerical example for the dynamics of the inverse net stable funding ratio to identify trends in
which banks behavior convey forward looking information on long-term market liquidity developments.

1. Introduction
The episode of financial market turbulence in 2007–2009 has
depicted the importance of liquidity for normal functioning
of the financial system. It is because of this background that
we are contributing to the procedures for the regulation and
supervision of sound liquidity risk management for banks.
Some of the well-documented materials to this regard are the
notable papers by [1–4]. The Basel Committee on Banking
Supervision (BCBS) outlines certain measures to strengthen
global capital and liquidity regulations. The objective for
these measures is to improve the banking sector’s ability
to ensure that risk does not spillover to the real economy.
The measures are formulated in a form of a principle for
sound liquidity risk management and supervision compris-
ing quantitative and qualitative management instruments
(see, e.g., [1]). In essence, the response provides guidance on
risk management and supervision for funding liquidity risk
and promotes a better risk management in that critical area
of financial segment. As such, the committee will coordinate
rigorous followup by supervisors to ensure that banks adhere
to these fundamentals principles (see [3] for more details).

The global economic crisis which recently attack the financial
system occurs due to liquidity constraints.We define liquidity
constraint as an arbitrary limit on the amount an individual
can borrow or an arbitrary alteration in the interest rate
they pay. In some instances banks exchange assets in the
form of collateral in order to have access to finances. In
essence, pledgeable assets support more borrowing which
further influence more investment. That is, the financial
frictions affect corporate investment (see, e.g., [5] for more
information) in which tangible bank assets increase their
potential to access external fundings. This is because we
expect tangible assets to mitigate the contractibility problems
in which the value borrowed could be captured by creditors
in default states. In the end, one would expect that financial
frictions which affect investment decisions in which tangibil-
ity has no effect on the cash flow sensitivities of financially
unconstrained bank.

Several investors are facing economic challenges from the
bigger market players who have access to overseas finances.
The BCBS established two important standards to compli-
ment the principle for sound liquidity risk management and
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supervision. The two standards are expected to achieve some
financial objectives. In the first instance, the objective is to
promote short-term resilience of a bank’s liquidity risk profile
by ensuring that the bank has sufficient high-quality liquid
assets which is achieved through liquidity coverage ratio
(LCR) analysis. The LCR is given as a ratio of the value of
the stock of high-quality liquid assets in stressed conditions
to the total net cash outflows under an observation of the
30 days period. The purpose of LCR is to ensure that banks
maintain adequate level of high-quality liquid assets in order
to be able to maintain and commit to its obligations. In the
second instance, the standards promote the resilience over
a longer time horizon by creating additional incentives for
banks to fund their activities with more stable sources of
funding on an ongoing basis. A protocol of this nature is
conducted through net stable funding ratio (NSFR) analysis.
This ratio is defined as the available amount of stable funding
to the amount of the required stable funding. In this paper,
we concentrate on net stable funding ratio (NSFR) which
performs a complementary role to the LCR by promoting
structural changes in liquidity risk profiles of institutions
away from short-term funding mismatches and toward more
stable, longer-term funding of assets and business activities.
In essence, a stable funding is defined as the portion of those
types and amounts of equity and liabilities financing expected
to be reliable sources of funds over a one-year time horizon
under conditions of extended stress. Therefore, an amount
of stable funding available comprises liquidity parameters
of various types of assets held, OBS contingent exposures
incurred, and/or the activities pursued by the institution.This
standard is required to be more than 100% to ensure that
the available funding meet the required funding over the
evaluated period. This ratio is defined as

Net Stable Funding Ratio (NSFR)

=
Available Amount of Stable Funding (ASF)
Required Amount of Stable Funding (RSF)

≥ 100%,

(1)

where stable funding includes equity and liability (Tier 1
and Tier 2 and stable deposits) reliable over the next year
under conditions of extended stress and the required amount
includes illiquid assets. The main objective of this standard is
to provide a framework which the banks employ to repond
to the market challenges by ensuring stable fundings on
an ongoing basis. An additional component of the liquidity
framework is a set of monitoring metric to improve cross-
border supervisory consistency. In Table 4, we represent a
summary of the available stable funding (ASF) and the
required stable funding (RSF) components of the net stable
funding ratio (NSFR) together with their multiplication
factors. We define available stable funding (ASF) as the total
amount of a bank’s capital, preferred stock with maturity
equal to one year or more than a year, liabilities with effective
maturities of one year or greater, demand deposits and/or
term deposits with maturities less than a year, and wholesale
funding with maturities less than a year. In this ratio,
extended borrowing from the central bank lending facilities

outside regular open market operations is not encouraged in
order not to reliy on the central bank as a source of funds.
In the denominator of the NSFR, we have required stable
funding for assets. We define RSF as the sum of the assets
held and funded by the institution, multiplied by a specific
required stable funding factor assigned to each particular
asset type. This amount is measured using supervisory
assumptions on the broad characteristics of the liquidity risk
profiles of an institution’s assets off-balance sheet exposures
and other selected activities. In essence, RSF is calculated as
the sum of the value of the assets held and funded by the
institution, multiplied by a specific required stable funding
factor assigned to each particular asset type, added to the
amount of OBS activity, and multiplied by its associated RSF
factor. In Table 5, we enumerate the RSF for the bank over the
next one year in a stress scenario.

The overall analysis of the bank liquidity position is
conducted through ratio analysis on the bank’s balance sheet
composition. In this case, the INSFR measures a bank’s
ability to access funding for a 1-year period of acute market
stress. In this paper, as in Basel III, we are interested in
the INSFR that was defined as the sum of interbank assets
and securities issued by public entities as a percentage of
interbank liabilities. The INSFR formula is given by

1

NSFR
=

Required Stable Funding (RSF)
Available Stable Funding (ASF)

. (2)

This ratio of the NSFR standard is designed to

“promote a longer-term funding of the assets and
activities of banking organizations by establishing
a minimum acceptable amount of stable funding
based on the liquidity of an institution’s assets and
activities over a one-year horizon.”

The NSFR is a longer-term structural ratio to address
liquidity mismatches and provide incentives for banks to use
stable sources to fund their activities. The liquidity standard
also outlines a set of standard liquidity monitoring metrics
to improve cross-order supervisory consistency. These are a
common set of monitoring metrics to assist supervisors in
identifying and analyzing liquidity risk trends at the bank
and system-wide level in order to better anticipate risks from
systemic disruptions.

The overall objectivity of the BCBS for establishing the
two mentioned regimes, that is, the principles for sound
liquidity risk management and regulations and also the two
standards, is to ensure that banks maintain high-quality
liquidity levels. These levels of bank liquidity determine
the quality of investments opportunities it can entertain
in the financial markets, and if arbitrageurs (investors)
face financial constraints, it limits the investment capacity
which in turn determines the market liquidity (for more
information, see e.g., [6]). In most of the cases, the economic
set up of the global trading market is faced with general
challenges of liquidity demand and supply. Private banks
virtually serve as trading agents, and in some instances,
they do demand liquidity with well-articulated investment
opportunities but with no clear future investment.The public
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supply of liquidity affects the private creation of liquidity
by banks, and the effects interact with firms demand for
liquidity to influence investment and capital accumulation.
We would say liquidity constrain contributed greatly to the
lack of capital.The formation of capital market imperfections
constrains investment during an emerging market financial
crisis, and it makes exporters with foreign ownership to
increase capital significantly. This is because many banks
with foreign ownership may be able to overcome liquidity
constraints by accessing overseas credit through their parent
companies. In order to strengthen the liquidity manage-
ment in the banks, our paper devised a stochastic optimal
control problem for a continuous-time INSFR model. In
essence, the control objective is to meet bank INSFR targets
by making optimal choices for the two control variables,
that is, the liquidity provisioning rate and asset allocation.
This enables us to achieve an analytic solution to the
case of quadratic cost functions (see Theorem 3 for more
details).

1.1. Literature Review on BASEL III and Net Stable Funding
Ratio (NSFR). Reference [7] suggests that the proposed
Basel III liquidity standards constitute a cornerstone of the
international regulatory reaction to the ongoing crisis. In
this subsection, we survey the existing literature seeking to
address liquidity problems experienced during the recent
financial crisis (see, e.g., [8]).The review centres around Basel
III and liquidity are introduced in [9, 10].

According to [11], guidance for supervisors has been aug-
mented substantially. The guidance emphasizes the impor-
tance of supervisors assessing the adequacy of a bank’s
liquidity riskmanagement framework and its level of liquidity
and suggests steps that supervisors should take if these are
deemed inadequate. This guidance focuses on liquidity risk
management at medium and large complex banks, but the
soundprinciples have broad applicability to all types of banks.
The implementation of the sound principles by both banks
and supervisors should be tailored to the size, nature of
business, and complexity of a bank’s activities (see [11] for
more details). A bank and its supervisors also should consider
the bank’s role in the financial sectors of the jurisdictions
in which it operates and the bank’s systemic importance
in those financial sectors (see, e.g., [12]). The BCBS fully
expects banks and national supervisors to implement the
revised principles promptly and thoroughly, and the BCBS
will actively review progress in implementation. During the
most severe episode of the crisis, themarket lost confidence in
the solvency and liquidity of many banking institutions. The
weaknesses in the banking sector were rapidly transmitted to
the rest of the financial system and the real economy, resulting
in a massive contraction of liquidity and credit availability.
Ultimately, the public sector had to step in with unprece-
dented injections of liquidity, capital support, and guarantees,
exposing taxpayers to large losses. In response to this, during
February 2008, the BCBS published [11]. The difficulties
outlined in that paper highlighted that many banks had failed
to take account of a number of basic principles of liquidity
risk management when liquidity was plentiful. Many of the
most exposed banks did not have an adequate framework

that satisfactorily accounted for the liquidity risks posed
by individual products and business lines, and, therefore,
incentives at the business level were misaligned with the
overall risk tolerance of the bank. Many banks had not
considered the amount of liquidity they might need to satisfy
contingent obligations, either contractual or noncontractual,
as they viewed funding of these obligations to be highly
unlikely.

According to [13], also, in response to the market fail-
ures revealed by the crisis, the BCBS has introduced a
number of fundamental reforms to the international reg-
ulatory framework. The reforms strengthen bank level or
microprudential, regulation, which will help to raise the
resilience of individual banking institutions to periods of
stress. Moreover, banks are mandated to comply with two
ratios, that is, the LCR and the NSFR, to be effectively
implemented inmitigating sovereign debt crises (see, e.g., [14,
15]). The LCR is intended to promote resilience to potential
liquidity disruptions over a thirty day horizon. It will help
to ensure that global banks have sufficient unencumbered,
high-quality liquid assets to offset the net cash outflows it
could encounter under an acute short-term stress scenario.
The specified scenario is built upon circumstances experi-
enced in the global financial crisis that began in 2007 and
entails both institution-specific and systemic shocks (see,
e.g., [12]). On the other hand, The NSFR aims to limit over-
reliance on the short-term wholesale funding during times
of buoyant market liquidity and encourage better assess-
ment of liquidity risk across all on- and off-balance sheet
items.

Theminimum tangible common equity requirements will
increase from 2% to 4.5%; in addition, banks will be asked
to hold a capital conservation buffer of 2.5% to withstand
future periods of stress. The new liquidity standards will
be focused on two indicators: the LCR that imposes tighter
controls on short-term liquidity flows and the NSFR that
aims at reducing the maturity mismatch between assets
and liabilities. Unfortunately, raising capital and liquidity
standards may have a cost. Banks may respond to regulatory
tightening by passing on additional funding costs to their
retail business, by raising lending rates in order to keep the
return on equity in line with market valuations, and/or by
reducing the supply of credit so as to lower the share of risky
assets in their balance sheets (see, e.g., [16]). Reduced credit
availability and higher financing costs could affect household
andfirm spending.While the regulator has taken this concern
into account, planning a long transition period (until 2018),
the new rules could cause subdued GDP growth in the short
to medium term. How large is the effect that the new rules
are likely to have on GDP in Italy? Not very, according to
the estimates presented in this paper. For each percentage
point increase in the capital requirement, implemented over
an eight-year horizon, the level of GDP relative to the baseline
path would decline at trough by 0.00–0.33%, depending
on the estimation method (0.03–0.39% including nonspread
effects); the median decline at trough would be 0.12% (0.23%
including nonspread effects). The trough occurs shortly after
the end of the transition period; thereafter, output slowly
recovers, and by the end of 2022, it is above the baseline value.
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Based on these estimates, the reduction of the annual growth
rate of output in the transition period would be in a range
of 0.00–0.04 percentage points (0.00–0.05 percentage points
including nonspread effects). The fall in output is driven
for the most part by the slowdown in capital accumulation,
which suffers from higher borrowing costs (and credit supply
restrictions). Compliance with the new liquidity standards
also yields small costs. The additional slowdown in annual
GDP growth is estimated to be at most 0.02 percentage
points (see, e.g., [16]). These results are broadly similar to
those shown in [17], derived for the main G20 economies.
If banks felt forced by competitors or financial markets
to speed up the transition to the new capital standards,
the fall in output could be steeper and quicker. Assuming
that the transition is completed by the beginning of 2013,
GDP would reach a trough in the second half of 2014; for
each percentage point increase in capital requirements, GDP
would slow down by 0.02–0.14 percentage points in each year
of the 2011–2013 period (see, e.g., [16]). It would subsequently
rebound, partly compensating the previous fall. Long-run
costs of achieving a 1-percentage point increase in the target
capital ratio are also small (slightly less than 0.2% of steady
state GDP); those needed to comply with the new liquidity
requirements are of similar size. Econometric estimates are
typically subjected to high uncertainty; those presented in
this paper are of no exception.Themain finding of this paper
is nonetheless shared by several other studies. The economic
costs of stronger capital and liquidity requirements are not
huge and become negligible if compared with the potential
benefits that can be reaped from reducing the frequency of
systemic crises and the amplitude of boom-bust cycles. [18]
evaluates that if the capital ratio increases by 1-percentage
point relative to the historical average, the expected net
benefits in terms of GDP level would be in a range of 0.20–
2.32%, (0.25–3.33% if liquidity requirements are also met)
depending on whether financial crises are assumed to have
a temporary or a permanent effect on the output. Even taking
the most cautious estimate, the gains undoubtedly outweigh
the costs to be paid to achieve a sounder banking system
(see, e.g., [16]).

According to [19], the liquidity framework includes a
module to assess risks arising from maturity transformation
and rollover risks. A liquidity buffer covers small refinancing
needs because of its limited size. In the management of risk, a
bank can combine liquidity buffers and transparency to hedge
small and large refinancing needs. A bank that can “prove” its
solvency will be able to attract external refinancing.

The purpose of the nonstandard monetary policy tool
suggested by Basel III is to ensure that banks build up suf-
ficient liquidity buffers on their own to meet cash-flow
obligations. At the same time, the banking system as a whole
accumulates a stock of liquid reserves to safeguard financial
stability. Reference [20] suggest that Basel III allows central
banks to be in charge of overseeing systemic risk which places
them in a position to focus on system-wide risks. Also, Basel
III allows for central bank reserves which serve as means,
whereby commercial banks manage their liquidity risk (see,
e.g., [20]). It also assists supervisors to inform the central
banks of their judgement.

1.2. Main Questions and Article Outline. In this subsection,
we pose the main questions and provide an outline of the
paper.

1.2.1. Main Questions. In this paper on bank net stable
funding ratio, we answer the following questions.

Question 1 (banking model). Can we model banks’ required
stable funding (RSF) and available stable funding (ASF) as
well as inverse net stable funding ratio (INSFR) in a stochastic
framework where constraints are considered? (compare with
Section 3).

Question 2 (bank liquidity in a numerical quantitative frame-
work). Can we explain and provide numerical examples of
the dynamics of bank inverse net stable funding ratio? (refer
to Section 3.3).

Question 3 (optimal bank control problem). Can we deter-
mine the optimal control problem for a continuous-time
inverse net stable funding ratio? (refer to Section 4).

1.2.2. Article Outline. This paper is organized in the following
way. The current chapter introduce the paper and present
a brief background of the Basel III and net stable funding
ratio. In Section 2, we present simple liquidity data in order to
provide insights into the relationship between liquidity and
financial crises. Furthermore, Section 3 serves as a general
description of the inverse net stable funding ratio modeling
which is useful to the wider application for solving the
optimal control problem which follows in the subsequent
section. In this section, we consolidated our results by
providing the dynamic model for inverse net stable funding
ratio, and it gives a pictorial trend for the bank liquidity
developments. Section 4 states the optimal bank inverse net
stable funding ratio. This model is used to formulate the
optimal stochastic INSFR control problem in Section 4 (see
Question 3 and Problem 1).This involves the twomain results
in the paper, namely,Theorems 3 and 4.The latter theorem is
significant in that it introduces the idea of a reference process
to bank INSFR dynamics (compare with Question 3). Finally
in Section 5, we establish the conclusion for the paper and the
possible research future directions.

2. Liquidity in Crisis: Empirical Evidence

In this subsection, we present simple liquidity data in order
to provide insights into the relationship between liquidity and
financial crises. More precisely, we discuss bank (see Section
2.1 for more details) and bond (see Section 2.2) level liquidity
data. In both cases, we conclude that low liquidity coincided
with periods of financial crises.

2.1. Bank Level Liquidity Data. In this subsection, we con-
sider quarterly Call Report data on required stable funding,
semirequired stable funding, illiquid assets, and illiquid
guarantees from selected U.S. commercial banks during the
period fromQ3: 2005 to Q4: 2008.We collected data on 9067
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Table 1: Bank level liquidity (in billions).

Quarters Required stable funding Semirequired stable funding Illiquid assets Illiquid guarantees
Q3: 2005 80 220 100 170
Q4: 2005 30 200 200 220
Q1: 2006 70 220 280 300
Q2: 2006 150 210 380 490
Q3: 2006 110 200 410 530
Q4: 2006 180 230 490 620
Q1: 2007 190 220 500 710
Q2: 2007 200 230 600 900
Q3: 2007 310 215 710 980
Q4: 2007 270 230 800 1,010
Q1: 2008 250 210 820 1,015
Q2: 2008 240 220 830 1,005
Q3: 2008 260 230 810 995
Q4: 2008 310 250 780 990

distinct banks yielding 453579 bank-quarter observations
over the aforementioned period.

In Table 1, we note that required stable funding decreased
during the financial crisis after a steady increase before
this period. As liquidity creation procedures (like bailouts)
become effective in Q3: 2008 and Q4: 2008, the vol-
ume of required stable funding increased. By comparison,
the semirequired stable funding fluctuated throughout the
period. On the other hand, the illiquid assets increased until
Q3: 2008 and then decreased as bailouts came into effect.
During the financial crisis, illiquid guarantee dynamics had
a negative correlation with that of required stable funding.

2.2. Bond Level Liquidity Data. In this subsection, we explore
whether the effect of illiquidity is stronger during times of
financial crisis. We present the results for the crisis period
and compare them with those for the period with normal
bond market conditions. Firstly, we provide evidence from
the descriptive statistics of the key variables for the two
subperiods, and then draw our main conclusions based
on this. The analysis of the averages of the variables in
these subperiods allows us to gain some important insights
into the causes of the variation (see [21]). In this regard,
Table 2 presents the mean and standard deviations for bond
characteristics (amount issued, coupon, maturity, and age),
trading activity variables (traded volume, number of trades,
and time interval between trades), and liquidity measures
(Amihud, price dispersion, Roll, and zero-return measure).
The data set consists of more than 23 000U.S. corporate
bonds traded over the period from Q3: 2005 to Q4: 2008.

Table 2 clearly supports the view that all liquidity mea-
sures indicated lower liquidity levels during the financial cri-
sis. As an example, we consider the average price dispersion
measure and find that its value is higher during the crisis
compared to the noncrisis period. With regard to the trading
activity variables, we find that the average daily volume
and the trade interval at the bondlevel stay approximately
constant. However, the number of trades increases during the

financial crisis. These results are consistent with the level of
market-wide trading activity, wherewe found that, during the
GFC, trading takes place in fewer bonds, with an increased
number of smaller size trades.

3. An Inverse Net Stable Funding Ratio Model

In this section, we describe aspects of INSFR modeling
that are important for solving the optimal control problem
outlined in Section 4. We show that concepts related to
INSFRs such as volatility in available stable funding and bank
investment returns may be modeled as stochastic processes.
In order to construct our NSFR model, we take into account
the results obtained in [22] in a discrete time framework
(see, also, [23]). Here, INSFRs are closely linked to available
stable funding. This liquidity design caused asymmetric and
loss of information, opaqueness, and intricacy which had
devastating effects on financial markets.

3.1. Description of the Inverse Net Stable Funding Ratio Model.
Before the GFC, banks were prosperous with high liquidity
provisioning rates, low interest rates, and soaring available
stable funding. This was followed by the collapse of the
housing market, exploding default rates, and the effects
thereafter.Wemake the following assumption to set the space
and time indexes that we consider in our INSFR model.

Assumption 1 (filtered probability space and time indexes).
Throughout, we assume that we are working with a filtered
probability space (Ω,F,P) with filtration {F

𝑡
}
𝑡≥0

on a time
index set 𝑇 = [𝑡

0
, 𝑡
1
].

Furthermore, we are able to produce a system of stochas-
tic differential equations that provide information about
required stable funding value at time 𝑡 with 𝑥

1
: Ω × 𝑇 →

R+ denoted by 𝑥
1

𝑡
and appraised available stable funding at

time 𝑡 with 𝑥
2

: Ω × 𝑇 → R+ denoted by 𝑥
2

𝑡
and their

relationship. The dynamics of required stable funding, 𝑥1
𝑡
,
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Table 2: Bond level liquidity.

Mean Standard deviation
Noncrisis Crisis Noncrisis Crisis

Amount issued (bln) 0.45 0.54 0.03 0.06
Coupon (%) 6.24 6.23 0.05 0.05
Maturity (yr) 7.75 8.31 0.20 0.18
Age (yr) 4.36 4.76 0.12 0.14
Volume (mln) 1.44 1.53 0.22 0.32
Trades 4.06 5.33 0.24 1.31
Trade interval (dy) 3.38 3.37 0.49 0.48
Amihud (bp per mln) 53.21 89.20 7.42 35.75
Price dispersion (bp) 39.75 70.02 1.83 21.84
Roll (bp) 142.82 209.77 10.57 52.34
Zero return (%) 0.02 0.03 0.01 0.01

is stochastic in nature because, in part, it depends on the
stochastic rates of return on bank assets (see [24] for more
details) as well as cash in- and outflows. Also, the dynamics of
available stable fundings,𝑥2

𝑡
, is stochastic because its value has

a reliance on the rate of change of available stable funding as
well as liquidity provisioning and risk that have randomness
associated with them. Furthermore, for 𝑥 : Ω × 𝑇 → R2, we
use the notation 𝑥

𝑡
to denote

𝑥
𝑡
= [

𝑥
1

𝑡

𝑥
2

𝑡

] (3)

and represent the INSFR with 𝑙 : Ω × 𝑇 → R+ by

𝑙
𝑡
=

𝑥
1

𝑡

𝑥
2

𝑡

. (4)

It is important for banks that 𝑙
𝑡
in (4) has to be sufficiently

high to ensure high INSFRs. Obviously, low values of 𝑙
𝑡

indicate that the bank has low liquidity and is at high risk of
causing a credit crunch. Bank liquidity has a heavy reliance
on liquidity provisioning rates. Roughly speaking, this rate
should be reduced for high INSFRs and increased beyond the
normal rate when bank INSFRs are too low. In the sequel, the
stochastic process 𝑢1 : Ω × 𝑇 → R+ is the normal liquidity
provisioning rate per available stable funding unit whose value
at time 𝑡 is denoted by 𝑢

1

𝑡
. In this case, 𝑢1

𝑡
𝑑𝑡 turns out to be

the liquidity provisioning rate per unit of the available stable
funding over the time period (𝑡, 𝑡 + 𝑑𝑡). A notion related to
this is the bailout rate per unit of the available stable funding
for higher or lower INSFRs, 𝑢2 : Ω × 𝑇 → R+, that will
in closed loop be made dependent on the INSFR. Here, the
equity amount is reliant on required stable funding deficit
over available stable fundings. We denote the sum of 𝑢1 and
𝑢
2 by the liquidity provisioning rate 𝑢3 : Ω×𝑇 → R+, that is,

𝑢
3

𝑡
= 𝑢
1

𝑡
+ 𝑢
2

𝑡
, ∀𝑡. (5)

Before and during the GFC, the INSFR decreased signifi-
cantly as a consequence of rising available stable fundings.
During this period, extensive cash outflows took place. Banks

bargained on continued growth in the financial markets (see,
e.g., [22]). The following assumption is made in order to
model the INSFR in a stochastic framework.

Assumption 2 (Liquidity Provisioning Rate). The liquidity
provisioning rate, 𝑢3, is predictable with respect to {F

𝑡
}
𝑡≥0

and provides us with a means of controlling bank INSFR
dynamics (see (5) for more details).

The closed loop systemwill be defined such that Assump-
tion 2 is met, as we will see in the sequel.The dynamics of the
change per unit of the available stable funding, 𝑒 : Ω×𝑇 → R,
are given by

𝑑𝑒
𝑡
= 𝑟
𝑒

𝑡
𝑑𝑡 + 𝜎

𝑒

𝑡
𝑑𝑊
𝑒

𝑡
, 𝑒 (𝑡

0
) = 𝑒
0
, (6)

where 𝑒
𝑡
is the change per unit of the available stable funding,

𝑟
𝑒
: 𝑇 → R is the rate of change per unit of the available

stable funding, the scalar 𝜎𝑒 : 𝑇 → R is the volatility in the
change per available stable funding unit, and𝑊

𝑒
: Ω × 𝑇 →

R is standard Brownian motion. Furthermore, we consider

𝑑ℎ
𝑡
= 𝑟
ℎ

𝑡
𝑑𝑡 + 𝜎

ℎ

𝑡
𝑑𝑊
ℎ

𝑡
, ℎ (𝑡

0
) = ℎ
0
, (7)

where the stochastic processes ℎ : Ω × 𝑇 → R+ are the
asset return per unit of required stable funding, 𝑟ℎ → R+ is
the rate of required stable funding return per required stable
funding unit, the scalar 𝜎ℎ : 𝑇 → R is the volatility in the
rate of asset returns, and 𝑊

ℎ
: Ω × 𝑇 → R is standard

Brownian motion. Before the GFC, risky asset returns were
much higher than those of riskless assets, making the former
a more attractive but much riskier investment. It is inefficient
for banks to invest all in risky or riskless securities with asset
allocation being important. In this regard, it is necessary to
make the following assumption to distinguish between risky
and riskless assets for future computations.

Assumption 3 (bank required stable funding). Suppose from
the outset that bank required stable funding can be classified
into 𝑛 + 1 asset classes. One of these assets is risk free (like
treasury securities) while the assets 1, 2, . . . , 𝑛 are risky.
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The risky assets evolve continuously in time and are
modelled using a 𝑛-dimensional Brownian motion. In this
multidimensional context, the asset returns in the kth asset
class per unit of the kth class are denoted by 𝑦

𝑘

𝑡
, 𝑘 ∈ N

𝑛
=

{0, 1, 2, . . . , 𝑛}, where 𝑦 : Ω × 𝑇 → R𝑛+1. Thus, the asset
return per required stable funding unit may be represented
by

𝑦 = (T (𝑡) , 𝑦
1

𝑡
, . . . , 𝑦

𝑛

𝑡
) , (8)

where T(𝑡)𝑡 represents the return on riskless assets, and
𝑦
1

𝑡
, . . . , 𝑦

𝑛

𝑡
represents the risky return. Furthermore, we can

model 𝑦 as

𝑑𝑦
𝑡
= 𝑟
𝑦

𝑡
𝑑𝑡 + Σ

𝑦

𝑡
𝑑𝑊
𝑦

𝑡
, 𝑦 (𝑡

0
) = 𝑦
0
, (9)

where 𝑟𝑦 : 𝑇 → R𝑛+1 denotes the rate of asset returns, Σ𝑦
𝑡
∈

R(𝑛+1)×𝑛 is a matrix of asset returns, and 𝑊
𝑦
: Ω × 𝑇 → R𝑛

is a standard Brownian. Notice that there are only 𝑛 scalar
Brownian motions due to one of the assets being riskless.

We assume that the investment strategy 𝜋 : 𝑇 → R𝑛+1 is
outside the simplex

𝑆 = {𝜋 ∈ R
𝑛+1

: 𝜋 = (𝜋
0
, . . . , 𝜋

𝑛
)
𝑇

,

𝜋
0
+ ⋅ ⋅ ⋅ + 𝜋

𝑛
= 1,

𝜋
0
≥ 0, . . . , 𝜋

𝑛
≥ 0} .

(10)

In this case, short selling is possible. The required stable
funding returns are then ℎ : Ω×𝑅 → R+, where the dynamics
of ℎ can be written as

𝑑ℎ
𝑡
= 𝜋
𝑇

𝑡
𝑑𝑦
𝑡
= 𝜋
𝑇

𝑡
𝑟
𝑦

𝑡
𝑑𝑡 + 𝜋

𝑇

𝑡
Σ
𝑦

𝑡
𝑑𝑊
𝑦

𝑡
. (11)

This notation can be simplified as follows. We denote that

𝑟
T
(𝑡) = 𝑟

𝑦
0

(𝑡) , 𝑟
T
: 𝑇 󳨀→ R

+
,

the rate of return on riskless assets,

𝑟
𝑦

𝑡
= (𝑟

T
(𝑡) ,

̃
𝑟
𝑦

𝑡

𝑇

+ 𝑟
T
(𝑡) 1
𝑛
)

𝑇

, 𝑟̃
𝑦
: 𝑇 󳨀→ R

𝑛
,

𝜋
𝑡
= (𝜋
0

𝑡
, 𝜋̃
𝑇

𝑡
)
𝑇

= (𝜋
0

𝑡
, 𝜋
1

𝑡
, . . . , 𝜋

𝑘

𝑡
)
𝑇

, 𝜋̃ : 𝑇 󳨀→ R
𝑘
,

Σ
𝑦

𝑡
= (

0 ⋅ ⋅ ⋅ 0

Σ̃
𝑦

𝑡

) , Σ̃
𝑦

𝑡
∈ R
𝑛×𝑛

,

𝐶̃
𝑡
= Σ̃
𝑦

𝑡

̃
Σ
𝑦

𝑡

𝑇

. Then,we have that

𝜋
𝑇

𝑡
𝑟
𝑦

𝑡
= 𝜋
0

𝑡
𝑟
T
(𝑡) + 𝜋̃

𝑗𝑇

𝑡
𝑟̃
𝑦

𝑡
+ 𝜋̃
𝑗𝑇

𝑡
𝑟
T
(𝑡) 1
𝑛

= 𝑟
T
(𝑡) + 𝜋̃

𝑇

𝑡
𝑟̃
𝑦

𝑡
,

𝜋
𝑇

𝑡
Σ
𝑦

𝑡
𝑑𝑊
𝑦

𝑡
= 𝜋̃
𝑇

𝑡
Σ̃
𝑦

𝑡
𝑑𝑊
𝑦

𝑡
,

𝑑ℎ
𝑡
= [𝑟

T
(𝑡) + 𝜋̃

𝑇

𝑡
𝑟̃
𝑦

𝑡
] 𝑑𝑡 + 𝜋̃

𝑇

𝑡
Σ̃
𝑦

𝑡
𝑑𝑊
𝑦

𝑡
, ℎ (𝑡

0
) = ℎ
0
.

(12)

Next, we take 𝑖 : Ω × 𝑇 → R+ as the available stable funding
increase before change per unit of available stable funding,
𝑟
𝑖
: 𝑇 → R+ is the rate of increase of available stable fundings

before change, per available stable funding unit, the scalar
𝜎
𝑖

∈ R is the volatility in the increase of available stable
funding before change and 𝑊

𝑖
: Ω × 𝑇 → R represents

standard Brownian motion. Then, we set

𝑑𝑖
𝑡
= 𝑟
𝑖

𝑡
𝑑𝑡 + 𝜎

𝑖
𝑑𝑊
𝑖

𝑡
, 𝑖 (𝑡

0
) = 𝑖
0
. (13)

The stochastic process 𝑖
𝑡
in (13) may typically originate

from available stable funding volatility that may result from
changes in market activity, supply, and inflation.

We can choose from two approaches when modeling
our INSFR in a stochastic setting. The first is a realistic
model that incorporates all the aspects of the INSFR like
available stable funding, required stable fundings, and risks
linked with liquidity. Alternatively, we can develop a simple
model which acts as a proxy for somethingmore realistic that
emphasizes features that are specific to our particular study.
In our situation, we choose the latter option, with the model
for required stable fundings, 𝑥1, and available stable funding,
𝑥
2, and their relationship being derived as

𝑑𝑥
1

𝑡
= 𝑥
1

𝑡
𝑑ℎ
𝑡
+ 𝑥
2

𝑡
𝑢
3

𝑡
𝑑𝑡 − 𝑥

2

𝑡
𝑑𝑒
𝑡

= [𝑟
T
(𝑡) 𝑥
1

𝑡
+ 𝑥
1

𝑡
𝜋̃
𝑇

𝑡
𝑟̃
𝑦

𝑡
+ 𝑥
2

𝑡
𝑢
1

𝑡
+ 𝑥
2

𝑡
𝑢
2

𝑡
− 𝑥
2

𝑡
𝑟
𝑒

𝑡
] 𝑑𝑡

+ [𝑥
1

𝑡
𝜋̃
𝑇

𝑡
Σ̃
𝑦

𝑡
𝑑𝑊
𝑦

𝑡
− 𝑥
2

𝑡
𝜎
𝑒
𝑑𝑊
𝑒

𝑡
] ,

𝑑𝑥
2

𝑡
= 𝑥
2

𝑡
𝑑𝑖
𝑡
− 𝑥
2

𝑡
𝑑𝑒
𝑡

= 𝑥
2

𝑡
[𝑟
𝑖

𝑡
𝑑𝑡 + 𝜎

𝑖
𝑑𝑊
𝑖

𝑡
] − 𝑥
2

𝑡
[𝑟
𝑒

𝑡
𝑑𝑡 + 𝜎

𝑒
𝑑𝑊
𝑒

𝑡
]

= 𝑥
2

𝑡
[𝑟
𝑖

𝑡
− 𝑟
𝑒

𝑡
] 𝑑𝑡 + 𝑥

2

𝑡
[𝜎
𝑖
𝑑𝑊
𝑖

𝑡
− 𝜎
𝑒
𝑑𝑊
𝑒

𝑡
] .

(14)

The SDEs (14) may be rewritten into matrix-vector form in
the following way.

Definition 1 (stochastic system for the INSFRmodel). Define
the stochastic system for the INSFR model as

𝑑𝑥
𝑡
= 𝐴
𝑡
𝑥
𝑡
𝑑𝑡 + 𝑁 (𝑥

𝑡
) 𝑢
𝑡
𝑑𝑡 + 𝑎

𝑡
𝑑𝑡 + 𝑆 (𝑥

𝑡
, 𝑢
𝑡
) 𝑑𝑊
𝑡
, (15)

with the various terms in this stochastic differential equation
being

𝑢
𝑡
= [

𝑢
2

𝑡

𝜋̃
𝑡

] , 𝑢 : Ω × 𝑇 󳨀→ R
𝑛+1

,

𝐴
𝑡
= [

𝑟
T
(𝑡) −𝑟

𝑒

𝑡

0 𝑟
𝑖

𝑡
− 𝑟
𝑒

𝑡

] ,

𝑁 (𝑥
𝑡
) = [

𝑥
2

𝑡
𝑥
1

𝑡

̃
𝑟
𝑦

𝑡

𝑇

0 0

] , 𝑎
𝑡
= [

𝑥
2

𝑡
𝑢
1

𝑡

0
] ,

𝑆 (𝑥
𝑡
, 𝑢
𝑡
) = [

𝑥
1

𝑡
𝜋̃
𝑇

𝑡
Σ̃
𝑦

𝑡
−𝑥
2

𝑡
𝜎
𝑒

0

0 −𝑥
2

𝑡
𝜎
𝑒

𝑥
2

𝑡
𝜎
𝑖
] ,

𝑊
𝑡
= [

[

𝑊
𝑦

𝑡

𝑊
𝑒

𝑡

𝑊
𝑖

𝑡

]

]

,

(16)
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where 𝑊
𝑦

𝑡
, 𝑊𝑒
𝑡
, and 𝑊

𝑖

𝑡
are mutually (stochastically) inde-

pendent standard Brownianmotions. It is assumed that for all
𝑡 ∈ 𝑇, 𝜎𝑒

𝑡
> 0, 𝜎𝑖

𝑡
> 0, and 𝐶̃

𝑡
> 0. Often the time argument

of the functions 𝜎𝑒 and 𝜎
𝑖 are omitted.

We can rewrite (15) as follows:

𝑁(𝑥
𝑡
) 𝑢
𝑡
:= [

𝑥
2

𝑡

0
] 𝑢
2

𝑡
+ [

𝑥
1

𝑡

̃
𝑟
𝑦

𝑡

𝑇

0

] 𝜋̃
𝑡

:= [
0 1

0 0
] 𝑥
𝑡
𝑢
3

𝑡
+

𝑛

∑

𝑚=1

[
𝑥
1

𝑡
𝑟̃
𝑦,𝑚

𝑡

0
] 𝜋̃
𝑚

𝑡

:= 𝐵
0
𝑥
𝑡
𝑢
0

𝑡
+

𝑛

∑

𝑚=1

[
𝑟̃
𝑦,𝑚

𝑡
0

0 0
] 𝑥
𝑡
𝜋̃
𝑚

𝑡

:=

𝑛

∑

𝑚=0

[𝐵
𝑚
𝑥
𝑡
] 𝑢
𝑚

𝑡
,

𝑆 (𝑥
𝑡
, 𝑢
𝑡
) 𝑑𝑊
𝑡
= [

[𝜋̃
𝑇

𝑡
𝐶̃
𝑡
𝜋̃
𝑡
]
1/2

0

0 0

] 𝑥
𝑡
𝑑𝑊
1

𝑡

+ [
0 −𝜎
𝑒

0 −𝜎
𝑒] 𝑥
𝑡
𝑑𝑊
2

𝑡
+ [

0 0

0 𝜎
𝑖] 𝑥
𝑡
𝑑𝑊
3

𝑡

=

3

∑

𝑗=1

[𝑀
𝑗𝑗
(𝑢
𝑡
) 𝑥
𝑡
] 𝑑𝑊
𝑗𝑗

𝑡
,

(17)

where 𝐵 and 𝑀 are only used for notational purposes to
simplify the equations. From the stochastic system given by
(15), it is clear that 𝑢 = (𝑢

2
, 𝜋̃) affects only the stochastic

differential equation of 𝑥1
𝑡
but not that of 𝑥2

𝑡
. In particular,

for (15), we have that 𝜋̃ affects the variance of 𝑥1
𝑡
and the drift

of 𝑥1
𝑡
via the term 𝑥

1

𝑡

̃
𝑟
𝑦

𝑡

𝑇

𝜋̃
𝑡
. On the other hand, 𝑢2 affects only

the drift of 𝑥1
𝑡
. Then, (15) becomes

𝑑𝑥
𝑡
= 𝐴
𝑡
𝑥
𝑡
𝑑𝑡 +

𝑛

∑

𝑗=0

[𝐵
𝑗
𝑥
𝑡
] 𝑢
𝑗

𝑡
𝑑𝑡 + 𝑎

𝑡
𝑑𝑡

+

3

∑

𝑗=1

[𝑀
𝑗
(𝑢
𝑡
) 𝑥
𝑡
] 𝑑𝑊
𝑗𝑗

𝑡
.

(18)

3.2. Description of the Simplified INSFR Model. The model
can be simplified if attention is restricted to the system with
the INSFR, as stated earlier, denoted in this section by 𝑥

𝑡
=

𝑥
1

𝑡
/𝑥
2

𝑡
.

Definition 2 (stochastic model for a simplified INSFR).
Define the simplified INSFR system by the SDE

𝑑𝑥
𝑡
= 𝑥
𝑡
[𝑟

T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

+
̃
𝑟
𝑦

𝑡

𝑇

𝜋̃
𝑡
] 𝑑𝑡

+ [𝑢
1

𝑡
+ 𝑢
2

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

] 𝑑𝑡

+ [(𝜎
𝑒
)
2

(1 − 𝑥
𝑡
)
2

+ (𝜎
𝑖
)
2

𝑥
2

𝑡
+ 𝑥
2

𝑡
𝜋̃
𝑇

𝑡
𝐶̃
𝑡
𝜋̃
𝑡
]

1/2

𝑑𝑊
𝑡
,

𝑥 (𝑡
0
) = 𝑥
0
.

(19)

The model is derived as follows. The starting point is the
two-dimensional SDE for 𝑥 = (𝑥

1
, 𝑥
2
)
𝑇 as in (14). Next, we

determine

𝑑(𝑥
2

𝑡
)
−1

= −(𝑥
2

𝑡
)
−2

𝑑𝑥
2

𝑡
+

1

2
2(𝑥
2
)
−3

𝑡
𝑑 < 𝑥

2
, 𝑥
2
> 𝑡

= [−(𝑥
2
)
−1

𝑡
(𝑟
𝑖

𝑡
− 𝑟
𝑒

𝑡
) + (𝑥

2

𝑡
)
−1

((𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

)] 𝑑𝑡

− (𝑥
2

𝑡
)
−1

[0 −𝜎
𝑒

𝜎
𝑖
] 𝑑𝑊
𝑡
,

𝑑𝑥
𝑡
= 𝑥
1

𝑡
𝑑(𝑥
2

𝑡
)
−1

+ (𝑥
2

𝑡
)
−1

𝑑𝑥
1

𝑡
+ 𝑑 < 𝑥

1
, (𝑥

2
)
−1

> 𝑡

= [𝑟
T
(𝑡) 𝑥
𝑡
− 𝑟
𝑒

𝑡
+ 𝑢
1

𝑡
+ 𝑢
2

𝑡
+ 𝑥
𝑡
𝑟̃
𝑦

𝑡
𝜋̃
𝑡

−𝑥
𝑡
[𝑟
𝑖

𝑡
− 𝑟
𝑒

𝑡
] + 𝑥
𝑡
((𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

) − (𝜎
𝑒
)
2

] 𝑑𝑡

+ (𝑥
𝑡
𝜋̃
𝑇

𝑡
Σ̃
𝑦

𝑡
− 𝜎
𝑒
(1 − 𝑥

𝑡
) − 𝜎
𝑖
𝑥
𝑡
) 𝑑𝑊
𝑡

= 𝑥
𝑡
[𝑟

T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

+
̃
𝑟
𝑦

𝑡

𝑇

𝜋̃
𝑡
] 𝑑𝑡

+ [𝑢
1

𝑡
+ 𝑢
2

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

] 𝑑𝑡

+ [(𝜎
𝑒
)
2

(1 − 𝑥
𝑡
)
2

+ (𝜎
𝑖
)
2

(𝑥
𝑡
)
2

+(𝑥
𝑡
)
2

𝜋̃
𝑇

𝑡
𝐶̃
𝑡
𝜋̃
𝑡
+ (𝜎
𝑖
)
2

(𝑥
𝑡
)
2

]

1/2

𝑑𝑊
𝑡
,

(20)

for a stochastic process𝑊 : Ω×𝑇 → Rwhich is a standard
Brownian motion. Note that in the drift of the SDE (19), the
term

−𝑟
𝑒

𝑡
+ 𝑥
𝑡
𝑟
𝑒

𝑡
= −𝑟
𝑒

𝑡
(𝑥
𝑡
− 1) , (21)

appears because it models the effect of depreciation of
both required stable fundings and available stable funding.
Similarly the term −(𝜎

𝑒
)
2
+ 𝑥
𝑡
(𝜎
𝑒
)
2
= (𝜎
𝑒
)
2
(𝑥
𝑡
− 1) appears.

The predictions made by our previously constructed
model are consistent with the empirical evidence in contri-
butions such as [23, 25]. For instance, in much the same way
as we do, [23] describes how available stable fundings affect
INSFRs. On the other hand, to the best of our knowledge, the
modeling related to collateral and INSFR reference processes
(see Section 4 for a comprehensive discussion) has not been
tested in the literature before. One of the main contributions
of the paper is the way the INSFR model is constructed
by using stochastic techniques. We believe that this is an
addition to the preexisting literature because it captures
some of the uncertainty associated with INSFR variables. In
this regard, we provide a theoretical-quantitative modeling
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A trajectory for INSFR
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Figure 1: Trajectory of the INSFR of stable fundings.

Table 3: Choices of inverse net stable funding ratio parameters.

Parameter Value
𝐶 500
𝑟
𝑖 0.01
𝑟̃
𝑦 0.06
𝑢
2 0.03

𝑟
𝐶 0.05
𝜎
𝑒 1.6

𝜋̃ 0.4
𝐶̃ 150
𝑟
𝑒 0.04
𝜎
𝑖 1.8

𝑢
1 0.01

𝑊 0.03

framework for establishing bank INSFR reference processes
and themaking of decisions about liquidity provisioning rates
and asset allocation.

3.3. Liquidity Simulation. In this subsection, we provide a
simulation of the INSFR dynamics given in (19).

3.3.1. INSFR Simulation. In this subsubsection, we provide
parameters and values for a numerical simulation. The
parameters and their corresponding values for the simulation
are shown below.

3.3.2. INSFR Dynamics: Numerical Example. In Figure 1, we
provide the INSFR dynamics in the form of a trajectory
derived from (19).

3.3.3. Properties of the INSFR Trajectory: Numerical Example.
Figure 1 shows the simulated trajectory for the INSFR for
stable funding for the bank. Here, different values of banking
parameters are collected in Table 3. The number of jumps
of the trajectory was limited to 500, with the initial values

for 𝐼 fixed at 100. The new Basel III formulated quantitative
framework in the formof standards which play some comple-
mentary role to the existing principles for sound liquidity risk
management and regulations. In this framework, we intend
to regulate liquidity risk in the banks adopting quantitative
method. This typically involves setting a liquidity ratio as
a minimum requirement, which, however, complemented
by broader systems and control related to management of
liquidity risk.

As we know, banks manage their liquidity by offsetting
liabilities via assets. It is actually the diversification of the
bank’s assets and liabilities that expose them to liquidity
shocks. Here, we use ratio analysis (in the form of the INSFR)
to manage liquidity risk relating various components in the
bank’s balance sheets. Figure 1 depicts that the bank had some
difficulties to secure some stable funding between 0.1 ≤ 𝑡 ≤

0.3 and also 0.7 ≤ 𝑡 ≤ 0.9. The ratio for INSFR dictates that
the amount of net stable funding should be≤1.Hence,we have
some higher liquidity ratio between 0.4 ≤ 𝑡 ≤ 0.7, and this
is because the growth of the required stable funding by the
bank was higher than that of the available stable funding. At
this stage, the bank might have diversified ways of attracting
resources through issuing new bonds and selling securities.

There was an even sharper increase subsequent to 𝑡 = 0.7

which comes as somewhat of a surprise. In order to mitigate
the aforementioned increase in liquidity risk, banks can use
several facilities such as repurchase agreements to secure
more funding. In order for banks to improve liquidity they
may use debt securities that allow savings from nonfinancial
private sectors, a good network of branches, and other
competitive strategies. It is important for banks that 𝑙

𝑡
in (4)

has to be sufficiently high to ensure high INSFRs. Obviously,
low values of 𝑙

𝑡
indicate that the bank has low liquidity and is

at high risk of causing a credit crunch.
Bank liquidity has a heavy reliance on liquidity provi-

sioning rates. Roughly speaking, this rate should be reduced
for high INSFRs and increased beyond the normal rate when
bank INSFRs are too low.

4. Optimal Bank Inverse Net Stable
Funding Ratios

In order for a bank to determine an optimal bank bailout
rate (seen as an adjustment to the normal provisioning rate)
and asset allocation strategy, it is imperative that a well-
defined objective function with appropriate constraints is
considered. The choice has to be carefully made in order to
avoid ambiguous solutions to our stochastic control problem.

4.1. The Optimal Bank INSFR Problem. In our contribution,
we choose to determine a control law 𝑔(𝑡, 𝑥

𝑡
) that minimizes

the cost function 𝐽 : G
𝐴

→ R+, where G
𝐴
is the class of

admissible control laws
G
𝐴
= {𝑔 : 𝑇 ×X 󳨀→ U|

𝑔
Borel measurable function

and there exists a unique solution

to the closed-loop system} ,

(22)
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Table 5: Detailed composition of asset categories and associated RSF factors.

RSF factor Components of RSF category
(i) Cash immediately available to meet obligations, not currently encumbered as collateral and not held for planned use (as
contingent collateral, salary payments, or for other reasons)

(ii) Unencumbered short-term unsecured instruments and transactions with outstanding maturities of less than one year1

0% (iii) Unencumbered securities with stated remaining maturities of less than one year with no embedded options that would
increase the expected maturity to more than one year
(iv) Unencumbered securities held where the institution has an offsetting reverse repurchase transaction when the security
on each transaction has the same unique identifier (e.g., ISIN number or CUSIP)
(v) Unencumbered loans to financial entities with effective remaining maturities of less than one year that are not renewable
and for which the lender has an irrevocable right to call

5%

Unencumbered marketable securities with residual maturities of one year or greater representing claims on or claims
guaranteed by sovereigns, central banks, BIS, IMF, EC, noncentral government PSEs or multilateral development banks that
are assigned a 0% risk-weight under the Basel II Standardized Approach, provided that active repo or sale-markets exist for
these securities

20%
(i) Unencumbered corporate bonds or covered bonds rated AA− or higher with residual maturities of one year or greater
satisfying all of the conditions for L2As in the LCR, outlined in Paragraph 42(b)
(ii) Unencumbered marketable securities with residual maturities of one year or greater representing claims on or claims
guaranteed by sovereigns, central banks, noncentral government PSEs that are assigned a 20% risk weight under the Basel II
Standardized Approach, provided that they meet all of the conditions for Level 2 assets in the LCR, outlined in Paragraph
42(a)

50%

(i) Unencumbered gold
(ii) Unencumbered equity securities, not issued by financial institutions or their affiliates listed on a recognized exchange
and included in a large cap market index

(iii) Unencumbered corporate bonds and covered bonds that satisfy all of the following conditions:

(a) central bank eligibility for intraday liquidity needs and overnight liquidity shortages in relevant jurisdictions2

(b) not issued by financial institutions or their affiliates (except in the case of covered bonds)

(c) not issued by the respective firm itself or its affiliates
(d) Low credit risk: assets have a credit assessment by a recognized ECAI of A+ to A−, or do not have a credit assessment
by a recognized ECAI and are internally rated as having a PD corresponding to a credit assessment of A+ to A−

(e) traded in large, deep, and active markets characterized by a low level of concentration
(iv) Unencumbered loans to nonfinancial corporate clients, sovereigns, central banks, and PSEs having a remaining maturity
of less than one year

65%
(i) Unencumbered residential mortgages of any maturity that would qualify for the 35% or lower risk weight under Basel II
Standardized Approach for credit risk
(ii) Other unencumbered loans, excluding loans to financial institutions, with a remaining maturity of one year or greater,
that would qualify for the 35% or lower risk weight under Basel II Standardized Approach for credit risk

85% Unencumbered loans to retail customers (i.e., natural persons) and small business customers (as defined in the LCR) having
a remaining maturity of less than one year (other than those that qualify for the 65% RSF above)

100% All other assets not included in the above categories
1
Such instruments include but are not limited to: short-term government and corporate bills; notes and obligations; commercial paper; negotiable certificates
of deposits; reserves with central banks and sale transactions of such funds (e.g., fed funds sold); bankers acceptances; money market mutual funds.
2See Footnote 8 for further discussion of central bank eligibility.

with the closed-loop system for 𝑔 ∈ G
𝐴
being given by

𝑑𝑥
𝑡
= 𝐴
𝑡
𝑥
𝑡
𝑑𝑡 +

𝑛

∑

𝑗=0

𝐵
𝑗
𝑥
𝑡
𝑔
𝑗
(𝑡, 𝑥
𝑡
) 𝑑𝑡 + 𝑎

𝑡
𝑑𝑡

+

3

∑

𝑗=1

𝑀
𝑗𝑗
(𝑔 (𝑡, 𝑥

𝑡
)) 𝑥
𝑡
𝑑𝑊
𝑗𝑗

𝑡
, 𝑥 (𝑡

0
) = 𝑥
0
.

(23)

Furthermore, the cost function, 𝐽 : G
𝐴

→ R+, of the INSFR
problem is given by

𝐽 (𝑔) = E [∫

𝑡1

𝑡0

exp (−𝑟
𝑓
(𝑙 − 𝑡
0
)) 𝑏 (𝑙, 𝑥

𝑙
, 𝑔 (𝑙, 𝑥

𝑙
)) 𝑑𝑙

+ exp (−𝑟
𝑓
(𝑡
1
− 𝑡
0
)) 𝑏
1
(𝑥 (𝑡
1
)) ] ,

(24)
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where 𝑔 ∈ G
𝐴
, 𝑇 = [𝑡

0
, 𝑡
1
], and 𝑏

1
: X → R+ is a Borel

measurable function. Furthermore, 𝑏 : 𝑇 ×X ×U → R+ is
formulated as

𝑏 (𝑡, 𝑥, 𝑢) = 𝑏
2
(𝑢
2
) + 𝑏
3
(
𝑥
1

𝑥
2
) , (25)

for 𝑏2 : U
2
→ R+ and 𝑏

3
: R+ → R+. Also, 𝑟𝑓 ∈ R is called

the forecasting rate of available stable funding. The functions
𝑏
1, 𝑏2 and 𝑏

3, are selected below where various choices are
considered. In order to clarify the stochastic problem, the
following assumption should be made.

Assumption 4 (admissible class of control laws). Assume that
G
𝐴

̸= 0.

We are now in a position to state the stochastic optimal
control problem for a continuous-time INSFR model that we
solve. The said problem may be formulated as follows.

Problem 1 (optimal bank Insfr problem). Consider the
stochastic control system in (23) for the INSFR problem with
the admissible class of control laws,G

𝐴
, given by (22) and the

cost function, 𝐽 : G
𝐴

→ R+, given by (24). Solve

inf
𝑔∈G𝐴

𝐽 (𝑔) , (26)

which amounts to determining the value 𝐽∗, given by

𝐽
∗
= inf
𝑔∈G𝐴

𝐽 (𝑔) , (27)

and the optimal control law 𝑔
∗, if it exists,

𝑔
∗
= arg min

𝑔∈G𝐴

𝐽 (𝑔) ∈ G
𝐴
. (28)

4.2. Optimal Bank INSFRs in the Simplified Case. Consider
the simplified system in (19) for the INSFR problem with the
admissible class of control laws, G

𝐴
, given by (22) but with

X = R. In this section, we have to solve

inf
𝑔∈G𝐴

𝐽 (𝑔) ,

𝐽
∗
= inf
𝑔∈G𝐴

𝐽 (𝑔) ,

(29)

𝐽 (𝑔) = E [∫

𝑡1

𝑡0

exp (−𝑟
𝑓
(𝑙 − 𝑡
0
)) [𝑏
2
(𝑢
2

𝑡
) + 𝑏
3
(𝑥
𝑡
)] d𝑡

+ exp (−𝑟
𝑓
(𝑡
1
− 𝑡
0
)) 𝑏
1
(𝑥 (𝑡
1
)) ] ,

(30)

where 𝑏
1
: R → R+, 𝑏2 : R → R+, and 𝑏

3
: R+ → R+

are all Borel measurable functions. For the simplified case,
the optimal cost function in (29) should be determined with
the simplified cost function, 𝐽(𝑔), given by (30). In this case,
assumptions have to be made in order to find a solution for
the optimal cost function, 𝐽∗. Next, we state and prove an
important result.

Theorem 3 (optimal bank INSFRS in the simplified case).
Suppose that 𝑔2∗ and 𝑔

3∗ are the components of the optimal
control law, 𝑔∗, that deal with the optimal bailout rate, 𝑢2∗,
and optimal asset allocation, 𝜋𝑘∗, respectively. Consider the
nonlinear optimal stochastic control problem for the simplified
INSFR system in (19) formulated in Problem 1. Suppose that the
following assumptions hold.

Assumption 3.1. The cost function is assumed to satisfy

𝑏
2
(𝑢
2
) ∈ 𝐶
2
(R) ,

lim
𝑢
2
→−∞

𝐷
𝑢
2𝑏
2
(𝑢
2
) = −∞,

lim
𝑢
2
→+∞

𝐷
𝑢
2𝑏
2
(𝑢
2
) = +∞,

𝐷
𝑢
2
𝑢
2𝑏
2
(𝑢
2
) > 0, ∀𝑢

2
∈ R,

(31)

with the differential operator,𝐷, which is applied in this case to
function 𝑏

2.

Assumption 3.2. There exists a function V : 𝑇 × R → R,
V ∈ 𝐶
1,2

(𝑇 ×X), which is a solution of the PDE given by

0 = 𝐷
𝑡
V (𝑡, 𝑥) +

1

2
[(𝜎
𝑒
)
2

(1 − 𝑥)
2
+ (𝜎
𝑖
)
2

(𝑥
𝑡
)
2

]𝐷
𝑥𝑥
V (𝑡, 𝑥)

+ 𝑥 (𝑟
T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

)𝐷
𝑥
V (𝑡, 𝑥)

+ [𝑢
1

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

]𝐷
𝑥
V (𝑡, 𝑥)

+ 𝑢
2

𝑡

∗

𝐷
𝑥
V (𝑡, 𝑥) + exp (−𝑟

𝑓
(𝑡 − 𝑡
0
)) 𝑏
2
(𝑢
2

𝑡

∗

)

+ exp (−𝑟
𝑓
(𝑡 − 𝑡
0
)) 𝑏
3
(𝑥) −

[𝐷
𝑥
V (𝑡, 𝑥)]

2

2𝐷
𝑥𝑥
V (𝑡, 𝑥)

̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
,

(32)

V (𝑡
1
, 𝑥) = exp (−𝑟

𝑓
(𝑡
1
− 𝑡
0
)) 𝑏
1
(𝑥) , (33)

where 𝑢2∗ is the unique solution of the equation

0 = 𝐷
𝑥
V (𝑡, 𝑥) + exp (−𝑟

𝑓
(𝑡 − 𝑡
0
))𝐷
𝑢
2𝑏
2
(𝑢
2

𝑡
) . (34)

Then, the optimal control law is

𝑔
2∗

(𝑡, 𝑥) = 𝑢
2∗

, 𝑔
2∗

: 𝑇 ×X → R
+
, (35)

with 𝑢
2∗

∈ U
2
the unique solution of (34)

𝜋̃
∗
= −

𝐷
𝑥
V (𝑡, 𝑥)

𝑥𝐷
𝑥𝑥
V (𝑡, 𝑥)

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
,

𝑔
3,𝑘∗

(𝑡, 𝑥) = min {1,max {0, 𝜋̃𝑘∗}} , 𝑔
3,𝑘∗

: 𝑇 ×X → R.

(36)
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Furthermore, the value of the problem is

𝐽
∗
= 𝐽 (𝑔

∗
) = E [V (𝑡, 𝑥

0
)] . (37)

Proof. It will be proven that the minimization in the dynamic
programming equation can be achieved and that there exists
a solution to the dynamic programming equation.

Step 1. Recall from optimal stochastic control theory (see, e.g.,
[26]) that the dynamic programming equation (DPE) for the
optimal control problem for𝑤 : 𝑇×R → R,𝑤 ∈ 𝐶

1,2
(𝑇×X),

is given by

0 = 𝐷
𝑡
𝑤 (𝑡, 𝑥)

+ inf
𝑢
2
∈R, 𝜋̃∈[0,1]

[
1

2
[(𝜎
𝑒
)
2
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2
+ (𝜎
𝑖
)
2

(𝑥)
2

+(𝑥)
2
𝜋̃
𝑇
𝐶̃
𝑡
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𝑥𝑥
𝑤 (𝑡, 𝑥)
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T
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𝑖
)
2

+
̃
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𝑥
𝑤 (𝑡, 𝑥)

+ [𝑢
1

𝑡
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− 𝑟
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𝑒
)
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]𝐷
𝑥
𝑤 (𝑡, 𝑥)

+ exp (−𝑟
𝑓
(𝑡 − 𝑡
0
)) [𝑏
2
(𝑢
2
) + 𝑏
3
(𝑥)] ] ,

𝑤 (𝑡
1
, 𝑥) = exp (−𝑟

𝑓
(𝑡
1
− 𝑡
0
)) 𝑏
1
(𝑥) .

(38)

Note that this DPE separates additively into terms

(a) depending on 𝑢
2,

(b) depending on 𝜋̃,

(c) not depending on either of these variables.

The minimization is therefore decomposed into two.

Step 2. The minimizations are calculated as follows with the
function V :

inf
𝑢
2
∈R

𝐻
2
(𝑡, 𝑥, 𝑢

2
) ,

𝐻
2
(𝑡, 𝑥, 𝑢) = 𝑢

2
𝐷
𝑥
V (𝑡, 𝑥)

+ exp (−𝑟
𝑓
(𝑡 − 𝑡
0
)) 𝑏
2
(𝑢
2
) ,

𝐷
𝑢
2𝐻
2
(𝑡, 𝑥, 𝑢) = 𝐷

𝑥
V (𝑡, 𝑥)

+ exp (−𝑟
𝑓
(𝑡 − 𝑡
0
))𝐷
𝑢
2𝑏
2
(𝑢
2
) = 0.

(39)

Because of Assumption 3.1. in the hypothesis of the theorem,
(39) for all (𝑡, 𝑥) ∈ 𝑇 ×X has a unique solution 𝑢

2∗

∈ U = R

and

inf
𝑢
2
∈R

𝐻
2
(𝑡, 𝑥, 𝑢

2
) = 𝐻

2
(𝑡, 𝑥, 𝑢

2∗

)

= 𝑢
2∗

𝐷
𝑥
V (𝑡, 𝑥)

+ exp (−𝑟
𝑓
(𝑡 − 𝑡
0
)) 𝑏
2
(𝑢
2∗

) .

(40)

Define the function 𝑔
2
(𝑡, 𝑥)
∗

= 𝑢
2∗, 𝑔2∗ : 𝑇 × X →

R. It follows from Assumption 3.1. in the hypothesis of the
theorem that 𝑔2∗ is a Borel measurable function. Consider
the minimization problem

inf
𝜋̃∈R𝑘

𝐻
3
(𝑡, 𝑥, 𝜋̃) ,

𝐻
3
(𝑡, 𝑥, 𝜋̃) =

1

2
[𝜋̃
𝑇

𝑡
𝐶̃
𝑡
𝜋̃
𝑡
] (𝑥)
2
𝐷
𝑥𝑥
V (𝑡, 𝑥)

+
̃
𝑟
𝑦

𝑡

𝑇

𝜋̃𝑥𝐷
𝑥
V (𝑡, 𝑥)

=
1

2
(𝜋̃
𝑡
+ (

𝑥 [𝐷
𝑥
V (𝑡, 𝑥)]

(𝑥)
2
𝐷
𝑥𝑥
V (𝑡, 𝑥)

) 𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
)

𝑇

× 𝐶̃
𝑡
(𝑥)
2
𝐷
𝑥𝑥
V (𝑡, 𝑥)

× (𝜋̃
𝑡
+ (

𝑥 [𝐷
𝑥
V (𝑡, 𝑥)]

(𝑥)
2
𝐷
𝑥𝑥
V (𝑡, 𝑥)

) 𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
)

−
1

2
(

[𝑥𝐷
𝑥
V (𝑡, 𝑥)]

2

(𝑥)
2
𝐷
𝑥𝑥
V (𝑡, 𝑥)

)
̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
,

𝐶̃
𝑡
(𝑥)
2
𝐷
𝑥𝑥
V (𝑡, 𝑥) > 0, ∀𝑥 ∈ R \ {0} .

(41)

Hence, we have that

𝜋̃
∗
= −

𝐷
𝑥
V (𝑡, 𝑥)

𝑥𝐷
𝑥𝑥
V (𝑡, 𝑥)

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
,

𝑔
3,𝑘∗

(𝑡, 𝑥) =

{{{{{

{{{{{

{

𝜋̃
𝑘∗
, if

𝑘

∑

𝑖=1

𝜋̃
𝑖∗

∈ [0, 1] ,

𝜋̃
𝑘∗

∑
𝑘

𝑗=1
𝜋̃
𝑗∗

, if
𝑘

∑

𝑖=1

𝜋̃
𝑖∗

> 1,

∀𝑘 ∈ Z
𝑛,

𝐻
3
(𝑡, 𝑥, 𝜋̃

∗
) = −

[𝐷
𝑥
V (𝑡, 𝑥)]

2

2𝐷
𝑥𝑥
V (𝑡, 𝑥)

(𝑟̃
𝑦

𝑡
)
𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
.

(42)

If for a 𝑘 ∈ Z𝑛, 𝜋̃𝑘∗ ∉ [0, 1], then the DPE (32) has to be
modified with the difference of the terms obtained with and
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without the constraint. This is not indicated in the current
paper.

Step 3. We can rewrite (32) by using the infima obtained in
Step 2 and the DPE for V. The resulting equation is

0 = 𝐷
𝑡
V (𝑡, 𝑥)

+ inf
𝑢
2
∈R,𝜋̃∈[0,1]

{
1

2
[(𝜎
𝑒
)
2

(1 − 𝑥)
2
+ (𝜎
𝑖
)
2

(𝑥)
2

+(𝑥)
2
(𝜋̃
𝑇
𝐶̃
𝑡
𝜋̃) ]𝐷

𝑥𝑥
V (𝑡, 𝑥)

+ [𝑟
T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+(𝜎
𝑖
)
2

+
̃
𝑟
𝑦

𝑡

𝑇

𝜋̃] 𝑥

+ [𝑢
1

𝑡
+ 𝑢
2
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

]𝐷
𝑥
V (𝑡, 𝑥)

+ exp (−𝑟
𝑓
(𝑡 − 𝑡
0
)) [𝑏
2
(𝑢
2
) + 𝑏
3
(𝑥)] } ,

V (𝑡
1
, 𝑥) = exp (−𝑟

𝑓
(𝑡
1
− 𝑡
0
)) 𝑏
1
(𝑥) .

(43)

Thus V, whose existence is assumed by Assumption 2 in the
hypothesis of the theorem, is a solution of the dynamic
programming equation. It follows then from the standard
optimal stochastic control as in [26] that 𝑔2∗ and 𝑔

3,𝑘∗ are
the optimal control laws and that the value is given by 𝐽

∗
=

𝐽(𝑔
∗
) = E[V(𝑡

0
, 𝑥
0
)].

In Theorem 3, we assume that the cost function in (30)
satisfies constraints represented by (31). Secondly, there exists
a functions (33) that is a solution to (32). Then, the optimal
control law is given by (35) and (36), where 𝑢2∗ is a solution
to (34). Finally, the optimal cost function is given by (37). It
is of interest to choose particular cost functions for which
an analytic solution can be obtained for the value function
and for the control laws. The following theorem provides the
optimal control laws for a particular choice of cost functions.

Theorem 4 (optimal bank INSFRs with quadratic cost
functions). Consider the nonlinear optimal stochastic control
problem for the simplified INSFR system in (19) formulated in
Problem 1. Consider the cost function

𝐽 (𝑔) = E [∫

𝑡1

𝑡0

exp (−𝑟
𝑓
(𝑙 − 𝑡
0
))

× [
1

2
𝑐
2
((𝑢
2
)
2

(𝑙)) +
1

2
𝑐
3
(𝑥
𝑡
− 𝑙
𝑟
)
2

] 𝑑𝑙

+
1

2
𝑐
1
(𝑥 (𝑡
1
) − 𝑙
𝑟
)
2 exp (−𝑟

𝑓
(𝑡
1
− 𝑡
0
)) ] .

(44)

It is assumed that the cost functions satisfy

𝑏
1
(𝑥) =

1

2
𝑐
1
(𝑥 − 𝑙

𝑟
)
2

, 𝑐
1
∈ (0,∞)

𝑏
2
(𝑢
2
) =

1

2
𝑐
2
(𝑢
2
)
2

, 𝑐
2
∈ (0,∞)

(45)

𝑏
3
(𝑥) =

1

2
𝑐
3
(𝑥 − 𝑙

𝑟
)
2

, 𝑐
3
∈ (0,∞) , (46)

𝑙
𝑟
∈ R, called the reference value of the INSFR.
Define the first-order ODE

−𝑞̇
𝑡
= −

(𝑞
𝑡
)
2

𝑐
2

+ 𝑐
3
+ 𝑞
𝑡
2 (𝑟

T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

)

+ 𝑞
𝑡
[−𝑟
𝑓
−
̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

] , 𝑞
𝑡1
= 𝑐
1
,

(47)

− 𝑥̇
𝑟

𝑡
= −

𝑐
3
(𝑥
𝑟

𝑡
− 𝑙
𝑟
)

𝑞
𝑡

− 𝑥
𝑟

𝑡
[𝑟

T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

]

− [𝑢
1

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

] − (𝑥
𝑟

𝑡
− 1) ((𝜎

𝑒
)
2

+ (𝜎
𝑖
)
2

)

− (𝜎
𝑖
)
2

, 𝑥
𝑟
(𝑡
1
) = 𝑙
𝑟
,

(48)

− ̇𝑙
𝑡
= −𝑟
𝑓
𝑙
𝑡
+ 𝑐
3
(𝑥
𝑟

𝑡
− 𝑙
𝑟
)
2

− 𝑞
𝑡
(𝜎
𝑒
)
2

(𝑥
𝑟

𝑡
− 1)
2

− 𝑞
𝑡
(𝜎
𝑖
)
2

(𝑥
𝑟

𝑡
)
2

, 𝑙 (𝑡
1
) = 0.

(49)

The function 𝑥
𝑟
: 𝑇 → R will be called the INSFR reference

(process) function. Then, we have the following.
(a) There exist solutions to the ordinary differential equa-

tions (47), (48), and (49). Moreover, for all 𝑡 ∈ 𝑇,
𝑞
𝑡
> 0.

(b) The optimal control laws are

𝑢
2∗

𝑡
= −

(𝑥 − 𝑥
𝑟

𝑡
) 𝑞
𝑡

𝑐
2

,

𝑔
2∗

(𝑡, 𝑥) = 𝑢
2∗

, 𝑔
2∗

: 𝑇 ×X 󳨀→ R
+
,

𝜋̃
∗

𝑡
= −

(𝑥 − 𝑥
𝑟

𝑡
)

𝑥
𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
, 𝑔
3∗

: 𝑇 ×X 󳨀→ R
𝑘
,

(50)

𝑔
3,𝑘∗

(𝑡, 𝑥) = {
𝜋̃
𝑘∗
, if 𝜋̃𝑘∗ ∈ [0, 1] ,

min {1,max {0, 𝜋̃𝑘∗
𝑡
}} , otherwise,

∀𝑘 ∈ Z𝑛.

(51)

(c) The value function and the value of the problem are

V (𝑡, 𝑥) = exp (−𝑟
𝑓
(𝑡
1
− 𝑡
0
)) [

1

2
(𝑥 − 𝑥

𝑟

𝑡
)
2

𝑞
𝑡
+

1

2
𝑙
𝑡
] , (52)

𝐽
∗
= 𝐽 (𝑔

∗
) = E [V (𝑡

0
, 𝑥
0
)] . (53)
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Proof. (a) The ordinary differential equation in (47) is of
Riccati type. It follows from, for example, [27, Theorem 37,
page 364] that a unique solution to this equation exists.

The second statement requires a longer argument.
Rewrite the Riccati differential equation in (47) in the form,

−𝑞̇
𝑡
= −𝑏(𝑞

𝑡
)
2

+ 𝑐 + 2𝑎
𝑡
𝑞
𝑡
, 𝑞
𝑡1
= 𝑐
1
,

𝑏 =
1

𝑐
2
, 𝑐 = 𝑐

3
∈ (0,∞) , 𝑎 : 𝑇 󳨀→ R.

(54)

Transform the equation according to

𝑞
1

𝑡1
= 𝑞 (𝑡

1
− 𝑡) , 𝑎

1

𝑡
= 𝑎 (𝑡

1
− 𝑡) , 𝑞

1
: [0, 𝑡
1
− 𝑡
0
] 󳨀→ R,

𝑞̇
1

𝑡
= −𝑞̇ (𝑡

1
− 𝑡) = −𝑏(𝑞

1

𝑡
)
2

+ 𝑐 + 2𝑎
1

𝑡
𝑞
1

𝑡
, 𝑞
1

𝑡0
= 𝑐
1
,

0 = 𝑞̇
1

𝑡
+ 𝑏(𝑞
1

𝑡
)
2

− 𝑐 − 2𝑎
1

𝑡
𝑞
𝑡
, 𝑞
1

0
= 𝑐
1
.

(55)

Consider the second Riccati differential equation

−𝑞̇
2

𝑡
= −𝑏(𝑞

2

𝑡
)
2

+ 𝑐, 𝑞
2

𝑡1
= 𝑐
1
; 𝑏, 𝑐 ∈ (0,∞) . (56)

The latter Riccati differential equation is time invariant. The
associated first-order linear system with system matrices
(0, √(𝑏), √(𝑐)) is both controllable and observable. It then
follows from a result for this Riccati differential equation that
𝑞
2

𝑡
> 0 for all 𝑡 ∈ 𝑇 = [0, 𝑡

1
− 𝑡
0
].

Next a theorem is used from [28, Lemma 5.1] in the
comparison of the solutions of the two Riccati differential
equations. The lemma states that for all 𝑡 ∈ [𝑡

1
− 𝑡
0
], 𝑞1
𝑡

≥

𝑞
2

𝑡
> 0 if,

𝑏 ∈ (0,∞) , (
−𝑐 0

0 𝑏
) ≥ (

−𝑐 −𝑎
1

𝑡

−𝑎
1

𝑡
𝑏

) , ∀𝑡 ∈ [0, 𝑡
1
− 𝑡
0
] .

(57)

The matrix inequality is met if and only if

𝑏 ∈ (0,∞) , (𝑏 − 𝑏) ≥ 0, (𝑐 − 𝑐) ≥ 0,

(𝑎
𝑡
)
2

≤ (𝑐 − 𝑐) (𝑏 − 𝑏) = (𝑐
3
− 𝑐
3
) (

1

𝑐
2
−

1

𝑐
2
) .

(58)

By assumption, all functions in 𝑎 and, hence, those of 𝑎1
𝑡

=

𝑎(𝑡
1
− 𝑡) are bounded on the bounded interval [0, 𝑡

1
− 𝑡
0
].

Hence, there exists a constant 𝑐4 ∈ (0,∞) such that (𝑎1
𝑡
)
2
< 𝑐
4.

Then, one can determine real numbers 𝑏, 𝑐 ∈ (0,∞) such that

𝑐 − 𝑐 = 𝑐
3
− 𝑐
3
≥ 0, 𝑏 − 𝑏 =

1

𝑐
2
−

1

𝑐
2
≥ 0,

(𝑎
𝑡
)
2

≤ 𝑐
4
≤ (𝑐 − 𝑐) (𝑏 − 𝑏) = (𝑐

3
− 𝑐
3
) (

1

𝑐
2
−

1

𝑐
2
) ,

(59)

for example, by choosing 𝑐2, 𝑐3 ∈ (0,∞) both very small.Thus
the inequalities are satisfied and for all 𝑡 ∈ [0, 𝑡

1
− 𝑡
0
], 𝑞(𝑡
1
−

𝑡) = 𝑞
1

𝑡
≥ 𝑞
2

𝑡
> 0.

The ordinary differential equation (48) is linear (see, e.g.,
[29]). Hence, it follows for such differential equations that a
unique solution exists.

(𝑏, 𝑐) The cost function 𝑏
2 satisfies the conditions of

Theorem 3. It will be proven that the function (52) is a
solution of the partial differential equation, (32) and, (33) of
Theorem 3.

Note first that

V (𝑡, 𝑥) = exp (−𝑟
𝑓
(𝑡 − 𝑡
0
)) [

1

2
(𝑥 − 𝑥

𝑟

𝑡
)
2

𝑞
𝑡
+

1

2
𝑙
𝑡
] ,

𝐷
𝑡
V (𝑡, 𝑥) = −𝑟

𝑓
V (𝑡, 𝑥) + exp (−𝑟

𝑓
(𝑡 − 𝑡
0
))

× [− (𝑥 − 𝑥
𝑟

𝑡
) 𝑥̇
𝑟

𝑡
𝑞
𝑡
+

1

2
(𝑥 − 𝑥

𝑟

𝑡
)
2

𝑞̇
𝑡
+

1

2

̇𝑙
𝑡
] ,

𝐷
𝑥
V (𝑡, 𝑥) = exp (−𝑟

𝑓
(𝑡 − 𝑡
0
)) (𝑥 − 𝑥

𝑟

𝑡
) 𝑞
𝑡
,

𝐷
𝑥𝑥
V (𝑡, 𝑥) = exp (−𝑟

𝑓
(𝑡 − 𝑡
0
)) 𝑞
𝑡
.

(60)

The optimal control laws are calculated according to the
formulas of the previous theorem.

So

0 = 𝐷
𝑥
V (𝑡, 𝑥) + exp (−𝑟

𝑓
(𝑡 − 𝑡
0
))𝐷
𝑢
2𝑏
2
(𝑢
2
)

= exp (−𝑟
𝑓
(𝑡 − 𝑡
0
)) [(𝑥 − 𝑥

𝑟

𝑡
) 𝑞
𝑡
+ 𝑐
2
𝑢
2
] ,

𝑢
2∗

= −
(𝑥 − 𝑥

𝑟

𝑡
) 𝑞
𝑡

𝑐
2

,

𝜋̃
∗
= −

(𝑥 − 𝑥
𝑟

𝑡
) 𝑞
𝑡

𝑥𝑞
𝑡

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
.

(61)

From the partial differential equation in (32) and the terminal
condition in (33) it follows that

𝑞
𝑡1
= 𝑐
1
, 𝑥

𝑟
(𝑡
1
) = 𝑙
𝑟
, 𝑙 (𝑡

1
) = 0,

V (𝑡
1
, 𝑥) = exp (−𝑟

𝑓
(𝑡
1
− 𝑡
0
))

× [
1

2
(𝑥 − 𝑥

𝑟
(𝑡
1
))
2

𝑞
𝑡1
+

1

2
𝑙 (𝑡
1
)]

= exp (−𝑟
𝑓
(𝑡
1
− 𝑡
0
))

1

2
𝑐
1
(𝑥 − 𝑙

𝑟
)
2

= exp (−𝑟
𝑓
(𝑡
1
− 𝑡
0
)) 𝑏
1
(𝑥) ,
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exp (+𝑟
𝑓
(𝑡 − 𝑡
0
))

× [𝐷
𝑡
V (𝑡, 𝑥) +

1

2
[(𝜎
𝑒
)
2

(1 − 𝑥)
2

+(𝜎
𝑖
)
2

(𝑥)
2
]𝐷
𝑥𝑥
V (𝑡, 𝑥)

+ 𝑥 [𝑟
T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

]𝐷
𝑥
V (𝑡, 𝑥)

+ [𝑢
1

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

]𝐷
𝑥
V (𝑡, 𝑥)

+ 𝑢
2∗

𝐷
𝑥
V (𝑡, 𝑥) + exp (−𝑟

𝑓
(𝑡 − 𝑡
0
)) 𝑏
2
(𝑢
2∗

)

+ exp (−𝑟
𝑓
(𝑡 − 𝑡
0
)) 𝑏
3
(𝑥)

−
1

2

(𝐷
𝑥
V (𝑡, 𝑥))

2

𝐷
𝑥𝑥
V (𝑡, 𝑥)

̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
]

= −𝑟
𝑓 1

2
(𝑥 − 𝑥

𝑟

𝑡
)
2

𝑞
𝑡
−

1

2
𝑟
𝑓
𝑙
𝑡
− (𝑥 − 𝑥

𝑟

𝑡
) 𝑞
𝑡
𝑥̇
𝑟

𝑡

+
1

2
(𝑥 − 𝑥

𝑟

𝑡
)
2

𝑞̇
𝑡
+

1

2

̇𝑙
𝑡

+
1

2
[(𝜎
𝑒
)
2

(1 − 𝑥)
2
+ (𝜎
𝑖
)
2

(𝑥)
2
] 𝑞
𝑡

+ (𝑥 − 𝑥
𝑟

𝑡
) 𝑞
𝑡
[𝑥 (𝑟

T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

)

+𝑢
1

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

]

−
1

2

(𝑥 − 𝑥
𝑟

𝑡
)
2

(𝑞
𝑡
)
2

𝑐
2

+
1

2
𝑐
3
(𝑥 − 𝑙

𝑟
)
2

−
1

2
(𝑥 − 𝑥

𝑟

𝑡
)
2

𝑞
𝑡

̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡

=
1

2
(𝑥)
2
[ − 𝑟
𝑓
𝑞
𝑡
+ 𝑞̇
𝑡
+ (𝜎
𝑒
)
2

𝑞
𝑡
+ (𝜎
𝑖
)
2

𝑞
𝑡

+ 2𝑞
𝑡
[𝑟

T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

]

−
(𝑞
𝑡
)
2

𝑐
2

+ 𝑐
3
− 𝑞
𝑡

̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
]

+ 𝑥 [ + 𝑟
𝑓
𝑥
𝑟

𝑡
𝑞
𝑡
− 𝑞
𝑡
𝑥̇
𝑟

𝑡
− 𝑥
𝑟

𝑡
𝑞̇
𝑡
− (𝜎
𝑒
)
2

𝑞
𝑡

− 𝑥
𝑟

𝑡
𝑞
𝑡
[𝑟

T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

]

+ 𝑞
𝑡
[𝑢
1

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

] +
𝑥
𝑟

𝑡
(𝑞
𝑡
)
2

𝑐
2

−𝑐
3
𝑙
𝑟
+ 𝑥
𝑟

𝑡
𝑞
𝑡

̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
]

+
1

2
(𝑥)
0
[ − 𝑟
𝑓
(𝑥
𝑟

𝑡
)
2

𝑞
𝑡
+ 2𝑥
𝑟

𝑡
𝑞
𝑡
𝑥̇
𝑟

𝑡
+ (𝑥
𝑟

𝑡
)
2

𝑞̇
𝑡
− 𝑟
𝑓
𝑙
𝑡

+ (𝜎
𝑒
)
2

𝑞
𝑡
− 2𝑥
𝑟

𝑡
𝑞
𝑡
[𝑢
1

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

]

−
(𝑥
𝑟

𝑡
)
2

(𝑞
𝑡
)
2

𝑐
2

+ 𝑐
3
(𝑙
𝑟
)
2

−(𝑥
𝑟

𝑡
)
2

𝑞
𝑡

̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
+ ̇𝑙
𝑡
] .

(62)

It will be proven that the terms at the powers of the
indeterminate 𝑥 are zero, thus, at (𝑥)2, (𝑥)1, and (𝑥)

0. The
term at (𝑥)2 is zero due to the differential equation for 𝑞. The
term at (𝑥)1 equals

− 𝑞
𝑡
𝑥̇
𝑟

𝑡
− 𝑥
𝑟

𝑡
𝑞̇
𝑡
+ 𝑟
𝑓
𝑥
𝑟

𝑡
𝑞
𝑡
− 2(𝜎
𝑒
)
2

𝑞
𝑡

− 𝑥
𝑟

𝑡
𝑞
𝑡
[𝑟

T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

]

+ 𝑞
𝑡
[𝑢
1

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

]

+
𝑥
𝑟

𝑡
(𝑞
𝑡
)
2

𝑐
2

− 𝑐
3
𝑙
𝑟
+ 𝑥
𝑟

𝑡
𝑞
𝑡

̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡

= −𝑞
𝑡
𝑥̇
𝑟

𝑡

+ 𝑥
𝑟

𝑡
[−

(𝑞
𝑡
)
2

𝑐
2

+ 𝑐
3

+ 2𝑞
𝑡
(𝑟

T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

)

+𝑞
𝑡
((𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

− 𝑟
𝑓
−
̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
)]

− 𝑥
𝑟

𝑡
𝑞
𝑡
[ (𝑟

T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

)

−𝑟
𝑓
−
̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
]

+ 𝑞 [−(𝜎
𝑒
)
2

+ (𝑢
1

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

)] +
𝑥
𝑟

𝑡
(𝑞
𝑡
)
2

𝑐
2

− 𝑐
3
𝑙
𝑟

= 𝑞
𝑡
[−𝑥̇
𝑟

𝑡
+

𝑐
3
(𝑥
𝑟

𝑡
− 𝑙
𝑟
)

𝑞
𝑡

]

+ 𝑥
𝑟

𝑡
[𝑟

T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

]

+ (𝑥
𝑟

𝑡
− 1) ((𝜎

𝑒
)
2

+ (𝜎
𝑖
)
2

) + (𝜎
𝑖
)
2

+ (𝑢
1

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

)

= 0.

(63)
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Similarly, the term of (𝑥)0 equals

̇𝑙
𝑡
− 𝑟
𝑓
𝑙
𝑡
− 𝑟
𝑓
(𝑥
𝑟

𝑡
)
2

𝑞
𝑡

+ 2𝑥
𝑟

𝑡
[𝑞
𝑡
𝑥̇
𝑟

𝑡
+ 𝑥
𝑟

𝑡
𝑞̇
𝑡
] − (𝑥

𝑟

𝑡
)
2

𝑞̇
𝑡
+ (𝜎
𝑒
)
2

𝑞
𝑡

− 2𝑥
𝑟

𝑡
𝑞
𝑡
[𝑢
1

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

] + 𝑐
3
(𝑙
𝑟
)
2

−
(𝑥
𝑟

𝑡
)
2

(𝑞
𝑡
)
2

𝑐
2

− (𝑥
𝑟

𝑡
)
2

𝑞
𝑡

̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡

= (using the term with (𝑥)
1
) ,

̇𝑙
𝑡
− 𝑟
𝑓
𝑙
𝑡
− 𝑟
𝑓
(𝑥
𝑟

𝑡
)
2

𝑞
𝑡
+ (𝜎
𝑒
)
2

𝑞
𝑡

− 2𝑥
𝑟

𝑡
𝑞
𝑡
[𝑢
1

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

] + 𝑐
3
(𝑙
𝑟
)
2

−
(𝑥
𝑟

𝑡
)
2

(𝑞
𝑡
)
2

𝑐
2

− (𝑥
𝑟

𝑡
)
2

𝑞
𝑡

̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡

+ 2𝑟
𝑓
(𝑥
𝑟

𝑡
)
2

𝑞
𝑡
− 2𝑥
𝑟

𝑡
𝑞
𝑡
(𝜎
𝑒
)
2

− 2(𝑥
𝑟

𝑡
)
2

𝑞
𝑡
[𝑟

T
+ 𝑟
𝑒
− 𝑟
𝑖
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

]

+ 2𝑥
𝑟

𝑡
𝑞
𝑡
[𝑢
1

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

] − 𝑐
3
𝑙
𝑟
2𝑥
𝑟

𝑡

+
2(𝑥
𝑟

𝑡
)
2

(𝑞
𝑡
)
2

𝑐
2

+ 2(𝑥
𝑟

𝑡
)
2

𝑞
𝑡

̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡

−
(𝑥
𝑟

𝑡
)
2

(𝑞
𝑡
)
2

𝑐
2

+ 𝑐
3
(𝑥
𝑟

𝑡
)
2

+ (𝑥
𝑟

𝑡
)
2

𝑞
𝑡
2 (𝑟

T
+ 𝑟
𝑒
− 𝑟
𝑖
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

)

+ (𝑥
𝑟

𝑡
)
2

𝑞
𝑡
(−𝑟
𝑓
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

−
̃
𝑟
𝑦

𝑡

𝑇

𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
)

= ̇𝑙
𝑡
− 𝑟
𝑓
𝑙
𝑡
+ 𝑐
3
(𝑥
𝑟

𝑡
− 𝑙
𝑟
)
2

− (𝜎
𝑒
)
2

𝑞
𝑡
(𝑥
𝑟

𝑡
− 1)
2

− (𝜎
𝑖
)
2

𝑞
𝑡
(𝑥
𝑟

𝑡
)
2

= 0.

(64)

It then follows fromTheorem 3 that the indicated control laws
are the optimal ones (see, e.g., [26]).

4.3. Comments on Optimal Bank INSFRs. The control objec-
tive is to meet bank INSFR targets by making optimal
choices for the two control variables, namely, the liquidity
provisioning rate and asset allocation. The objective, to meet
these targets, is formulated as a cost on the INSFR, 𝑥, in
the simplified model. The first control variable, the liquidity
provisioning rate, is formulated as a cost on bank bailouts,
𝑢
2, that embeds liquidity risk. As for the mathematical form

for the cost functions, we have considered several options
that are discussed below. Of course, one can formulate any
cost function. The question then is whether the resulting
dynamic programming equation can be solved analytically.

We have obtained an analytic solution so far only for the case
of quadratic cost functions (see Theorem 4 for more details).

For the cost on the bank bailout, the function in (45) is
considered, where the input variable 𝑢

2 is restricted to the
set R+. If 𝑢2 > 0, then the banks should acquire additional
required stable funding. The cost function should be such
that bank bailouts are maximized; hence 𝑢

2
> 0 should

imply that 𝑏2(𝑢2) > 0. In general, it seems best to maximize
liquidity provisioning. For Theorem 4, we have selected the
cost function 𝑏

2
(𝑢
2
) = (1/2)𝑐

2
(𝑢
2
)
2, given by (45). This

penalizes both positive and negative values of 𝑢
2 in equal

ways. The only reason for doing so is that then an analytic
solution of the value function can be obtained.

The reference process, 𝑙𝑟, may take the value 0.8, that
is, the threshold for negative INSFR. The cost on meeting
liquidity provisioning will be encoded in a cost on the INSFR.
If the INSFR, 𝑥 > 𝑙

𝑟, is strictly larger than a set value 𝑙
𝑟,

then there should be a strictly positive cost. If, on the other
hand, 𝑥 < 𝑙

𝑟, then there may be a cost though most banks
will be satisfied and not impose a cost. We have selected the
cost function 𝑏

3
(𝑥) = (1/2)𝑐

3
(𝑥 − 𝑙
𝑟
)
2 in Theorem 4 given by

(46). This is also done to obtain an analytic solution of the
value function, and that case by itself is interesting. Another
cost function that we consider is

𝑏
3
(𝑥) = 𝑐

3
[exp (𝑥 − 𝑙

𝑟
) + (𝑙
𝑟
− 𝑥) − 1] , (65)

which is strictly convex and asymmetric in 𝑥 with respect
to the value 𝑙

𝑟. For this cost function, costs with 𝑥 > 𝑙
𝑟 are

penalized higher than those with 𝑥 < 𝑙
𝑟. This seems realistic.

Another cost function considered is to keep 𝑏
3
(𝑥) = 0 for

𝑥 < 𝑙
𝑟.
An interpretation of the control laws given by (50)

follows. The bank bailout rate, 𝑢2∗, is proportional to the
difference between the INSFR, 𝑥, and the reference process
for this ratio, 𝑥𝑟. The proportionality factor is 𝑞

𝑡
/𝑐
2 which

depends on the relative ratio of the cost function on 𝑢
2

and the deviation from the reference ratio, (𝑥 − 𝑥
𝑟
). The

property that the control law is symmetric in 𝑥 with respect
to the reference process 𝑥

𝑟 is a direct consequence of the
cost function 𝑏

𝑟
(𝑥) = (1/2)𝑐

3
(𝑥 − 𝑥

𝑟
)
2 being symmetric

with respect to (𝑥 − 𝑥
𝑟
). The optimal portfolio distribution

is proportional to the relative difference between the INSFR
and its reference process, (𝑥 − 𝑥

𝑟

𝑡
)/𝑥. This seems natural.

The proportionality factor is 𝐶̃
−1

𝑡
𝑟̃
𝑦

𝑡
which represents the

relative rates of asset return multiplied with the inverse of
the corresponding variances. It is surprising that the control
law has this structure. Apparently, the optimal control law
is not to liquidate first all required stable funding with the
highest liquidity provisioning rate and then the required
stable fundings with the next to highest liquidity provisioning
rate, and so on.The proportion of all required stable fundings
depend on the relative weighting in 𝐶̃

−1

𝑡
𝑟̃
𝑦

𝑡
and not on the

deviation (𝑥 − 𝑥
𝑟

𝑡
).

The novel structure of the optimal control law is the
reference process for the INSFR, 𝑥𝑟 : 𝑇 → R. The differential
equation for this reference function is given by (48). This
differential equation is new for the area of INSFR control and



18 ISRN Applied Mathematics

therefore deserves a discussion. The differential equation has
several terms on its right-hand side which will be discussed
separately. Consider the term,

𝑢
1

𝑡
− 𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2

. (66)

This represents the difference between primary required
stable funding change and available stable funding. Note that
𝑢
1

𝑡
is the normal liquidity provisioning rate, and 𝑟

𝑒

𝑡
is the

rate of required stable funding increase. Note that if [𝑢1
𝑡
−

𝑟
𝑒

𝑡
− (𝜎
𝑒
)
2
] > 0, then the reference INSFR function can

be increasing in time due to this inequality so that for 𝑡 >

𝑡
1
, 𝑥
𝑡
< 𝑙
𝑟.The term 𝑐

3
(𝑥
𝑟

𝑡
−𝑙
𝑟
)/𝑞
𝑡
models that if the reference

INSFR function is smaller than 𝑙
𝑟, then the function has to

increase with time. The quotient 𝑐3/𝑞
𝑡
is a weighting term

which accounts for the running costs and for the effect of the
solution of the Riccati differential equation. The term

𝑥
𝑟

𝑡
[𝑟

T
(𝑡) + 𝑟

𝑒

𝑡
− 𝑟
𝑖

𝑡
+ (𝜎
𝑒
)
2

+ (𝜎
𝑖
)
2

] , (67)

accounts for two effects. The difference 𝑟𝑒
𝑡
− 𝑟
𝑖

𝑡
is the net effect

of rate of asset return, 𝑟𝑒, and that of the change in available
stable funding. The term 𝑟

T
(𝑡) + (𝜎

𝑒
)
2
+ (𝜎
𝑖
)
2 is the effect of

the increase in the available stable funding due to the riskless
asset and the variance of the risky liquidity provisioning.The
last term

(𝑥
𝑟

𝑡
− 1) ((𝜎

𝑒
)
2

+ (𝜎
𝑖
)
2

) − (𝜎
𝑖
)
2

, (68)

accounts for the effect on required stable fundings and
available stable funding. More information is obtained by
streamlining the ODE for 𝑥𝑟. In order to rewrite the differ-
ential equation for 𝑥𝑟, it is necessary to assume the following.

Assumption 5 (Liquidity Parameters). Assume that the
parameters of the problem are all time invariant and also that
𝑞 has become constant with value 𝑞0.

Then, the differential equation for 𝑥𝑟 can be rewritten as

−𝑥̇
𝑟

𝑡
= −𝑘 (𝑥

𝑟

𝑡
− 𝑚) , 𝑥

𝑟
(𝑡
1
) = 𝑙
𝑟
,

𝑘 = (𝑟
T
+ 𝑟
𝑒
− 𝑟
𝑖
+ 2 ((𝜎

𝑒
)
2

+ (𝜎
𝑖
)
2

)) +
𝑐
3

𝑞
0
,

𝑚 =

𝑙
𝑟
𝑐
3
/𝑞
0
− (𝑢
1
− 𝑟
𝑒
− (𝜎
𝑒
)
2

) + (𝜎
𝑒
)
2

(𝑟
T
+ 𝑟
𝑒
− 𝑟
𝑖
+ 2 ((𝜎

𝑒
)
2
+ (𝜎
𝑖
)
2

)) + 𝑐
3
/𝑞
0

.

(69)

Because the finite horizon is an artificial phenomenon to
make the optimal stochastic control problem tractable, it is
of interest to consider the long-term behavior of the INSFR
reference trajectory, 𝑥𝑟. If the values of the parameters are
such that 𝑘 > 0, then the differential equation with the
terminal condition is stable. If this condition holds, then
lim
𝑡↓0

𝑞
𝑡

= 𝑞
0 and lim

𝑡↓0
𝑥
𝑟

𝑡
= 𝑚, where the down arrow

prescribes to start at 𝑡
1
and to let 𝑡 decrease to 0. Depending

on the value of𝑚, the control law at a time very far away from
the terminal time becomes, then,

𝑢
2∗

𝑡
= −

(𝑥
𝑡
− 𝑚) 𝑞

0

𝑐
2

= {
> 0, if 𝑥

𝑡
< 𝑚,

< 0, if 𝑥
𝑡
> 𝑚,

𝜋
∗

𝑡
= −

(𝑥
𝑡
− 𝑚)

𝑥
𝑡

𝐶̃𝑟̃
𝑗

= {
> 0, if 𝑥

𝑡
< 𝑚,

< 0, if 𝑥
𝑡
> 𝑚, if 𝜋∗ < 0 then set 𝜋∗ = 0.

(70)

The interpretation for the two cases follows below.

Case 1 (𝑥
𝑡

> 𝑚). Then, the INSFR 𝑥 is too high. This
is penalized by the cost function; hence, the control law
prescribes not to invest in risky assets. The payback advice is
due to the quadratic cost functionwhichwas selected tomake
the solution analytically tractable. An increase in the liquidity
provisioning will increase net cash outflow that, in turn, will
lower the INSFR.

Case 2 (𝑥
𝑡
< 𝑚). The INSFR 𝑥 is too low. The cost function

penalizes, and the control law prescribes to invest more in
risky assets. In this case, more funds will be available and
credit risk on the balance sheet will decrease. Thus, higher
valued required stable fundings can be issued. Also, banks
should hold less required stable fundings to decrease available
stable funding which will lead in the long run to higher
INSFRs.

5. Conclusions and Future Directions

In this paper we provide a framework for liquidity manage-
ment in the banks. In actual sense, we provide a description
for the inverse net stable funding ratio dynamics which
promote the resilience over a longer time horizon by creating
additional incentives with more stable funding sources.
Also, the paper makes a clear connection between liquidity
and financial crises in a numerical-quantitative frameworks
(compare with Section 2). In addition, we derive a stochastic
model for INSFR dynamics that depends mainly on required
stable funding available stable funding as well as the liquidity
provisioning rate (seeQuestion 3). Furthermore, we obtained
an analytic solution to an optimal bank INSFR problem
with a quadratic objective function (refer to Question 3).
In principle, this solution can assist in managing INSFRs.
Here, liquidity provisioning and bank asset allocation are
expressed in terms of a reference process. To our knowledge
such processes have not been considered for INSFRs before.
Furthermore, we also provide a numerical example in order
to describe the interplay between the amount of net stable
funding and liquidity demands. Specific open questions that
arise out of the discussion in Section 4 are given below. The
INSFR has some limitations regarding the characterization
of banks’ liquidity positions.Therefore, complementary Basel
III ratios such as the net stable funding ratio (NSFR) should
be considered for a more complete analysis. This should
take the structure of the short-term assets and liabilities
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of residual maturities into account. Further questions that
require investigation include the following.

(1) What is the value of the variable𝑚 compared with the
variable 𝑙𝑟 which is used in the running cost and in the
terminal cost ?

(2) Is𝑚 higher or lower than 𝑙
𝑟?

Note that from the formula of𝑚 follows that

𝑚 =

𝑙
𝑟
𝑐
3
/𝑞
0
− (𝑢
1
− 𝑟
𝑒
− (𝜎
𝑒
)
2

) + (𝜎
𝑒
)
2

(𝑟
T
+ 𝑟
𝑒
− 𝑟
𝑖
+ 2 ((𝜎

𝑒
)
2
+ (𝜎
𝑖
)
2

)) + 𝑐
3
/𝑞
0

. (71)

An expression for the difference 𝑚 − 𝑙
𝑟 is not obvious and

depends on many parameters of the problem as it should.
There are several other directions in which the results

obtained in this paper can be possibly extended. These
include addressing further risk issues aswell as improvements
in the INSFR modeling procedure. In this regard, instead of
using a continuous-time stochastic model in order to solve
an optimal bank INSFR problem, we would like to construct
a more sophisticated model with jump-diffusion processes
(see, e.g., [30]). Also, a study of information asymmetry
during the GFC should be interesting.

We have already made several contributions in support
of the endeavors outlined in the previous paragraph. For
instance, our paper [24] deals with issues related to liquidity
risk and the GFC. Furthermore, we started dealing with jump
diffusion processes in the book chapter [30]. Also, the role of
information asymmetry in a subprime context is related to
the main hypothesis of the book [22].

Appendices

More About Bank INSFRs

In this section, we provide more information about required
stable funding and available stable funding.

A. Required Stable Funding

In this subsection, we discuss the stock of high-quality
required stable funding constituted by cash, CB reserves,
marketable securities, and government/CB bank debt issued.

The first component of stock of high-quality required
stable funding is cash, that is, it made up of banknotes
and coins. According to [3], a CB reserve should be able
to be drawn down in times of stress. In this regard, local
supervisors should discuss and agree with the relevant CB the
extent to which CB reserves should count toward the stock of
required stable funding.

Marketable securities represent claims on or claims guar-
anteed by sovereigns, CBs, noncentral government public
sector entities (PSEs), the Bank for International Settlements
(BIS), the International Monetary Fund (IMF), the European
Commission (EC), or multilateral development banks. This
is conditional on all the following criteria being met. These
claims are assigned a 0% risk weight under the Basel II
StandardizedApproach. Also, deep repomarkets should exist

for these securities and that they are not issued by banks or
other financial service entities.

Another category of stock of high-quality required stable
funding refers to government/CB bank debt issued in domestic
currencies by the country in which the liquidity risk is being
taken by the bank’s home country (see, e.g., [3, 4]).

B. Available Stable Funding

Cash outflows are constituted by retail deposits, unsecured
wholesale funding, secured funding, and additional liabilities
(see, e.g., [3]). The latter category includes requirements
about liabilities involving derivative collateral calls related to
a downgrade of up to 3 notches, market valuation changes
on derivatives transactions, valuation changes on posted
noncash or nonhigh quality sovereign debt collateral secur-
ing derivative transactions, asset backed commercial paper
(ABCP), special investment vehicles (SIVs), conduits, and
special purpose vehicles (SPVs) as well as the currently
undrawn portion of committed credit and liquidity facilities.

Cash inflows are made up of amounts receivable from
retail counterparties, amounts receivable from wholesale
counterparties, and amounts receivable in respect of repo and
reverse repo transactions backed by illiquid assets and securi-
ties lending/borrowing transactions, where illiquid assets are
borrowed as well as other cash inflows.

According to [3], net cash inflows is defined as cumulative
expected cash outflows minus cumulative expected cash
inflows arising in the specified stress scenario in the time
period under consideration. This is the net cumulative liq-
uidity mismatch position under the stress scenario measured
at the test horizon. Cumulative expected cash outflows are
calculated by multiplying outstanding balances of various
categories or types of liabilities by assumed percentages that
are expected to roll-off and by multiplying specified draw-
down amounts to various off-balance sheet commitments.
Cumulative expected cash inflows are calculated by multi-
plying amounts receivable by a percentage that reflects the
expected inflow under the stress scenario.
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