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It is shown how Einstein’s equation can account for the evolution of the universe without an initial singularity and can explain the
inflation epoch as a momentum dominated era in which energy from matter and radiation drove extremely accelerated expansion
of space. It is shown how an object with momentum loses energy to the expanding universe and how this energy can contribute to
accelerated spatial expansionmore effectively than vacuum energy, because virtual particles, the source of vacuum energy, can have
negative energy, which can cancel any positive energy from the vacuum. Radiation and matter with momentum have positive but
decreasing energy in the expanding universe, and the energy lost by them can contribute to accelerated spatial expansion between
galactic clusters, making dark energy a classical effect that can be explained by general relativity without quantummechanics, and,
as (13) and (15) show, without an initial singularity or a big bang. This role of momentum, which was overlooked in the Standard
Cosmological Model, is the basis of a simpler model which agrees with what is correct in the old model and corrects what is wrong
with it.

1. Introduction

The Standard Cosmological Model entails a space-time met-
ric with line element [1–4]
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where 𝑐 is the vacuum speed of light relative to a local Lor-
entz frame, 𝑡 is cosmic time, 𝑎(𝑡) is the time-dependent scale
factor of the Universe, and 𝑟, 𝜃, 𝜑 are spherical coordinates
of a spatially flat (Euclidean) 3-space. A particle of proper
mass 𝑚 has the Hamiltonian [5, 6]
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where 𝑝
𝑟
, 𝑝
𝜃
, and 𝑝

𝜑
are canonical momenta conjugate to

canonical coordinates 𝑟, 𝜃, and 𝜑, respectively.The azimuthal
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𝜑
is conserved because 𝐻 does not
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the radial momentum 𝑝
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𝑟
≡ 𝑝,𝐻 then reduces to
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showing how a particle with momentum loses energy to the
expanding Universe [5].

A logical question, then, is where does that energy go? A
logical answer is that it goes to the Hamiltonian of the Uni-
verse, which, in a one-dimensional minisuperspace model,
can be expressed in geometrized units as the conserved quan-
tity [7]
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with canonical momentum 𝑃, canonical coordinate 𝑥, effec-
tive mass 𝑀, and potential
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where 𝑘 is the spatial curvature constant (±1 or 0), 𝛼 is a
constant such that 𝑎 = 𝛼

1/3
𝑥
2/3, Λ is Einstein’s cosmological

constant, 𝜌
𝑚𝑜

and 𝜌
𝑟𝑜

are energy densities of matter and
radiation, respectively, at some initial time 𝑡

𝑜
, and 𝑥

𝑜
= 𝑥(𝑡
𝑜
).

Thefirst termofU is eliminated bymetric (1), forwhich 𝑘 = 0.
The second term gives exponentially accelerated expansion
of a vacuum dominated Universe, with Λ attributed to dark
energy due to vacuum fluctuations, a quantum effect. The
third term gives 𝑥 ∝ 𝑡, and 𝑎 ∝ 𝑡

2/3, the Einstein-de Sitter
scale factor of a matter dominated Universe. The fourth term
gives 𝑎 ∝ 𝑡

1/2 in a radiation dominated Universe. The
constraintH = 0 gives the same differential equation for the
expansion factor 𝑎(𝑡) as is obtained from the Standard Cos-
mological Model [4, 7].

However, H is defective, because the StandardCosmolog-
ical Model is defective. 𝜌

𝑚𝑜
only includes the rest mass 𝑚 of

an object whose relativistic mass is Hamiltonian (3) with
momentum 𝑝. This deficiency is corrected here by revising
H to the form
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where 𝑎2 = 𝛼
2/3
𝑥
4/3 in terms of the cosmic coordinate 𝑥,

thereby conserving 𝐾 by making 𝜕𝐾/𝜕𝑡 = 0. The sum over
𝑛 is taken over all objects 𝑚

𝑛
, whose momenta 𝑝

𝑛
create an

interaction with the Universe [7], so they are no longer treated
like test particles. 𝑝 denotes all the 𝑝

𝑛
, which remain constant

because 𝐾 is independent of the radial coordinates 𝑟
𝑛
.

2. Canonical Equations

Hamiltonian (6) is an example of scientific induction [8],
from which rigorous mathematical deduction, in the form of
Hamilton’s equations, gives the coordinate velocities

𝑑𝑟
𝑛

𝑑𝑡
=
𝜕𝐾

𝜕𝑝
𝑛

=
𝑎
−1
𝑝
𝑛

√𝑎2𝑚2
𝑛
+ 𝑝2
𝑛

, (7)

𝑑𝑥/𝑑𝑡 = 𝜕𝐾/𝜕𝑃 = 𝑃/𝑀. Defining ℓ
𝑛
≡ 𝑎𝑟
𝑛
as the proper

or physical distance of object 𝑛 from a real or hypothetical
observer and dropping the subscript 𝑛, give the recession
velocity

𝑑ℓ

𝑑𝑡
= 𝑟

𝑑𝑎

𝑑𝑡
+

𝑝

√𝑎2𝑚2 + 𝑝2
, (8)

the Hubble velocity increased by positive 𝑝 and decreased by
negative 𝑝.

Using an overdot to denote𝑑/𝑑𝑡 and substituting𝑃 = 𝑀�̇�
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indicating that �̇� is amonotonically increasing function of 𝑥,
and �̈� is positive definite. But this mathematical acceleration
does not necessarily imply physical acceleration. Expressing
(9) in terms of the scale factor 𝑎 through the relation 𝑥 =
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where the first term on the right (𝐾𝛼𝑎−1) is a monotoni-
cally decreasing function of 𝑎, while the second and third
terms are monotonically increasing, so ̈𝑎 can be positive or
negative. Mathematics is simpler in terms of the canonical
coordinate 𝑥 [7], but physics is clearer in terms of the
expansion factor 𝑎.The time derivative of (10) gives the accel-
eration
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Defining the conserved quantities
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conserved because the 𝑚
𝑛
and 𝑝

𝑛
are constant; Hamiltonian

(6) allows a momentum dominated epoch at very early
times, a matter dominated epoch at intermediate times, and
a vacuum dominated epoch at later times. Acceleration (11) is
positive in themomentum era, negative in thematter era, and
positive again in the vacuum era.

3. Momentum Dominated Epoch

Momentum domination occurs when Λ and the 𝑚
𝑛
can be

neglected in (10) and (11), giving
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physically impossible. Thus, the momentum factor P rules
out a singularity by requiring the Universe to be created
spatially flat with initial scale factor 𝑎
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example of inflation—after which no further inflation is
needed to achieve flatness or size. But (14) indicates that accel-
erated expansion continues for 𝑎
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, after which decel-

eration sets in.
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Equation (13) can be integrated to give
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with the initial time being defined so that 𝑎 = 𝑎
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Equation (15) confirms the impossibility of the scale factor
𝑎(𝑡) being less than 𝑎

𝑜
, since that would make 𝑡 imaginary.

The momentum factor P, defined in (12), is essential
for these results and is independent of the signs of the 𝑝
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in (6). This momentum symmetry, together with the time
reversal symmetry of Einstein’s equation, allows a contracting
Universe to undergo a smooth bounce [ ̇𝑎(0) = 0] at the mini-
mum scale factor 𝑎

𝑜
and then rebound from it as if it had been

created at 𝑡 = 0.
Unlike Hamiltonian H of (4), Hamiltonian 𝐾 of (6)

need not vanish. 𝐾 > 0 is necessary for accelerating expan-
sion ( ̈𝑎 > 0) in the momentum dominated era (𝑎
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The recession velocity (8) reduces to the form
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indicating that |𝑝| is assumed to be so large that the motion
of the receding object approximates that of amassless particle
moving at luminal speed during this era. In this respect, it is
like a radiation era but with repulsive radiation, rather than
the attractive radiation of Hamiltonian (4). But the end result
is the same, as the Universe expands and matter domination
sets in.

4. Matter and Vacuum Dominated Epochs

When the 𝑝
𝑛
can be neglected for 𝑡 ≥ 𝜏 (the starting time of

matter domination), (10) gives
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For 𝑡 ≥ 𝜏, (17) is then readily integrated to give
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Defining 𝑇 as the transition time from matter domination
to vacuum domination, it follows that, for 𝜏 ≤ 𝑡 ≤ 𝑇 and
(√3Λ/2)𝑇 ≪ 1, (18) gives the Einstein-de Sitter scale factor
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with ̇𝑎 > 0 and ̈𝑎 < 0 in the matter dominated era. For
(√3Λ/2)𝑡 ≫ 1, (18) gives
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the de Sitter scale factor, with ̇𝑎 > 0 and ̈𝑎 > 0 in the vacuum
dominated era, so called because Λ, which occurs naturally
in Einstein’s equation, is a classical property of the vacuum,
whose quantum fluctuations are not invoked here because
virtual particle-antiparticle pairs created spontaneously from
the vacuum can have positive or negative energy [9], making
it uncertainwhether such vacuumfluctuations can explain Λ,
since their contributions to positive and negative Λ may be
canceled.

5. Conclusions

The initial singularity of the Standard Model comes from
neglecting the conserved momenta 𝑝

𝑛
in the relativistic

mass terms of Hamiltonian (6). When the 𝑝
𝑛
are included,

Einstein’s equation forbids a singularity, thereby disproving
the singularity theorems [1, 3, 10]. This quantum leap in
cosmology is achieved within the framework of general
relativity, through the classical mechanism of momentum,
without quantization or any non-Einsteinian effects. It does
not improve on Einstein’s theory, but proves that Einstein’s
theory ismuch better than it was thought to be. Othermodels
based on a nonsingular bounce followed by expansion are not
strictly Einsteinian, because they invoke other mechanisms
[11] in lieu of the 𝑝

𝑛
, whereas this galactic momentum is the

essential mechanism of nonsingular Einsteinian cosmology.
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