
Hindawi Publishing Corporation
ISRN Operations Research
Volume 2013, Article ID 631427, 9 pages
http://dx.doi.org/10.1155/2013/631427

Research Article
Pricing and Lot Sizing for Seasonal Products in
Price Sensitive Environment

S. Panda1 and S. Saha2

1 Department of Mathematics, Bengal Institute of Technology, No. 1 Govt. Colony Kolkata 700150,
West Bengal, India

2Department of Mathematics, Institute of Engineering & Management, Salt Lake Electronic Complex, Kolkata-700091,
West Bengal, India

Correspondence should be addressed to S. Panda; shibaji.panda@gmail.com

Received 13 February 2013; Accepted 7 March 2013
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Some seasonal products have limited sales season, and the demand of such products over the sales season is of increasing-steady-
decreasing type. Customers are highly sensitive to the prices of the products. In such situation, adjustment of unit selling price
is needed to accelerate inventory depletion rate and for determining order quantity for the sales season. In this paper, we focus
on the issue by jointly determining optimal unit selling prices and optimal lot size over the sales season. Unlike the conventional
inventory models with pricing strategy, which were restricted to prespecified pricing cycle lengths, that is, fixed number of price
changes over the time horizon, we allow the number of price changes to be a decision variable.Themathematicalmodel is developed
and existence of optimal solution is verified. A solution procedure is developed to determine optimal prices, optimal number of
pricing cycles, and optimal lot size.Themodel is illustrated by a numerical example. Sensitivity analysis of the model is also carried
out.

1. Introduction

Items like fashion apparel, hi-tech product parts, periodicals,
Christmas accessories, and so forth, have limited sales season
and become outdated at end of season. Demand of such
products is sensitive to time as well as price. Initially after
introduction of the product, demand increases up to a
point of time then it becomes steady. Finally towards end
the of the season, it decreases. Ramp-type time-dependent
demand pattern is very close to the demand pattern in such
situations.The inventory model with ramp-type demand rate
was first proposed by Hill [1]. Since then many researchers
and practitioners have given considerable attention to analyze
ramp-type demand. Mandal and Pal [2] have extended the
inventory model with ramp-type demand for exponentially
deteriorating items by allowing shortages. Wu and Ouyang
[3] have developed an inventory model by considering
two different replenishment policies: shortage followed by
inventory and inventory followed by shortage. Wu [4] has
further proposed an inventory model for deteriorating items
with ramp-type demand, Weibull distribution deteriorating

rate, and waiting time-dependent partial backlogging rate.
Giri et al. [5] have extended ramp-type demand inventory
model with more general Weibull distribution deterioration
rate. Manna and Chaudhuri [6] have developed a production
inventory model with ramp-type two time periods classified
demand pattern where the finite production rate depends on
demand. Deng et al. [7] have pointed out the questionable
results obtained by Mandal and Pal [2] and Wu and Ouyang
[3] and have provided a more reliable solution. Panda et
al. [8, 9] have extended Giri et al.’s [5] two time periods
classified demand model to three time periods. Cheng and
Wang [10] have extended the model proposed by Hill [1]
by assuming trapezoidal-type demand rate, which is a piece
wise linear function of time. But they have only considered
the situation of completely backlogging. They have used the
logic that for fashionable products as well as for seasonal
products, steady demand after its exponential increment
must not be continued indefinitely. Recently, Panda et al. [11]
have developed a single-item economic production quantity
(EPQ) model with quadratic ramp-type demand function.
In their model, they have determined optimal production
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stopping time to maximize total unit profit of the system.
Skouri et al. [12] have extended Deng et al. [7] by introducing
more general ramp-type demand rate, Weibull distribution
deterioration rate, and general partial backlogging rate that is
a function ofwaiting timeup to the next replenishment.Hung
[13] has extend Skouri et al. [12] by considering arbitrary
component in ramp-type demand pattern. Saha andBasu [14]
have developed inventory model with two component ramp-
type demand, which is function of time as well as price. Itmay
be easily observed that in all the above-mentioned papers,
those analyze ramp-type demand under variety of modelling
assumptions, effects of price sensitivity have been ignored
though demand of seasonal product is price sensitive. At the
same time effect of dynamic pricing in ramp-type demand
environment has not been analyzed.

On the other hand, pricing is one of the major problems
for organizations dealing with inventory. The organization
has to decide how much to ask for each unit and when to
drop the price as season rolls on. Firm that sells inventory
of a seasonal product has long been using various innovative
sales promotion tools in stimulating short-term sales. As a
result, sales promotions scheme becomes a vital tool for mar-
keters and its importance has been increasing significantly
over the years. Sales promotions are classified as price and
nonprice based on the nature of promotions [15].This has led
many researchers to investigate inventory models with price-
sensitive demand. Urban and Baker [16] have developed an
inventory model where they have assumed demand as a
multivariable function of price. Shinn and Hwang [17] have
formulated an inventorymodel with convex price-dependent
demand and lot-size-dependent delay in payments. In this
direction, the works of Dave et al. [18], N. H. Shah and Y.
K. Shah [19], Wee and Law [20], Khouja [21], and Wu et al.
[22] are worth mentioning. Transchel and Minner [23] have
proposed a dynamic pricing policy in a single market with
outcompetition where demand is solely dependent on price.
They have determined joint optimal lotsize and prices over a
finite time horizon. Netessine [24] has developed a dynamic
pricing policywhere demand is time andprice-dependent but
the policy suits for revenue management. Adida and Perakis
[25] have developed inventory model with dynamic pricing
by using optimal control theory. In this direction, interested
readers may consult the survey paper of Elmaghraby and
Keskinocak [26].

As indicated, dynamic analysis of optimal joint pricing
and inventory control problem has recently become popular
for researcher as well as practitioners. But inventory models
focusing on dynamic pricing and lot sizing decision have
assumed demand as price or time or both time and price-
dependent and none has tried to represent demand as ramp-
type time-dependent function which is also sensitive to
price. Motivated by true implementation of dynamic pricing,
we focus on determining the optimal policy for a mod-
eling paradigm with ramp-type time and price-dependent
demand. This paper makes three major contributions. Our
first contribution is analyzing the dynamic pricing problem
with a limited number of price changes andproviding insights
into pricing and timing decisions. Most of the related papers
either permit for continuous price changes or presume that

the firm operates in a multiple-period environment with
time-invariant demand characteristics in each period. The
former assumption differs from our work since we assume
that the total number of times and that price can be changed
are limited, which is significant when there are costs associ-
atedwith each change.The latter assumption also differs from
ourwork sincewemodel demand during the period as amore
general time-dependent ramp-type function of time. This
type of demand pattern with price sensitivity is most relevant
for the products that belong to seasonal class because of the
limited sales season and nature of their requirements. Our
second contribution is that instead of focusing on a specific
price trajectory, we employ a more general model with a
minimal number of assumptions that can incorporate both
price increases and decreases and establish when one or the
other situation arises, thus making the results applicable to a
variety of industries. Finally, we develop a suitable algorithm
to determine the number of price changes, joint optimal lot
size and optimal prices for maximizing profit over the finite
season.

2. Mathematical Modelling and Analysis

Consider a retailer sales seasonal products over a finite season
𝐿. Demand of the product is price and time-dependent
continuous ramp-type function is of the form:

𝐷(𝑡, 𝑝𝑙𝑖) = 𝐴𝑒
[𝑏{𝑡−(𝑡−𝜇)𝐻(𝑡−𝜇)−(𝑡−𝛾)𝐻(𝑡−𝛾)}]

− 𝛽𝑝𝑙𝑖, (1)

where 𝐴 > 0 is the initial rate of demand, 𝑏 > 0 is the
time-sensitive parameter of demand, and 𝛽 > 0 is the price
sensitive parameter of demand. 𝑝𝑙𝑖 is the unit selling price
of the product in the 𝑖th pricing cycle of the 𝑙th time period
(𝑙 = 1, 2, 3).𝐻(𝑡−𝜇) and𝐻(𝑡−𝛾) are well-knownHeaviside’s
functions, respectively, defined as

𝐻(𝑡 − 𝑋) = {
1, if 𝑡 ≥ 𝑋

0, if 𝑡 < 𝑋,
(2)

where 𝑋 = 𝜇 or 𝛾. Here, demand increases exponentially
up to time 𝜇. In the interval [𝜇, 𝛾], it is steady only that
its fluctuation occurs for the change of price in different
pricing cycles. After time 𝛾, it decreases exponentially and
becomes asymptotic. Note that we assume that the demand
of the product over the sales season is of increasing-steady-
decreasing type.However, themarket potential of the product
is affected for time and price dependency of demand. Unit
selling price of the product has considerable impact on
customers purchases but it is too far less than the impact
of seasonal utility and necessity of the product in the finite
time frame.Thus, it is quite appropriate to assume increasing-
steady-decreasing demand pattern over the season though
market potential is affected by both time and price. We
assume that n price changes are applied with a fixed cost 𝑐0
associated with each price change. The maximum number of
allowable price change is 𝑛max.We impose a restriction on the
maximum number of price changes to indicate that toomany
price changes have negative effect on customers, because it
may impress customers by the quality and availability of the
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product. At the same time it also incurs huge amount of price
change cost on total profit for publicity and advertisement.
Let 𝑐 be the unit purchase cost of the product, ℎ the holding
cost per unit time, and 𝑠 is the setup cost. At the beginning
of the season 𝑄 amount of inventory is replenished. Then,
as time progresses inventory level decreases due to demand
and ultimately reaches zero level at the end of the season 𝐿.
Demand is time and price-dependent and it is three time
periods classified. We assume that time horizon 𝐿 is the
combination of three time periods [0, 𝜇], [𝜇, 𝛾], and [𝛾, 𝐿] and
𝑛1, 𝑛2, and 𝑛3 numbers of pricing cycles of lengths 𝑇1, 𝑇2, and
𝑇3 are considered in the time periods [0, 𝜇], [𝜇, 𝛾], and [𝛾, 𝐿],
respectively, such that 𝑛1+𝑛2+𝑛3 = 𝑛 ≤ 𝑛max.We also assume
that 𝑄1𝑛

1

, 𝑄2𝑛
2

, and 𝑄3𝑛
3

units of inventories are depleted in
time periods [0, 𝜇], [𝜇, 𝛾], and [𝛾, 𝐿], respectively, such that
𝑄1𝑛
1

+ 𝑄2𝑛
2

+ 𝑄3𝑛
3

= 𝑄. Here, our objective is to determine
values of {𝑝1𝑖

1

, 𝑖1 = 1, 2, . . . , 𝑛1}, {𝑝2𝑖
2

, 𝑖2 = 1, 2, . . . , 𝑛2},
{𝑝3𝑖
3

, 𝑖3 = 1, 2, . . . , 𝑛3}, 𝑛1, 𝑛2, and 𝑛3 such that total profit
for the season 𝐿 is maximum. Note that, products sold in
these three time periods are replenished at the beginning of
the season 𝐿. The initial inventory level in the time period
[𝜇, 𝛾] is assumed as the last inventory level of [0, 𝜇], and that
of [𝛾, 𝐿] is the last inventory level of [𝜇, 𝛾]. The number of
price changes is interrelated by the relation 𝑛1+𝑛2+𝑛3 ≤ 𝑛max.
We calculate the profit functions in these three time periods
separately and combination of these in unique proportion
will certainly provide the total profit of the system over the
season 𝐿.

2.1. Model Formulation. In time interval [0, 𝜇], a number of
pricing cycles 𝑛1 are considered each of length 𝑇1 such that
𝑛1𝑇1 = 𝜇. Let 𝑄1𝑖

1

be the sales amount from starting of the
sales season to 𝑖1th period [(𝑖1−1)𝑇1, 𝑖1𝑇1], (𝑖1 = 1, 2, . . . , 𝑛1).
Then, we have

𝑄1𝑖
1

=

𝑖
1

∑

𝑗=1

∫

𝑗𝑇
1

(𝑗−1)𝑇1

𝐷(𝑡, 𝑝1𝑗) 𝑑𝑡

=
𝐴

𝑏
(𝑒
𝑖
1
𝑏𝑇
1 − 1) − 𝛽𝑇1

𝑖
1

∑

𝑗=1

𝑝1𝑗.

(3)

Let 𝐼1𝑖
1

(𝑡), (𝑖1 = 1, 2, . . . , 𝑛1) be the instantaneous level of
inventory at time 𝑡 in the 𝑖1th replenishment cycle. Then,
instantaneous inventory level is governed by

𝑑𝐼1𝑖
1
(𝑡)

𝑑𝑡
= −𝐷 [𝑡, 𝑝1𝑖

1

] , (𝑖1 − 1) 𝑇1 ≤ 𝑡 ≤ 𝑖1𝑇1
(4)

with initial condition 𝐼1𝑖
1

((𝑖1 − 1)𝑇1) = 𝑄 − 𝑄1𝑖
1−1

.
Solving the differential equation, we have

𝐼1𝑖
1

(𝑡) = 𝑄 −
𝐴

𝑏
(𝑒
𝑏𝑡
− 1)

+ 𝛽𝑇1

𝑖
1
−1

∑

𝑗=1

𝑝1𝑗 + 𝛽𝑝1𝑖
1

(𝑡 − (𝑖1 − 1) 𝑇1) ,

(𝑖1 − 1) 𝑇1 ≤ 𝑡 ≤ 𝑖1𝑇1.

(5)

Holding cost of inventory in time period [0, 𝜇] is given by

HC1 =
𝑛
1

∑

𝑗=1

ℎ∫

𝑖𝑇
1

(𝑖−1)𝑇1

𝐼1𝑖
1
(𝑡) 𝑑𝑡

= ℎ𝑄𝑛1𝑇1 +
𝑛1ℎ𝐴𝑇1

𝑏
−

𝐴ℎ

𝑏2
(𝑒
𝑛
1
𝑏𝑇
1 − 1)

+
ℎ𝛽𝑇
2

1

2

𝑛
1

∑

𝑖
1
=1

𝑝1𝑖
1

+ ℎ𝛽𝑇
2

1

𝑛
1
−1

∑

𝑖
1
=1

(𝑛1 − 𝑖1) 𝑝1𝑖
1

.

(6)

Sales revenue for the time period [0, 𝜇] is

SR1 =
𝑛
1

∑

𝑖
1
=1

𝑝1𝑖
1

∫

𝑖
1
𝑇
1

(𝑖1−1)𝑇1

𝐷(𝑡, 𝑝1𝑖
1

) 𝑑𝑡

=
𝐴

𝑏
(1 − 𝑒

−𝑏𝑇
1)

𝑛
1

∑

𝑖
1
=1

𝑝1𝑖
1

𝑒
𝑖
1
𝑏𝑇
1 − 𝛽𝑇1

𝑛
1

∑

𝑖
1
=1

𝑝
2

1𝑖
1

.

(7)

In interval [𝜇, 𝛾], a number of pricing cycles 𝑛2 are considered
and each of length 𝑇2; that is, 𝑛2𝑇2 = 𝛾 − 𝜇. The demand
is independent of time in this interval. Only its fluctuation
occurs for different prices in different pricing cycles. Let 𝑄2𝑖

2

be sales amount from time 𝜇 to end of 𝑖2th period [𝜇 + (𝑖2 −

1)𝑇2, 𝜇 + 𝑖2𝑇2], (𝑖2 = 1, 2, . . . , 𝑛2). Then, we have

𝑄2𝑖
2

=

𝑖
2

∑

𝑗=1

∫

𝜇+𝑗𝑇
2

𝜇+(𝑗−1)𝑇2

𝐷(𝑡, 𝑝2𝑗) 𝑑𝑡

= 𝑖2𝐴𝑇2𝑒
𝑏𝜇

− 𝛽𝑇2

𝑖
2

∑

𝑗=1

𝑝2𝑗.

(8)

Let 𝐼2𝑖
2

(𝑡), (𝑖2 = 1, 2, . . . , 𝑛2) be the instantaneous level of
inventory at time 𝑡 in 𝑖2th replenishment cycle in [𝜇, 𝛾].Then,
the governing differential equation is

𝑑𝐼2𝑖
2
(𝑡)

𝑑𝑡
= −𝐷 [𝑡, 𝑝2𝑖

2

] ,

𝜇 + (𝑖2 − 1) 𝑇2 ≤ 𝑡 ≤ 𝜇 + 𝑖2𝑇2

(9)

with initial condition 𝐼2𝑖
2

(𝜇 + (𝑖2 − 1)𝑇2) = 𝑄 − 𝑄1𝑛
1

− 𝑄2𝑖
2
−1.

Solving the differential equation, we have

𝐼2𝑖
2
(𝑡) = 𝑄 −

𝐴

𝑏
(𝑒
𝑛
1
𝑏𝑇
1 − 1) − (𝑖2 − 1)𝐴𝑇2𝑒

𝑏𝜇

− (𝐴𝑒
𝑏𝜇

− 𝛽𝑝2𝑖
2

) (𝑡 − (𝜇 + (𝑖2 − 1) 𝑇2))

+ 𝛽𝑇1

𝑛
1

∑

𝑗=1

𝑝1𝑗 + 𝛽𝑇2

𝑖
2
−1

∑

𝑗=1

𝑝2𝑗

𝜇 + (𝑖2 − 1) 𝑇2 ≤ 𝑡 ≤ 𝜇 + 𝑖2𝑇2.

(10)
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Theholding cost of inventory in the time period [𝜇, 𝛾] is given
by

HC2 = ℎ[𝑛2𝑇2 (𝑄 −
𝐴

𝑏
(𝑒
𝑛
1
𝑏𝑇
1 − 1))

+ 𝛽𝑛2𝑇1𝑇2

𝑛
1

∑

𝑗=1

𝑝1𝑗 −
𝐴𝛽𝑇
2

2
𝑛
2

2
𝑒
𝑏𝜇

2

+ 𝛽𝑇
2

2

𝑛
2
−1

∑

𝑖
2
=1

(𝑛2 − 𝑖2) 𝑝2𝑖
2

+
𝛽𝑇2
2

2

𝑛
2

∑

𝑖
2
=1

𝑝2𝑖
2

] .

(11)

Sales revenue for time period [𝜇, 𝛾] is

SR2 = 𝐴𝑇2𝑒
𝑏𝜇

𝑛
2

∑

𝑖
2
=1

𝑝2𝑖
2

− 𝑇2𝛽

𝑛
2

∑

𝑖
2
=1

𝑝
2

2𝑖
2

. (12)

In the final time period [𝛾, 𝐿], demand is a decreasing
function of time. 𝑛3 pricing cycles are considered in this
period and length of each period is 𝑇3. Therefore, we have
𝑛3𝑇3 = 𝐿 − 𝛾. Let 𝑄3𝑖

3

be sales amount from time 𝛾 to end of
𝑖3th period [𝛾 + (𝑖3 − 1)𝑇3, 𝛾 + 𝑖3𝑇3], (𝑖3 = 1, 2, . . . , 𝑛3). Then,
we have

𝑄3𝑖
3

=

𝑖
3

∑

𝑗=1

∫

𝛾+𝑗𝑇
3

𝛾+(𝑗−1)𝑇3

𝐷(𝑡, 𝑝3𝑗) 𝑑𝑡

= 𝐴
𝑒
𝑏𝜇

𝑏
(1 − 𝑒

−𝑖
3
𝑏𝑇
3) − 𝛽𝑇3

𝑖
3

∑

𝑗=1

𝑝3𝑗.

(13)

If 𝐼3𝑖
3

(𝑡), (𝑖3 = 1, 2, . . . , 𝑛3) be the instantaneous level of
inventory at time 𝑡 in 𝑖3th pricing cycle in time interval [𝛾, 𝐿].
Then the governing differential equation becomes

𝑑𝐼3𝑖
3
(𝑡)

𝑑𝑡
= −𝐷 [𝑡, 𝑝3𝑖

3

] ,

𝛾 + (𝑖3 − 1) 𝑇3 ≤ 𝑡 ≤ 𝛾 + 𝑖3𝑇3

(14)

with initial condition 𝐼3𝑖
3

(𝛾 + (𝑖3 − 1)𝑇3) = 𝑄 − 𝑄1𝑛
1

− 𝑄2𝑛
2

−

𝑄3𝑖
3
−1.
Solving the differential equation, we have

𝐼3𝑖
3
(𝑡) = 𝑄 −

𝐴

𝑏
(𝑒
𝑛
1
𝑏𝑇
1 − 1)

+ 𝛽𝑇1

𝑛
1

∑

𝑗=1

𝑝1𝑗 − 𝐴𝑛2𝑇2𝑒
𝑏𝜇

+ 𝛽𝑇2

𝑛
2

∑

𝑗=1

𝑝2𝑗 + 𝛽𝑇3

𝑖
3
−1

∑

𝑗=1

𝑝3𝑗

−
𝐴𝑒
𝑏𝜇

𝑏
(1 − 𝑒

−(𝛾−𝑡)𝑏
) + 𝛽𝑝3𝑖

3

× [𝑡 − (𝛾 + (𝑖3 − 1) 𝑇3)] ,

𝛾 + (𝑖3 − 1) 𝑇3 ≤ 𝑡 ≤ 𝛾 + 𝑖3𝑇3.

(15)

Holding cost of inventory in the time period [𝐿, 𝛾] is given by

HC3 = ℎ[

[

𝑛3𝑇3𝑄 −
𝐴𝑇3𝑛3

𝑏
(𝑒
𝑛
1
𝑏𝑇
1 − 1)

+ 𝛽𝑛3𝑇1𝑇3

𝑛
1

∑

𝑗=1

𝑝3𝑗 − 𝐴𝑛3𝑛2𝑇2𝑇3𝑒
𝑏𝜇

− 𝛽𝑛3𝑇3𝑇2

𝑛
2

∑

𝑗=1

𝑝3𝑗 − 𝐴𝑛3𝑇3𝑒
𝑏𝜇

− 𝛽𝑇
2

3

𝑛
3
−1

∑

𝑖
3
=1

(𝑛3 − 𝑖3) 𝑝3𝑖
3

+
𝛽𝑇
2

3

2

𝑛
3

∑

𝑖
3
=1

𝑝3𝑖
3

+
𝐴𝑒
𝑏𝜇

𝑏2
(1 − 𝑒

−𝑛
3
𝑏𝑇
3)] .

(16)

Sales revenue for time period [𝐿, 𝛾] is

SR3 =
𝐴

𝑏
𝑒
𝑏𝜇

(𝑒
𝑏𝑇
3 − 1)

𝑛
3

∑

𝑖
3
=1

𝑝3𝑖
3

𝑒
−𝑏𝑖
3
𝑇
3 − 𝛽𝑇3

𝑛
3

∑

𝑖
3
=1

𝑝
2

3𝑖
3

. (17)

The profit function for entire time interval comprises sales
revenue, holding cost, purchase cost, price change cost, and
setup cost and is found as

𝜋 (𝑛1, 𝑛2, 𝑛3, {𝑝1𝑖
1

} , {𝑝2𝑖
2

} , {𝑝2𝑖
2

})

= SR1 + SR2 + SR3

− (HC1 +HC2 +HC3)

− 𝑐𝑄 − 𝑐0 (𝑛1 + 𝑛2 + 𝑛3) − 𝑆

(18)

Therefore, we have the maximization problem

maximize 𝜋 (𝑛1, 𝑛2, 𝑛3, {𝑝1𝑖
1

} , {𝑝2𝑖
2

} , {𝑝2𝑖
2

}) (19)

subject to

𝑝1𝑖
1

≥ 0, ∀𝑖1 ≤ 𝑛1,

𝑝2𝑖
2

≥ 0, ∀𝑖2 ≤ 𝑛2,

𝑝3𝑖
3

≥ 0, ∀𝑖3 ≤ 𝑛3,

(20)

where 𝑛1, 𝑛2 and 𝑛3 are positive integers.

2.2. Analysis. In the previous subsection the profit function
𝜋 for sales season 𝐿 is derived. Pricing cycle lengths 𝑇1, 𝑇2,
and 𝑇3 for three time periods are different from one another
and restriction on unit selling prices for the maximization of
𝜋 is also different from one another. But note that (i) total
amount of inventory 𝑄(= 𝑄1𝑛

1

+ 𝑄2𝑛
2

+ 𝑄3𝑛
3

) is replenished
at the beginning of the season 𝐿, (ii) the number of price
changes in the three time periods is related by 𝑛1 + 𝑛2 + 𝑛3 =

𝑛 ≤ 𝑛max and (iii) most importantly, initial inventory level
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of first pricing cycle of time period [𝜇, 𝛾] is exactly equal to
the excess amount of inventory after the end of last pricing
cycle of the time period [0, 𝜇]. The same is assumed for the
first pricing cycle of the time period [𝛾, 𝐿] and last pricing
period of [𝜇, 𝛾].Thus, effects of prices on demand represented
by the inventory level after depletion are inherited in both the
demand transfer points 𝜇 and 𝛾 at which the profit function
is disintegrated.

Proposition 1. For given 𝑛1, 𝑛2 and 𝑛3, 𝜋(𝑛1, 𝑛2, 𝑛3, {𝑝1𝑖
1

},

{𝑝2𝑖
2

}, {𝑝3𝑖
3

}) is concave.

Proof. The necessary conditions for the existence of optimal
solutions are 𝜕𝜋/𝜕𝑝1𝑖

1

= 0, (𝑖1 = 1, 2, . . . , 𝑛1), 𝜕𝜋/𝜕𝑝2𝑖
2

=

0, (𝑖2 = 1, 2, . . . , 𝑛2), and 𝜕𝜋/𝜕𝑝3𝑖
3

= 0, (𝑖3 = 1, 2, . . . , 𝑛3).
Differentiating 𝜋 with respect to 𝑝1𝑖

1

, 𝑝2𝑖
2

, and 𝑝3𝑖
3

and
equating it to zero, we have

𝑝1𝑖
1

=
𝐴

2𝑏𝑇1𝛽
𝑒
𝑖
1
𝑏𝑇
1 (1 − 𝑒

−𝑏𝑇
1) +

ℎ𝑇1

4
(2𝑖1 − 1) +

𝑐

2
,

𝑝2𝑖
2

=
𝐴𝑒
𝑏𝜇

2𝛽
+

ℎ𝑇2

4
(2𝑖2 − 1) +

𝑛1ℎ𝑇1

2
+

𝑐

2
,

𝑝3𝑖
3

=
𝐴𝑒
𝑏𝜇

2𝑏𝑇3𝛽
(𝑒
𝑏𝑇
3 − 1) 𝑒

−𝑖
3
𝑏𝑇
3

+
ℎ𝑇3

4
(2𝑖3 − 1)

+
𝑐

2
+

ℎ (𝑛1𝑇1 + 𝑛2𝑇2)

2
.

(21)

Moreover, 𝜕2𝜋/𝜕𝑝2
1𝑖
1

= −2𝑇1𝛽 < 0, for 𝑖1 = 1, 2, . . . , 𝑛1;
𝜕
2
𝜋/𝜕𝑝
2

2𝑖
2

= −2𝑇2𝛽 < 0, for 𝑖2 = 1, 2, . . . , 𝑛2; 𝜕
2
𝜋1/𝜕𝑝

2

3𝑖
3

=

−2𝑇3𝛽 < 0, for 𝑖3 = 1, 2, . . . , 𝑛3; 𝜕
2
𝜋/𝜕𝑝1𝑖

1

𝜕𝑝1𝑗
1

= 0, 𝜕2𝜋/
𝜕𝑝2𝑖
2

𝜕𝑝2𝑗
2

= 0, 𝜕2𝜋/𝜕𝑝3𝑖
3

𝜕𝑝3𝑗
3

= 0, 𝜕2𝜋/𝜕𝑝1𝑖
1

𝜕𝑝2𝑗
2

= 0,
𝜕
2
𝜋/𝜕𝑝1𝑖

1

𝜕𝑝3𝑗
3

= 0, 𝜕2𝜋/𝜕𝑝2𝑖
2

𝜕𝑝3𝑗
3

= 0, for 𝑖 ̸= 𝑗 and 𝑚th
principle minor of the Hessian matrix is of the sign (−1)

𝑚,
𝑚 = 1, 2, . . . , 𝑛1 + 𝑛2 + 𝑛3. Therefore, 𝜋 is a concave function.
The constraint imposed on the objective function is also
linear in nature. Hence, the stationary point found by solving
(21) provides global optimal solution.

Proposition 2. In the time interval,

(a) [0, 𝜇], for given 𝑛1, optimal prices satisfy the relation
𝑝11 < 𝑝12 < ⋅ ⋅ ⋅ < 𝑝1𝑛

1

.

(b) [𝜇, 𝛾], for given 𝑛2, optimal prices satisfy the relation
𝑝21 ≤ 𝑝22 ≤ ⋅ ⋅ ⋅ ≤ 𝑝2𝑛

2

.

(c) [𝛾, 𝐿], for given 𝑛3, optimal prices satisfy the relation
𝑝31 > 𝑝32 > ⋅ ⋅ ⋅ > 𝑝3𝑛

3

if 𝐴𝑒
𝑏𝜇

> ℎ/𝑏𝛽.

Proof.

(a) If𝑚1 < 𝑚2 ≤ 𝑛1, then

𝑝1𝑚
2

− 𝑝1𝑚
1

=

𝐴 (1 − 𝑒
−𝑏𝑇
1)

2𝑏𝑇1𝛽
(𝑒
𝑚
2
𝑏𝑇
1 − 𝑒
𝑚
1
𝑏𝑇
1)

+
ℎ𝑇1

4
(𝑚2 − 𝑚1) .

(22)

Now,𝑚1 < 𝑚2 implies 𝑝1𝑚
2

− 𝑝1𝑚
1

> 0; that is, 𝑝1𝑖
1

increases
as 𝑖1 increases.

(b) If𝑚1 < 𝑚2 ≤ 𝑛2, then

𝑝2𝑚
2

− 𝑝2𝑚
1

=
ℎ𝑇2

2
(𝑚2 − 𝑚1) > 0; (23)

that is, 𝑝2𝑖
2

increases as 𝑖2 increases.
Note that, theoretically, if there are several pricing cycles

in [𝜇, 𝛾] then the unit selling prices of the product increase.
But it does not happen in reality. For the time interval over
which the demand is steady, there should be only one selling
price of the product.We verify the issue in numerical example
aslo.

(c) If𝑚1 < 𝑚2 ≤ 𝑛3, then

𝑝3𝑚
2

− 𝑝3𝑚
1

=

𝐴𝑒
𝑏𝜇

(𝑒
𝑏𝑇
3 − 1)

2𝑏𝑇3𝛽
(𝑒
−𝑚
2
𝑏𝑇
3 − 𝑒
𝑚
1
𝑏𝑇
3)

+
ℎ𝑇2

2
(𝑚2 − 𝑚1) ;

(24)

neglecting higher order terms of 𝑏, we get

𝑝3𝑚
2

− 𝑝3𝑚
1

= −
𝑇3 (𝑚3 − 𝑚1)

2
(
𝐴𝑒
𝑏𝜇
𝑏

𝛽
− ℎ) (25)

that is, if𝐴𝑒
𝑏𝜇
𝑏/𝛽 > ℎ, then 𝑝3𝑖

3

decreases as 𝑖3 increases.

Proposition 3. For given 𝑛1, 𝑛2, and 𝑛3, optimal selling prices
attain maximum value in the final pricing cycle of [𝜇, 𝛾] if

𝑛2 ≥ ⌊
ℎ (𝛾 − 𝜇) 𝑛3

(𝐿 − 𝛾) (𝐴𝑒𝑏𝜇𝑏/𝛽 − ℎ)
⌋ , (26)

where ⌊⌋ represents greatest integer not greater than its
argument.

Proof. From Proposition 2, it is found that optimal selling
prices increase in time intervals [0, 𝜇] and [𝜇, 𝛾] as 𝑖1, (𝑖1 =

1, 2, . . . , 𝑛1) and 𝑖2, (𝑖2 = 1, 2, . . . , 𝑛2) increase. Whereas these
decrease in final time phase [𝛾, 𝐿] as 𝑖3, (𝑖1 = 1, 2, . . . , 𝑛3)

increases. Therefore, it is sufficient to verify pricing relations
between final pricing cycle of [0, 𝜇] and first pricing cycle of
[𝜇, 𝛾] and between final pricing cycle of [𝜇, 𝛾] and first pricing
cycle of [𝛾, 𝐿]. Now,

𝑝21 − 𝑝1𝑛
1

= [
𝐴𝑒
𝑏𝜇

2𝛽
+

ℎ𝑇2

4
] − [

𝐴𝑒
𝑏𝜇

2𝑏𝑇1𝛽
(1 − e−𝑏𝑇1) +

ℎ𝑇1

4
] .

(27)
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After simplification, we get

𝑝21 − 𝑝1𝑛
1

=
𝑇1

4
(
𝐴𝑒
𝑏𝜇
𝑏

𝛽
− ℎ) +

ℎ𝑇1

4
; (28)

that is, 𝑝21 − 𝑝1𝑛
1

> 0 if 𝐴𝑒
𝑏𝜇
𝑏/𝛽 > ℎ. Therefore, optimal

selling price in first pricing cycle of [𝜇, 𝛾] is always greater
than that in final selling price of [0, 𝜇].

Similarly, difference between optimal selling price in final
pricing cycle of [𝜇, 𝛾] and first cycle of [𝛾, 𝐿] is

𝑝2𝑛
2

− 𝑝31 = [
𝐴𝑒
𝑏𝜇

2𝛽
−

ℎ𝑇2

4
] − [

𝐴𝑒
𝑏𝜇

2𝑏𝑇3𝛽
(1 − 𝑒

−𝑏𝑇
3) +

ℎ𝑇3

4
] ;

(29)

on simplification, we get

𝑝2𝑛
2

− 𝑝31 =
𝑇3

4
(
𝐴𝑒
𝑏𝜇
𝑏

𝛽
− ℎ) −

ℎ𝑇2

4
(30)

that is,𝑝2𝑛
2

−𝑝31 > 0 if 𝑛2 ≥ ⌊ℎ(𝛾−𝜇)𝑛3/(𝐿−𝛾)(𝐴𝑒
𝑏𝜇
𝑏/𝛽−ℎ)⌋.

Since optimal selling prices are increasing in [0, 𝜇] and [𝜇, 𝛾]

and decreasing in [𝛾, 𝐿], the proposition follows immediately.

Proposition 2 indicates that in time period [0, 𝜇] when
demand is increasing, optimal selling prices form an increas-
ing sequence. The same pattern is followed for prices in time
interval [𝜇, 𝛾], whereas reverse trend is found for prices in
[𝛾, 𝐿] in which demand is decreasing. Proposition 3 indicates
the time when selling price of the product is maximum. If
𝑛1, 𝑛2 and 𝑛3 are given, then determining pricing cycles and
hence time in which unit price is maximum a decisionmaker
may apply some strategy to enhance inventory depletion rate
to increase his profit.

In the next subsection using Propositions 1, 2, and 3, we
develop a solution procedure in order to find optimal total
profit 𝜋(𝑛1, 𝑛2, 𝑛3, {𝑝1𝑖

1

, 𝑝2𝑖
2

, 𝑝3𝑖
3

}) such that 𝑛1 + 𝑛2 + 𝑛3 ≤

𝑛max (1 ≤ 𝑖1 ≤ 𝑛1, 1 ≤ 𝑖2 ≤ 𝑛2, 1 ≤ 𝑖3 ≤ 𝑛3) through
simultaneous determination of optimal values of 𝑛1, 𝑛2, 𝑛3,
prices 𝑝1𝑖

1

, 𝑝2𝑖
2

, 𝑝3𝑖
3

, and 𝑄.

2.3. Solution Procedure

Step 1. Input parameter values.

Step 2. Set 𝑛1 = 1, 𝑛2 = 1, 𝑛3 = 1, 𝜋∗ = 0, and 𝑄
∗
= 0.

Step 3. Repeat until (𝑛1 ≤ 𝑛max − 2);
repeat until (𝑛2 ≤ 𝑛max − 𝑛1 − 1);

repeat until (𝑛3 ≤ 𝑛max − 𝑛1 − 𝑛2);
for (𝑖1 ≤ 𝑛1), (𝑖2 ≤ 𝑛2), and (𝑖3 ≤ 𝑛3);

determine 𝑝1𝑖
1

, 𝑝2𝑖
2

, and 𝑝3𝑖
3

;
calculate 𝑄;
calculate 𝜋;

if 𝜋 > 𝜋
∗, then 𝜋 = 𝜋

∗, 𝑄 = 𝑄
∗, 𝑁 = (𝑛1, 𝑛2, 𝑛3), and

𝑃 = (𝑝1𝑖
1

, 𝑝2𝑖
2

, 𝑝3𝑖
3

) by using (21).

Table 1: Optimal values of (𝜋, 𝑄) for 𝑛2 = 1, 𝑛1 = 1, 2, . . . , 4

(rowwise) and 𝑛3 = 1, 2, 3 (columnwise).

1 2 3

1 (7518.05, 11327.71) (7762.63, 11434.72) (7725.85, 11471.69)
2 (8151.99, 11111.49) (8406.14, 11327.74) (8410.01, 11471.46)
3 (8189.49, 10841.53) (8461.08, 11111.56) (8430.91, 11201.65)
4 (8102.12, 10598.76) (8397.33, 10949.12) (8372.93, 11099.21)

Table 2: Optimal values of (𝜋, 𝑄) for 𝑛2 = 2, 𝑛1 = 1, 2, 3, 4 (rowwise)
and 𝑛3 = 1, 2, 3 (columnwise).

1 2 3

1 (7027.36, 11314.20) (7453.97, 11449.25) (7414.56, 11494.23)
2 (7933.37, 11111.71) (8186.84, 11327.74) (8051.82, 11399.71)
3 (7884.12, 10922.71) (8261.92, 11193.87) (8119.22, 11286 14)
4 (7808.09, 10706.71) (8095.31, 11084.32) (8067.94, 11210.72)

Step 4. Write output.

Note that solution procedure is developed to determine
optimal number of price settings and optimal prices over the
entire finite time horizon 𝐿 through simultaneous optimiza-
tion of the decision variables rather than their individual opti-
mization in time periods [0, 𝜇], [𝜇, 𝛾], and [𝛾, 𝐿] respectively.
Using Propositions 1, 2, and 3, optimal prices 𝑝1𝑖

1

, 𝑝2𝑖
2

, 𝑝3𝑖
3

are determined for any fixed 𝑛1, 𝑛2, 𝑛3, respectively, such that
𝑛1 ≤ 𝑛max − 2, 𝑛2 ≤ 𝑛max − 2, and 𝑛3 ≤ 𝑛max − 2. The
arbitrariness of 𝑛1, 𝑛2, 𝑛3 within the limits and simultaneous
determination of these through maximization of 𝜋 ensure
that 𝜋∗ will always provide global optimal solution for the
problem over entire finite time horizon 𝐿.

3. Numerical Example

Assume that a retailer plans to purchase a quantity at a rate
$80 for the sales season 𝐿 = 180 days. Demand is increasing
up to 90 days and it remains steady for next 30 days; that
is, 𝛾 = 120 days. In the rest of the sales season the demand
is decreasing. Inventory holding cost, price change cost and
setup cost are $0.1, $2000, and $10000, respectively. Values of
𝐴, 𝑏, and 𝛽 are 50, 0.02, and 0.6, respectively, and maximum
permissible price setting is 12. Using the solution procedure
for different values of 𝑛1, 𝑛2, and 𝑛3, profits and order
quantities are calculated and presented for 𝑛1 = 1, . . . , 4,
𝑛2 = 1, 𝑛3 = 1, 2, 3 and 𝑛1 = 1, . . . , 4, 𝑛2 = 2, 𝑛3 = 1,
2, 3 in Tables 1 and 2, respectively. From Table 1, it is found
that optimal profit is 8461.08 and order quantity is 11111.56 for
𝑛1 = 3, 𝑛2 = 1, and 𝑛3 = 2. Note that optimal profit is not
found in Table 2. We have performed numerical calculations
by considering all possible combinations of 𝑛1, 𝑛2, and 𝑛3

within the range of 𝑛max. In all the cases profits are less than
the profits presented in Tables 1 and 2.Thus the results are not
presented. 𝑛1 = 3, 𝑛2 = 1, and 𝑛3 = 2 indicate that, there will
be three different prices in the time interval [0, 90], one price
setting in [90, 120] and two prices in [90, 180]. The optimal
prices are 106.84, 155.28, 242.36, 294.31, 230.30, 146.2,8 and
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Table 3: Sensitivity analysis of the model.

Parameter % change in value (𝑛
1
, 𝑛
2
, 𝑛
3
) % change in 𝑄 𝜋 % change in 𝜋

𝐴

−30 (2, 1, 2) −42.12 2739.51 −67.63

−10 (3, 1, 2) −14.52 6221.57 −26.47

10 (3, 1, 2) 14.52 11021.19 30.26

30 (3, 1, 3) 43.56 17103.25 102.14

𝛽

−30 (3, 1, 2) 13.56 14983.16 77.08

−10 (3, 1, 2) 4.52 10126.35 19.68

10 (3, 1, 2) −4.52 7119.77 −15.85

30 (3, 1, 2) −13.56 5109.75 −39.61

𝑏

−30 (2, 1, 1) −48.86 1788.54 −78.86

−10 (2, 1, 2) −17.26 5314.46 −37.19

10 (3, 1, 3) 22.67 13051.88 54.26

30 (4, 1, 3) 76.60 29382.21 247.26

𝑐

−30 (3, 1, 2) 11.66 10057.81 18.87

−10 (3, 1, 2) 3.89 8974.14 6.06

10 (3, 1, 2) −3.89 7967.23 −5.84

30 (3, 1, 2) −11.66 7037.12 −16.83

𝑐0

−30 (5, 1, 6) 0.03 725558 0.47

−10 (4, 1, 6) 0.01 723234 0.15

10 (4, 1, 5) 0.00 721055 −0.15

30 (4, 1, 5) −0.01 719055 −0.43

ℎ

−30 (3, 1, 3) 0.81 8664.24 2.41

−10 (3, 1, 2) 0.00 8527.75 0.79

10 (3, 1, 2) −0.01 8394.92 −0.78

30 (3, 1, 2) −0.25 8261.08 −2.36

are set in the time intervals [0, 30], [30, 60], [60, 90], [90, 120],
[120, 150], and [150, 180], respectively. Three prices are set
in the time interval [0, 90] each of 30-days length and prices
are increasing, which agrees with Proposition 2(a). Similarly,
two prices are set in the time interval [120, 180] and prices
are decreasing. In time interval [90, 120], demand becomes
steady and only one price is set in this time interval. This is
quite obvious and we never find more than one price change
in this time interval because higher unit selling price induces
customers in more negative way. It results lower demand per
unit time and hence lower volume of profit. The nature of
price settings for different demand patterns in different time
phases is similar to the characteristics of the price setting in
real market. Since seasonal products as sales season progress
selling price of the product increases for the increment of
market potential and finally it assumes the maximum and
towards end of season it decreases for decrement of market
potential. However, maximum optimal selling price is 294.31
and it is found in time interval [𝜇, 𝛾], which agrees with the

finding of Proposition 3.This is quite natural and agrees with
the pricing strategy of a monopolist for seasonal products.
Since market potential for the product in [𝜇, 𝛾] is maximum
for the sales season, it is a common practice in marketing
that increment of market potential should be capitalized
through higher selling price. It also ensures customers about
the quality of the product. From Table 1, it is also found
that for static pricing strategy; that is, for 𝑛1 = 𝑛2 =

𝑛3 = 1, optimal profit and optimal order quantity are
7518.05 and 11327.71, respectively. Optimal profit for dynamic
pricing is 12.54% higher than that of static pricing strategy.
Thus, dynamic pricing strategy completely outperforms static
pricing strategy. Hence, it is always preferable to static pricing
strategy in decision making context.

In Table 3, some sensitivity analysis of the model is
performed by changing parameter values −30%, −10%, 10%,
and 30%, taking one at a time and keeping remaining
unchanged. It is found from Table 3 that the model is highly
sensitive to error in estimation of parameter values 𝐴, 𝑏, and
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𝛽. Moderate sensitivity to change in parameter value 𝑐 and
low sensitivity are found for parameters 𝑐0 and ℎ. 𝐴, 𝑏 are
demand parameters. Changes of 𝐴 and 𝑏 highly influence
increment or decrement of demand rate, and hence profit,
whereas, 𝛽 is price sensitive parameter in demand. Error in
estimation of 𝛽 leads to either positive or negative impact on
demand, resulting higher or lower volume of profit.

4. Summary and Concluding Remarks

This paper is based on time- and price-dependent ramp-
type demand rate for perishable inventory. Considering
three profit functions for ramp-up, ramp-down, and steady
demand periods optimal selling prices and optimal order
quantity are determined for entire sales season. Optimal
selling prices are determined in different way from the
previous research works because the present paper assumes
that the number of price setting is a decision variable. The
analytical result shows that for any number of price changes
within the limit over the finite time horizon, it is always
possible to determine optimal sales prices as well as the order
quantity. It is also shown that in ramp up and steady demand’s
time periods, optimal prices increase, whereas for rampdown
time period optimal prices decrease monotonically. Thus,
optimal prices always attain maximum value either in steady
demandperiod or in final pricing cycle of [0, 𝜇]. An algorithm
is provided in order to determine optimal number of price
setting in three time periods simultaneously such that total
profit over the entire time horizon is maximum. A numerical
example is presentedwhich agreeswith all analytical findings.

The model presented here is in full accord with basic
micro economic principle of seasonal products. Moreover,
one can easily encode the logic used in this paper to develop
an ERP module for products which have limited sales season
and demand structure as cited above. The model may be
extended to production inventory model or economic order
quantity model with noninstantaneous receipt.These two are
basically the same in mathematical sense but applicable to
manufacturing industry and retail business, respectively. An
interesting area of future investigation is to determine the
optimal price settings for replenishment-production batch-
ing policy under ramp-type demand structure, which none
has tried to enter into.

References

[1] R. M. Hill, “Inventory models for increasing demand followed
by level demand,” Journal of the Operational Research Society,
vol. 46, no. 10, pp. 1250–1259, 1995.

[2] B. Mandal and A. K. Pal, “Order level inventory system with
ramp type demand rate for deteriorating items,” Journal of
Interdisciplinary Mathematics, vol. 1, pp. 49–66, 1998.

[3] K. S. Wu and L. Y. Ouyang, “A replenishment policy for
deteriorating items with ramp type demand rate,” Proceedings
of the National Science Council, Republic of China A, vol. 24, no.
4, pp. 279–286, 2000.

[4] K. S. Wu, “An EOQ inventory model for items with Weibull
distribution deterioration, ramp type demand rate and partial

backlogging,” Production Planning and Control, vol. 12, no. 8,
pp. 787–793, 2001.

[5] B. C. Giri, A. K. Jalan, and K. S. Chaudhuri, “Economic Order
Quantity model with Weibull deterioration distribution, short-
age and ramp-type demand,” International Journal of Systems
Science, vol. 34, no. 4, pp. 237–243, 2003.

[6] S. K. Manna and K. S. Chaudhuri, “An EOQ model with
ramp type demand rate, time dependent deterioration rate, unit
production cost and shortages,”European Journal ofOperational
Research, vol. 171, no. 2, pp. 557–566, 2006.

[7] P. S. Deng, R. H. J. Lin, and P. Chu, “A note on the inventory
models for deteriorating items with ramp type demand rate,”
European Journal of Operational Research, vol. 178, no. 1, pp. 112–
120, 2007.

[8] S. Panda, S. Saha, and M. Basu, “An EOQ model with general-
ized ramp-type demand andweibull distribution deterioration,”
Asia-Pacific Journal of Operational Research, vol. 24, no. 1, pp.
93–109, 2007.

[9] S. Panda, S. Senapati, and M. Basu, “Optimal replenishment
policy for perishable seasonal products in a season with ramp-
type time dependent demand,” Computers and Industrial Engi-
neering, vol. 54, no. 2, pp. 301–314, 2008.

[10] M. Cheng and G. Wang, “A note on the inventory model
for deteriorating items with trapezoidal type demand rate,”
Computers and Industrial Engineering, vol. 56, no. 4, pp. 1296–
1300, 2009.

[11] S. Panda, S. Saha, and M. Basu, “Optimal production stopping
time for perishable products with ramp-type quadratic demand
dependent production and setup cost,” Central European Jour-
nal of Operations Research, vol. 17, no. 4, pp. 381–396, 2009.

[12] K. Skouri, I. Konstantaras, S. Papachristos, and I. Ganas, “Inven-
tory models with ramp type demand rate, partial backlogging
andWeibull deterioration rate,”European Journal ofOperational
Research, vol. 192, no. 1, pp. 79–92, 2009.

[13] K. C. Hung, “An inventory model with generalized type
demand, deterioration and backorder rates,” European Journal
of Operational Research, vol. 208, no. 3, pp. 239–242, 2011.

[14] S. Saha and M. Basu, “Integrated dynamic pricing for seasonal
products with price and time dependent demand,” Asia-Pacific
Journal of Operational Research, vol. 27, no. 3, pp. 1–17, 2010.

[15] P. Kotler and G. Armstrong, Principles of Marketing, Prentics-
Hall of India, 2007.

[16] T. L.Urban andR.C. Baker, “Optimal ordering and pricing poli-
cies in a single-period environment with multivariate demand
andmarkdowns,”European Journal of Operational Research, vol.
103, no. 3, pp. 573–583, 1997.

[17] S. W. Shinn and H. Hwang, “Optimal pricing and ordering
policies for retailers under order-size-dependent delay in pay-
ments,” Computers and Operations Research, vol. 30, no. 1, pp.
35–50, 2003.

[18] D. S. Dave, K. E. Fitzpatrick, and J. R. Baker, “An advertising-
inclusive production lot size model under continuous discount
pricing,”Computers and Industrial Engineering, vol. 30, no. 1, pp.
147–159, 1996.

[19] N. H. Shah and Y. K. Shah, “An EOQ model for exponentially
decaying inventory under temporary price discounts,” Cahiers
du CERO, vol. 35, pp. 227–232, 1993.

[20] H. M. Wee and S. T. Law, “Replenishment and pricing policy
for deteriorating items taking into account the time-value of
money,” International Journal of Production Economics, vol. 71,
no. 1–3, pp. 213–220, 2001.



ISRN Operations Research 9

[21] M. J. Khouja, “Optimal ordering, discounting, and pricing in
the single-period problem,” International Journal of Production
Economics, vol. 65, no. 2, pp. 201–216, 2000.

[22] C. C. Wu, C. Y. Chou, and C. Huang, “Optimal price, warranty
length and production rate for free replacement policy in the
static demand market,” Omega, vol. 37, no. 1, pp. 29–39, 2009.

[23] S. Transchel and S. Minner, “The impact of dynamic pricing on
the economic order decision,” European Journal of Operational
Research, vol. 198, no. 3, pp. 773–789, 2009.

[24] S. Netessine, “Dynamic pricing of inventory/capacity with
infrequent price changes,” European Journal of Operational
Research, vol. 174, no. 1, pp. 553–580, 2006.

[25] E. Adida and G. Perakis, “A nonlinear continuous time optimal
controlmodel of dynamic pricing and inventory control with no
backorders,”Naval Research Logistics, vol. 54, no. 7, pp. 767–795,
2007.

[26] W. Elmaghraby and P. Keskinocak, “Dynamic pricing in the
presence of inventory considerations: research overview, cur-
rent practices, and future directions,”Management Science, vol.
49, no. 10, pp. 1287–1309, 2003.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


