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We consider finite nilpotent groups of matrices over commutative rings. A general result concerning the diagonalization of matrix
groups in the terms of simple conditions for matrix entries is proven. We also give some arithmetic applications for representations
over Dedekind rings.

1. Introduction

In this paper we consider representations of finite nilpotent
groups over certain commutative rings.There are some classi-
cal and new methods for diagonalizing matrices with entries
in commutative rings (see [1, 2]) and the classical theorems
on diagonalization over the ring of rational integers originate
from the papers by Minkowski; see [3–5]. We refer to [6–
8] for the background and basic definitions. First we prove
a general result concerning the diagonalization of matrix
groups.This result gives a new approach to using congruence
conditions for representations over Dedekind rings. The
applications have some arithmetic motivation coming back
to Feit [9] and involving various arithmetic aspects, for
instance, the results by Bartels on Galois cohomologies [10]
(see also [11–14] for some related topics) and Bürgisser [15] on
determining torsion elements in the reduced projective class
group or the results by Roquette [16].

Throughout the paper wewill use the following notations.
C, R, Q, Q𝑝, Z, Z𝑝, and 𝑂𝐾 denote the fields of complex
and real numbers, rationals and 𝑝-adic rationals, the ring of
rational and 𝑝-adic rational integers, and the ring of integers
of a local or global field 𝐾, respectively. GL𝑛(𝑅) denotes the
general linear group over 𝑅. [𝐸 : 𝐹] denotes the degree of
the field extension 𝐸/𝐹. 𝐼𝑚 denotes the unit 𝑚 × 𝑚 matrix.
diag (𝑑1, 𝑑2, . . . , 𝑑𝑚) is a diagonal matrix having diagonal
components 𝑑1, 𝑑2, . . . , 𝑑𝑛. |𝐺| denotes the order of a finite
group 𝐺.

Theorem 1. Let 𝐴 be a commutative ring, which is an integral
domain, and let 𝐺 ⊂ 𝐺𝐿𝑛(𝐴) be a finite nilpotent group
indecomposable in 𝐺𝐿𝑛(𝐴). Let one suppose that every matrix
𝑔 ∈ 𝐺 is conjugate in𝐺𝐿𝑛(𝐴) to a diagonal matrix.Then any of
the following conditions implies that 𝐺 is conjugate in 𝐺𝐿𝑛(𝐴)

to a group of diagonal matrices:
(i) every matrix 𝑔 = [𝑔𝑖𝑗]𝑖,𝑗 in 𝐺 has at least one diagonal

element 𝑔𝑖𝑖 ̸= 0,
(ii) −𝐼𝑛 is not contained in 𝐺, where 𝐼𝑛 is the identity 𝑛 × 𝑛

matrix, and for any matrix 𝑔 = [𝑔𝑖𝑗]𝑖,𝑗 in 𝐺, there are
2 indices 𝑖, 𝑗 such that 𝑔𝑖𝑗 ̸= 0 and 𝑔𝑗𝑖 ̸= 0.

For the proof of Theorem 1 we need the following.

Proposition 2. If the centre of a finite subgroup 𝐺 ⊂ 𝐺𝐿𝑛(𝐴)

for a commutative ring𝐴, which is an integral domain, contains
a diagonal matrix 𝑑 ̸= 𝐼𝑛, then 𝐺 is decomposable.

Proof. After a conjugation by a permutation matrix we can
assume that
𝑑 = diag (𝑑1, . . . , 𝑑1, 𝑑2, . . . 𝑑2, . . . , 𝑑𝑖, . . . , 𝑑𝑖, . . . , 𝑑𝑘, . . . , 𝑑𝑘) ,

(1)
where 𝑑𝑖 ̸= 𝑑𝑗 for 𝑖 ̸= 𝑗 and 𝑑 contains 𝑡𝑖 elements that equal 𝑑𝑖,
𝑖 = 1, . . . , 𝑘. For a matrix 𝑔 = [𝑔𝑖𝑗]𝑖,𝑗 ∈ 𝐺 consider the system
of linear equations determined by the conditions 𝑔𝑑 = 𝑑𝑔;
this immediately implies that 𝑔𝑖𝑗 = 0 for 𝑖 ≤ 𝑡1, 𝑗 > 𝑡1, and
𝑔𝑘𝑚 = 0 for 𝑚 ≤ 𝑡1, 𝑘 > 𝑡1. Therefore, 𝐺 is decomposable.
This completes the proof of Proposition 2.
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Proof of Theorem 1. Let us denote by 𝐷 the subgroup of all
scalar matrices in 𝐺, and let 𝑍 be the centre of 𝐺.

If𝐷 ̸=𝑍, we use Proposition 2 and induction on 𝑛.
Let𝐷 = 𝑍, and let the exponent of the group𝑍 be equal to

𝑡. Let𝑔0 ∈ 𝐺 be any element not contained in the centre𝑍 of𝐺
such that the image of 𝑔0 in the factor group𝐺/𝑍 is contained
in the centre of 𝐺/𝑍. Then we consider the homomorphism

𝜓 : 𝐺
󸀠
󳨀→ GL𝑛𝑡 (𝐴) , (2)

given by 𝜓(𝑔) = 𝑔
⊗
𝑡

. The kernel of 𝜓 is the set 𝐷 of all scalar
matrices contained in 𝐺. This kernel is not trivial since 𝐺 is
nilpotent. The image 𝜓(𝐺) is isomorphic to the factor group
𝐺/𝐷. Let 𝑔0 = diag(𝑑1, . . . , 𝑑𝑛). Then 𝜓(𝑔0) is a nonscalar
diagonal matrix in the centre of 𝜓(𝐺), 𝑔0 is also not a scalar
matrix, and for any 𝑔 ∈ 𝐺 we have 𝑔𝑔0 = 𝑔0𝑔𝜁 for some
root of 1𝜁 = 𝜁(𝑔). If for the matrix 𝑔 = [𝑔𝑛𝑘]𝑛,𝑘 the elements
𝑔𝑖𝑗 and 𝑔𝑗𝑖 are not zero, we obtain 𝑑𝑗 = 𝑑𝑖𝜁 and 𝑑𝑖 = 𝑑𝑗𝜁,
which implies immediately that 𝜁 = 1 if 𝑖 = 𝑗 (as in case
(i) of Theorem 1). In case (ii) of Theorem 1, if 𝑖 ̸= 𝑗, we obtain
𝜁
2
= 1 and 𝜁 = ±1, but 𝜁 = −1 is impossible in the virtue of the

condition that−𝐼𝑛 is not contained in𝐺. Hencewe have 𝜁 = 1,
and 𝑔0 is contained in 𝑍, the centre of 𝐺. This contradiction
completes the proof of Theorem 1.

Proposition 3. Let I be an ideal of a Dedekind ring 𝑆 of
characteristic 𝜒, let {0} ̸=I ̸= 𝑆, and let 𝑔 be a 𝑛 × 𝑛 matrix
of finite order congruent to 𝐼𝑛(modI).

(i) If 𝜒 = 𝑝 > 0, then 𝑔
𝑝
𝑗

= 𝐼𝑛 for some integer 𝑗. If 𝜒 = 0,
then 𝐼 contains a prime number 𝑝 and 𝑔

𝑝
𝑖

= 𝐼𝑛 for
some integer 𝑖. In particular, a finite group of matrices
congruent to 𝐼𝑛(modI) is a 𝑝-group.

(ii) Let 𝜒 = 0, and let I = p be a prime ideal
having ramification index 𝑒 with respect to 𝑝, let 𝑔 ≡

𝐼𝑛(modp𝑟), and let

𝜆𝑝
𝑖−1

(𝑝 − 1) ⩽
𝑒

𝑟
< 𝑝
𝑖
(𝑝 − 1) , 𝑖 ⩾ 0, 𝜆 = min {1, 𝑖} .

(3)

Then 𝑔
𝑝
𝑖

= 𝐼𝑛; in particular, any finite group of matrices
congruent to 𝐼𝑛(modp𝑡) is trivial if 𝑒 < 𝑟(𝑝 − 1).

See [17, Lemma 1] for the proof of Proposition 3.
The following corollary can be immediately obtained

from Proposition 3.

Corollary 4. Let 𝐾 be a number field of degree 𝑑 = [𝐾 :

Q] with the maximal order 𝑂𝐾. The kernel of reduction of
𝐺𝐿𝑛(𝑂𝐾)modulo an idealI of𝑂𝐾, containing a prime number
𝑝, has no torsion if the norm𝑁𝐾/Q(I) > 𝑝

𝑑/(𝑝−1).

Remark 5. Earlier Bürgisser obtained a similar result for
𝑁𝐾/Q(I) > 2

𝑑; see [18, Lemma 3.1].

Propositions 3 and 6 below can be used for estimating the
orders of finite subgroups of GL𝑛(O𝐾) using the reduction
modulo some prime ideal p ⊂ 𝑂𝐾. It is also possible to

determine the structure of a 𝑝-subgroup of GL𝑛(𝑂𝐾) having
the maximal possible order with some modifications in the
case 𝑝 = 2. The theorems describing the maximal 𝑝-
subgroups of GL𝑛(𝐾) over fields can be found in [19]; in
particular, it is proven that there is only one conjugacy class
of maximal 𝑝-subgroups of GL𝑛(𝐾) for 𝑝 > 2; see also [9, 20].
However, the equivalence of subgroups in GL𝑛(𝑂𝐾) over 𝑂𝐾
is a more subtle question. See [21, chapter 3], [22, 23] for the
structure of finite linear groups (including the groups of small
orders). See [15] for more details, proofs, and applications to
determining torsion elements in the reduced projective class
group.

As a corollary of Theorem 1 we can obtain the following
proposition.

Proposition 6. Let 𝐾/Q𝑝 be a finite extension, and let 𝜁𝑝 ∈

𝑂𝐾. Let 𝑝 = p𝑒, and let 𝑒 = 𝑝 − 1. Let 𝐺 be a finite subgroup
of 𝐺𝐿𝑛(𝑂𝐾) and 𝑔 ≡ 𝐼𝑛(modp) for all 𝑔 ∈ 𝐺. Then 𝐺 is
conjugate in𝐺𝐿𝑛(𝑂𝐾) to an abelian group of diagonal matrices
of exponent 𝑝.

Proof of Proposition 6. Let us prove that 𝐺 is abelian of expo-
nent 𝑝. Let 𝜋 be a prime element of 𝑂𝐾. Let 𝑔1 = 𝐼𝑛 + 𝜋𝐵1,
𝑔2 = 𝐼𝑛 + 𝜋𝐵2 for some 𝑔1, 𝑔2 ∈ 𝐺. Then 𝑔

−1

𝑖
≡ 𝐼𝑛 −

𝜋𝐵𝑖(mod𝜋2), 𝑖 = 1, 2, and ℎ = 𝑔1𝑔2𝑔
−1

1
𝑔
−1

2
≡ 𝐼𝑛(mod𝜋2).

It follows from Proposition 2 that ℎ = 𝐼𝑛 and the same
proposition shows that 𝑔𝑝 = 𝐼𝑛 for any 𝑔 ∈ 𝐺. First of all, 𝐺
is conjugate over 𝑂𝐾 to a group of triangular matrices, since
𝐺 is abelian and 𝑂𝐾 is a local ring; see [6, Theorem 73.9] and
the remarks in [6, on page 493]. Following Theorem 1, let us
prove that every 𝑔 ∈ 𝐺 is diagonalizable. We can describe
explicitly the matrix𝑀 such that

𝑀
−1
𝑔𝑀 = diag (𝜆1, 𝜆2, . . . , 𝜆𝑛) (4)

is a diagonalmatrix for a triangularmatrix 𝑔 of order𝑝which
is congruent to 𝐼𝑛(modp). Indeed, let 𝑔 ∈ 𝐺 and

𝑔 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜁(1)𝐼𝑡
1

𝑃
1

2
. . . 𝑃

1

𝑘

0 𝜁(2)𝐼𝑡
2

. . . 𝑃
2

𝑘

... d
...

0 ⋅ ⋅ ⋅ 𝜁(𝑘)𝐼𝑡
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (5)

and let

𝑆 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐼𝑡
1

0 . . . 𝐴1

0 𝐼𝑡
2

. . . 𝐴2

... d
...

0 ⋅ ⋅ ⋅ 𝐼𝑡
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (6)

for 𝑡1 + 𝑡2 + ⋅ ⋅ ⋅ + 𝑡𝑘 = 𝑛 and 𝑡1 ≤ 𝑡2 ≤ ⋅ ⋅ ⋅ ≤ 𝑡𝑘, 𝜁(𝑖), 𝑖 =

1, 2, . . . , 𝑘 are appropriate 𝑝-roots of 1. We consider

𝑆
−1
𝑔𝑆 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜁(1)𝐼𝑡
1

∗ . . . 𝑀
1

𝑘

0 𝜁(2)𝐼𝑡
2

. . . 𝑀
2

𝑘

... d
...

0 ⋅ ⋅ ⋅ 𝜁(𝑘)𝐼𝑡
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (7)
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and we find the system of conditions for providing 𝑀
𝑖

𝑘
=

0𝑡
𝑖
,𝑡
𝑘

, the zero 𝑡𝑖 × 𝑡𝑘 matrix. We have the following system
of conditions:

𝜁(1) (1 − 𝜁(𝑘)𝜁
−1

(1)
)𝐴1 + 𝑃

1

2
𝐴2 + ⋅ ⋅ ⋅ + 𝑃

1

𝑘−1
𝐴𝑘−1 + 𝑃

1

𝑘
= 0𝑡
1
,𝑡
𝑘

,

⋅ ⋅ ⋅

𝜁(𝑘−2)𝐴𝑘−2 (1 − 𝜁(𝑘)𝜁
−1

(𝑘−2)
) + 𝑃
𝑘−2

𝑘−1
𝐴𝑘−1 + 𝑃

𝑘−2

𝑘
= 0𝑡
𝑘−2
,𝑡
𝑘

,

𝜁(𝑘−1)𝐴𝑘−1 (1 − 𝜁(𝑘)𝜁
−1

(𝑘−1)
) + 𝑃
𝑘−1

𝑘
= 0𝑡
𝑘−1
,𝑡
𝑘

.

(8)

The condition 𝑔 ≡ 𝐼𝑛(modp) implies that 𝑃
𝑗

𝑖
≡

0𝑡
𝑗
𝑡
𝑖

(modp), and we can find 𝐴 𝑖, 1 ≤ 𝑖 ≤ 𝑘 − 1 sequentially
using the results of the previous steps:

𝐴𝑘−1 = −
𝑃
𝑘−1

𝑘

𝜁(𝑘−1) (1 − 𝜁(𝑘)𝜁
−1

(𝑘−1)
)

,

𝐴𝑘−2 = −

(𝑃
𝑘−2

𝑘
+ 𝑃
𝑘−2

𝑘−1
𝐴𝑘−1)

𝜁(𝑘−2) (1 − 𝜁(𝑘)𝜁
−1

(𝑘−2)
)

,

𝐴𝑘−3 = −

(𝑃
𝑘−3

𝑘
+ 𝑃
𝑘−3

𝑘−1
𝐴𝑘−1 + 𝑃

𝑘−3

𝑘−2
𝐴𝑘−2)

𝜁(𝑘−3) (1 − 𝜁(𝑘)𝜁
−1

(𝑘−3)
)

,

(9)

and so on. Now, using the induction on the degree 𝑛 we can
find a matrix 𝑀 that transforms 𝑔 to a diagonal form as
required.

The condition 𝑔 ≡ 𝐼𝑛(modp) of Proposition 6 implies
that the condition (i) of Theorem 1 holds true. Since 𝐺 is an
abelian group of exponent 𝑝 this allows us to prove our claim
over the ring 𝑂𝐾.

Remark 7. Using the same argument for an algebraic number
fields𝐾/Qwe can prove a similar result. Let𝑂 be a Dedekind
ring in 𝐾, and let 𝜁𝑝 ∈ 𝑂. Let 𝑝 = p𝑒, 𝑒 = 𝑝 − 1. Let 𝐺 be a
finite subgroup of GL𝑛(𝑂) and 𝑔 ≡ 𝐼𝑛(modp) for all 𝑔 ∈ 𝐺.
Then𝐺 is conjugate inGL𝑛(𝑂) to an abelian group of diagonal
matrices of exponent 𝑝.

In this situation we can use the statement (81.20) in [CR]
for proving the above result for the given Dedekind ring 𝑂

(compare also the proof of (81.20) and (75.27) in [6]).
However, in Proposition 6 the ramification index 𝑒 = 𝑝 −

1. Below there are two examples giving constructions of local
field extensions 𝐾/Q𝑝 and finite subgroups 𝐺 ⊂ GL𝑛(𝑂𝐾)
which are contained in the kernel of reduction of GL𝑛(𝑂𝐾)
modulo ideals having ramification indices 𝑒 > 𝑝 − 1.

Example 8. For the following finite extension 𝐾/Q𝑝 of local
fields obtained via adjoining torsion points of elliptic curves,
let 𝑂𝐾 be the ring of integers of 𝐾 with the maximal ideal
p. Consider an elliptic curve 𝐸 over Z𝑝 with supersingular
good reduction (see [24, Section 1.11]). Let 𝐾/Q𝑝 be the field

extension obtained by adjoining 𝑝-torsion points of 𝐸; then
the formal group associated with 𝐸 has a height of 2; its Hopf
algebra 𝑂𝐴 is a free module of rank 𝑝

2 over Z𝑝 and for the
kernel 𝐸𝑝 of multiplication by 𝑝, |𝐸𝑝| = 𝑝

2 (see [25, 1.3 and
Section 2]). Note that for some 𝐸 the ramification index 𝑒 =

𝑒(𝐾/Q𝑝) = 𝑝
2
− 1 ([24, page 275, Proposition 12]).

We can consider the group 𝐺 of 𝑝-torsion points as Z𝑝-
algebra homomorphisms from the Hopf algebra 𝑂𝐴 to the
Z𝑝-algebra 𝑂𝐾; then 𝐺 = HomZ

𝑝

(𝑂𝐴, 𝑂𝐾), and the algebra

𝑂𝐴 is isomorphic toZ𝑝[𝑋]/(𝑐1𝑋+ 𝑐2𝑋
2
+ ⋅ ⋅ ⋅ + 𝑋

𝑝
2

); see [25,
Section 2] and [26]. So there is a representation V : 𝐺 →

GL𝑝2(𝑂𝐾), and since 𝐸 is supersingular, the image of V is
contained in the kernel of reduction modulo p.

The following example shows that the kernel of reduction
of GL𝑛(𝑂𝐾) modulo a prime divisor of 𝑝 may contain 𝑝-
groups of any prescribed nilpotency class 𝑙 > 1 for extensions
𝐾/Q𝑝 with large ramification; these groups are not abelian,
and they are not diagonalizable in GL𝑛(𝑂𝐾).

Example 9. Let us consider the following 𝑝-group of nilpo-
tency class 𝑙, determined by generators 𝑎, 𝑏1, . . . , 𝑏𝑙 and rela-
tions 𝑏𝑝

𝑖
= 1, 𝑏𝑖𝑏𝑗 = 𝑏𝑗𝑏𝑖, 𝑖 = 1, 2, . . . , 𝑙; 𝑎𝑏1 = 𝑏1𝑎, 𝑏𝑖−1 =

𝑏𝑖𝑎𝑏
−1

i 𝑎
−1, 𝑖 = 1, 2, . . . , 𝑙; 𝑎𝑛 = 1, where 𝑛 = 𝑝

𝑡
≥ 𝑙 > 𝑝

𝑡−1 and
𝑡 is a suitable positive integer. Let𝐻 be the abelian subgroup
of𝐺 generated by 𝑏1, . . . , 𝑏𝑙, and let 𝜒 denotes the character of
𝐻 given on the generators as follows: 𝜒(𝑏1) = 𝜁𝑝 −𝑎 primitive
𝑝-root of 1, 𝜒(𝑏𝑖) = 1, 𝑖 = 2, . . . , 𝑙. The character 𝜒 together
with the decomposition of 𝐺 into cosets with respect to 𝐻:
𝐺 = 1 ⋅ 𝐻 + 𝑎 ⋅ 𝐻 + ⋅ ⋅ ⋅ + 𝑎

𝑛−1
⋅ 𝐻 gives rise to an induced

representation 𝑅 = Ind 𝐺
𝐻
𝜒 of 𝐺. For the 𝑛 × 𝑛 matrices 𝑒𝑖𝑗

having precisely one nonzero entry in the position (𝑖, 𝑗) equal
to 1 we can define a 𝑛 × 𝑛 matrix using the binomial coef-
ficients ( 𝑛−𝑗

𝑖−𝑗
):

𝐶 = Σ𝑛 ≥ 𝑖 ≥ 𝑗 ≥ 1(−1)
𝑖−𝑗

(
𝑛 − 𝑗

𝑖 − 𝑗
) 𝑒𝑖𝑗. (10)

Theorem 10. LetQ𝑝(𝜁𝑝∞) denote the extension ofQ𝑝 obtained
by adjoining all roots 𝜁𝑝𝑖 , 𝑖 = 1, 2, 3, . . . of 𝑝-primary orders of
1, let 𝜋 be the uniformizing element of a finite extension 𝐾/Q𝑝

such that 𝐾 ⊂ Q𝑝(𝜁𝑝∞), and let 𝐷 = diag(1, 𝜋, 𝜋2, . . . , 𝜋𝑛−1).
Then for 𝑔 ∈ 𝐺 the representation 𝑅𝜋(𝑔) = 𝐷

−1
𝐶
−1
𝑅(𝑔)𝐶𝐷

of 𝐺 is a faithful, absolute, irreducible representation in
𝐺𝐿𝑛(𝑂𝐾) by matrices congruent to 𝐼𝑛(mod𝜋). Moreover, such
representations are pairwise nonequivalent over 𝑂Q

𝑝
(𝜁
𝑝
∞ ), and

for the lower central series 𝐺 = 𝐺𝑙 ⊃ 𝐺𝑙−1 ⊃ ⋅ ⋅ ⋅ ⊃ 𝐺0 = {𝐼𝑛}

of 𝐺 all elements of 𝑅𝜋(𝐺𝑙−𝑖+1) are congruent to 𝐼𝑛(mod𝜋𝑖𝑤) if
the elements of 𝑅𝜋(𝐺) are congruent to 𝐼𝑛(mod𝜋𝑤).

For the proof of Theorem 10 (which is constructive) see
[17, 27]. Remark that the construction of Theorem 10 can be
realized also over the integers of cyclotomic subextensions
𝐾 ⊂ Q(𝜁𝑝∞) = ⋃

∞

𝑖=1
Q(𝜁𝑝𝑖) ofQ and other global fields.
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Nauk: Algebra i Analiz, vol. 10, no. 1, pp. 58–67, 1998 (Russian).



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


