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Nanoparticles are small particles whose sizes are less than 100 nm. They have many industrial applications due to their unique
properties. Their properties are often size-dependent; thus the accurate determination of nanoparticle sizes is important for
quality assurance of nanoparticle production processes. A small angle X-ray scattering technique is a promising method used for
characterizing nanoparticle sizes. It has distinctive advantages over other techniques such as electron microscope techniques. In
this paper, we review the state-of-the-art methods for determining the sizes of nanoparticles with small angle X-ray experiments

and discuss the advantages and limitations of the state-of-the-art methods.

1. Introduction

Nanoparticles are tiny particles whose sizes are less than
100 nm and have many industrial applications due to their
novel physical and chemical properties, nanobiotechnology
(1], drug delivery [2, 3], catalysis [4-7], fluorescent biological
labels [8], biodetection of pathogens [9], chemical sensors
[10], optical/electronic/magnetic devices [11], and medicine
[12]. The physical and chemical properties exhibited by
nanoparticles are often size-dependent [13-16]. Therefore, by
controlling the size of nanoparticles, we should be able to
draw the desired properties of the nanoparticles.

In order to control the particle sizes, we should be able
to accurately quantify the sizes of the nanoparticles produced
from a synthesis process of nanoparticles, because we cannot
control what we cannot quantify. Therefore by quantifying the
sizes of nanoparticles we can control its synthesis process and
its production. The accurate size determination becomes even
more important on the industry scale, because it helps install
quality assurance of nanoparticle production processes [17,
18].

There are several techniques that obtain the size infor-
mation of nanoparticles, atomic force microscopy (AFM)
[19], transmission electron microscopy (TEM) [20], scanning
electron microscopy (SEM) [21], differential mobility anal-
ysis, dynamic light scattering (DLS) [22], and small angle
X-ray scattering (SAXS). Depending on the material to be
characterized, each of these techniques has its own peculiar
advantages and disadvantages. The SAXS has the advantage
over other techniques of being able to analyze a wide variety
of sample types, including aerosols, colloidal suspensions,
powders, solids, and thin films. Another advantage of the
SAXS over the electron microscopy (EM) methods is that
the SAXS often requires very little sample preparation time,
in contrast to the elaborate sample preparation procedures
required for using the electron microscopy (EM) methods.
Compared to the EM methods, the SAXS tends to provide
more statistically reliable estimates of nanoparticle sizes
because the particle size distribution obtained by the SAXS
is typically estimated over a large number of nanoparticles,
while the size distribution obtained by the EM methods is
based on the measurements of a few hundred or thousand



particles. Furthermore, recent studies suggest that the SAXS
can also be used for the in situ or online monitoring of
nanoparticle systems [23-25] and for the determination of
nanoparticle shapes [26].

A SAXS experiment typically produces a one-di-
mensional scattering intensity obtained by circular averaging
of the 2D scattering pattern observed in the experiment,
which has different patterns depending on the sizes and
shapes of nanoparticles or their spatial arrangements. In
order to determine the size information about nanoparticles
from the intensity, we should perform a data analysis
problem based on the theory of SAXS, which is well known
as a nontrivial scientific inverse problem.

The objective of this review is to discuss the state-of-the-
art methods in analyzing the SAXS data to obtain the particle
size distribution for a system of nanoparticles having different
sizes, specifically for nonporous nanoparticles. We categorize
the methods into four groups, depending on the underlying
assumptions and the techniques applied: the average size
determination method, the parametric distribution model
method, the integral transform method, and the numerical
method, which are summarized in Table 1.

The average size determination method is the simplest
approach among all the categories [27-45]. It assumes that
all of the nanoparticles in a system of interest are equally
sized and shaped, and it determines the size of the identically
shaped nanoparticles. When the system of interest is indeed
monodispersed (i.e., all nanoparticles are identical in terms
of size and shape), this method is simple and effective, but
when the assumption is wrong, it only provides the average
size of a population of nanoparticles in the system of interest.
For more details, see Section 2.

The parametric distribution model method assumes that
only the sizes of nanoparticles in a system vary, while their
shape is still assumed to be the same, and also assumes that
the particle size distribution is a certain parametric form
[46-55]. The objective of the method is to determine the
parameters of the parametric distribution function giving the
best agreement between the predicted intensity of the system
and the experimental intensity. For details, see Section 3.

The integral transform method makes no assumption on
the form of the particle size distribution function, but the
shape of the particles still needs to be assumed beforehand
[56-70]. The size distribution function is directly obtained
using an integral transform, generally known as the Titch-
marsh transform which gives the size distribution as an
integral function of the experimentally determined scattered
intensity [70]. An advantage of the method is that users do
not need any a priori knowledge on the form of a particle
size distribution, which is in general hard to know before the
analysis. However, the method is computationally difficult to
solve due to the integral transform.

The numerical methods are based on the same assump-
tions of the integral transform method, but it is more compu-
tationally easy [71-94]. It is based on a certain discretization
of a particle size distribution. This discretization process leads
to a set of linear equations for the discretized size distribution
function. Solving the linear equation is relatively simple using
many available linear equation solvers.
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All of the aforementioned categories of the methods have
one common assumption that nanoparticles in a system
are sparsely located, which we call a system of diluted
nanoparticles. For such a system, the SAXS scattering inten-
sity curve only depends on the particle size distribution.
However, the assumption may not be true for some systems of
nanoparticles, where nanoparticles are more densely spaced
in a sample. For a sample of densely located nanoparticles,
the scattering intensity curve does not only depend on the
particle size distribution but also depends on the spatial
arrangements of the nanoparticles in the sample. We also
review how to extend the aforementioned methods with
consideration of spatial arrangements of nanoparticles. For
more details, see Section 6.

The rest of this paper is organized as follows. Each of
Sections 2 through 5 describes the aforementioned four
categories of the methods for particle size determination.
Section 6 explains the methods of considering the spatial
arrangements of nanoparticles in the SAXS data analysis for
a system of concentrated nanoparticles. Section 7 concludes
this paper with discussion.

2. Determination of the Average Particle Size

This approach is based on the assumption that a system of
nanoparticles is monodispersed that is, all nanoparticles in
the system are assumed to be identical in terms of their shapes
and sizes. The objective of this approach is to determine the
particle size and shape. There are two general approaches, the
model-free approach and the direct modelling approach.

The model-free approach involves the determination of
several geometrical parameters of nanoparticles directly from
the experimentally measured intensity curve. These param-
eters give an overall understanding of the nanoparticles’
geometries, which include the particle volume, the molecular
mass of the particles, the forward scattering, the radius of
gyration of the particle, the surface area per unit volume,
the largest dimension of the particle, and the pair distance
distribution function (PDDF) [27, 31]. These parameters are
determined using the well-established theory of small angle
X-ray scattering, making use of the well-known physics laws
such as the Guinier law, which gives an approximation of
the initial portion of the scattering intensity by a simple
exponential function, and the Porod law, which gives an
approximation for the intensity curve for large scattering
angles [27]. The determined parameters give simple numeri-
cal values, which characterizes the nanoparticles’ geometries.
The model-free approach is also very useful for characterizing
a very complex structure such as complex aggregates of
nanoparticles. One can determine the degree of aggregation,
the fractal dimension, and the branched content based on the
model-free approach [95].

It is often desirable to have a more detailed understanding
of the particles beyond the simple parameters. When we need
more detailed structural information of nanoparticles than
what is obtainable by the model-free approach, the direct
modeling approach is more appropriate. In these schemes, a
theoretical geometry model is postulated to be the geometry
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TABLE 1: Summary of the small angle X-ray data analysis methods.

Methods Underlying assumptions

Advantages Disadvantages

Average size
determination method
(ADM)

[27-45]

All nanoparticles in a system are
assumed to be equally sized;
determine the average size of

nanoparticles

Straightforward and easy to

Typically nanoparticles have various

implement sizes and shapes

A parametric form of particle size
distribution is assumed; a particle
shape is typically fixed; a particle is
sparsely distributed in a sample

Parametric distribution
model (PDM)
[46-55]

Straight forward and easy to

For many cases, we do not have
whether a particle size distribution

impl . .
implement follows a simple parametric form

Integral transform
method (ITM)
[56-70]

The shape of particle is assumed; a
particle is sparsely distributed in a
sample

Various forms of the particle size
distribution are considered

It often involves complex numerical
integrations which may become
divergent or unstable

Numerical method
(NM)
[71-94]

The shape of particle is assumed; a
particle is sparsely distributed in a
sample

A finite approximation of the ITM
method; more computationally

The approximation is often solved
by an optimization procedure,
which is nonlinear, so it is hard to
obtain the global optimal
approximation

feasible

of the nanoparticles, the theoretical intensity of the model is
then computed using the SAXS theory, and the parameters
of the model are iteratively updated until the best agreement
between the model-based intensity and the experimental
intensity is achieved. The model with the optimal parameters
explains the geometry of nanoparticles.

A simple direct modeling approach is to approximate a
particle’s geometry by a simple geometrical shape such as
a sphere, an ellipsoid, and a cylinder [27]. The subparticle
method takes a combination of several simple geometrical
shapes to model more complex geometrical shapes [32]. This
method packs small spheres within the arbitrary shaped
geometry and computes the theoretical intensity of the
arbitrary shape by Debye’s scattering formula. In the above
methods, the dimensions of the geometrical models are
optimized with respect to the model parameters that give the
best possible agreement between the experimental intensity
and the theoretically computed intensity.

Along this theme of geometric modeling of scattering
intensities are methods based on the use of Monte Carlo
procedures to calculate the theoretical scattering intensity of
an arbitrary particle shape. In Hanson’s paper, he describes
a method used to build a complex model by using multiple,
geometric building blocks (ellipsoids, cylinders, prisms, etc.)
[33]. Briefly, these building blocks are spatially arranged
with random coordinates, and the pair distance distribution
function of the random coordinates is used to calculate the
model intensity. The method is easy to implement but applies
only to homogenous particles (i.e., particles having the same
size and shape). Extension of the method to the general case
of heterogenous particles [34] has been developed as well as
to the case of anisotropic scattering (i.e., oriented particles)
[35]. While each of the three methods is fast to implement,
the use of random numbers to generate coordinates in the
scattering volume must necessarily imply that the accuracy
of the methods depends largely on the true quality of the
random number generators used.

The ab initio shape determination method is an alter-
native method of determining the particle shape from the
analysis of X-ray scattering profiles for a monodispersed
dilute solution of nanoparticles, which was initiated in 1971
by Stuhrmann [36]. It is based on the theory of multipole
expansion using spherical harmonics. It differs from the
above methods of geometrical shape modeling because it
removes the trial and error process in the selection of
models to fit to experimental data. Sturhmann’s method takes
advantage of the fact that the scattering intensity of a dilute
solution of monodisperse particles is proportional to the
scattering intensity of a single particle; thus the essential task
for this type of solution is usually the shape determination
or reconstruction of the particle or restoration of the 3D
electron density in the particle system. The method starts by
expanding the 3D surface of the shape of particle in terms
spherical harmonics according to the following equation:

I=L m=l

F(w) = Z Z flelm’ @

1=0 m=-1

where Y},,’s are the standard mathematical functions known
as the spherical harmonics and the numbers f;,,, are the coef-
ficients of the multipole expansion which are easily obtained
by integrating both sides of (1) for f,,,(r) = j F(w)Y,, dw[37].
Using these expansions, it is possible to develop the scattering
intensity of a closed geometrical shape in terms of the shape
coefficients f,, as was performed by Stuhrmann [36]. The
result is an infinite series representation of the scattering
intensity of the shape enclosed by the bounded surface F(w)
shown below:

I=L
I(s) = 27" Z a,s™", (2)
1=0

where a,, are given in terms of the shape coefficients f,, and

powers of the shape l(rz).



However the practical implementation of the method
using the infinite series above was hampered by the non-
convergence of the infinite series for larger scattering vector
s and by the difficulty of the numerical integration required
for the calculation of the shape coefficients. However, in
1991, a breakthrough occurred in the field of ab initio shape
determination using multipole expansion when Svergun
and Stuhrmann improved the basic method of Sturmann
by replacing the cumbersome and less accurate numerical
integration with an analytical expression [38]. The shape
coefficients f},,, are then determined by evaluating the
analytical expression in recursive manner. The values of
fim determine the particle shape. The uniqueness of the
determined shape was addressed in Svergun’s paper [39]. The
method was extended to study the internal structures of a
particle using the techniques of contrast variation [40]. The
multipole theory of X-ray scattering has been extended by
incorporating the group theory and the maximum entropy to
better efficiently calculate scattering curves and reconstruct
shapes [41]. The theory was extended to higher scattering
angles [42]. Several other extensions of the theory have been
considered such as the bead modeling [43], the dummy
residue method [44], and the rigid body modelling [45].

The aforementioned methods assume that nanoparti-
cles in a system are identical. However, many systems of
nanoparticles in practice contain differently sized nanopar-
ticles, whose system is called a polydispersed system. When
the methods are applied to a polydispersed system, the
methods are able to determine only the average size of the
nanoparticles in a system. If one needs to obtain the actual
particle size distribution, one should follow the model-based
approach, which will be explained in the next section.

3. Parametric Distribution Models

The parametric distribution model method is the simplest
method of the methods used in the determination of the
size distribution of particles for a polydispersed system
of nanoparticles. It is based on the assumption that all
nanoparticles in a system have different sizes but the same
known shape. The size of a nanoparticle is represented by a
size parameter R. The size parameters for the nanoparticles
in a system are assumed to follow a particle size distribution
in a known parametric form, Dy (R). The scattering intensity
from such a system of nanoparticles is given as follows [27]:

I(s) = L iy (sR) Dy (R) m” (R) dR, (3)

where s is the scattering vector, i,(sR) is a form factor for a
particle of size R, and m(R) relates the volume of a particle
having size parameter R. The size distribution function
Dy(R) is parametric, which means that a few unknown
parameters fully determine the distribution function, for
example, the mean and standard deviation parameters in
the normal distribution, and thus the theoretical scattering
intensity I(s) depends on the parameters via (3). The param-
eters giving the best agreement between the experimental
scattering intensity and the theoretical scattering intensity are
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chosen by a general optimization algorithm to determine the
size distribution function.

I(s) was first approximated by the Guinier law with a
certain assumed parametric distribution function such as
the Maxwell distribution, the Schultz distribution, the Gaus-
sian distribution, and the rectangular distribution, and the
approximate I(s) was fit to the experimental intensity curve
for finding the distribution parameters [46]. The method
was applied to study the particle size distribution of silica-
alumina gels [47] and the particle size of gamma-alumina
and carbon black [48]. Instead of using the approximate
theoretical intensity, the exact form of the theoretical scat-
tering intensity curve was derived for nanoparticles having a
simple shape (spheres, rods, and plates) with the particle sizes
following a parametric distribution [49, 50]. The method then
proceeded to find the values of the distribution parameters
giving the best agreement with experiment. Similar results
have been reported for nanoparticles having an ellipsoidal
shape [51, 52]. The scattering function of the ellipsoid with
appropriate distribution function was used to express the
theoretical SAXS intensity in terms of simple functions [53].
Another paper [54] used the log normal distribution as a
particle size distribution, and the distribution was fit to the
experimental intensity curve for determining the average size
of nanoparticles and the particle size distribution, which was
compared to the particle sizes observed from the TEM image
analysis. The same approach was taken to determine the
particle size distribution for nanostructured titanium oxide
films [55].

All of the methods discussed in this section make the
assumptions that the shapes of nanoparticles are the same,
and the particle size distribution is in a known parametric
form. However, the assumptions are not correct for some
particular systems of nanoparticles. For example, in studies of
inorganic systems, the size distribution of particles can hardly
be expected to follow a particular form [27]. These problem
necessitates the development of a whole new category of
methods based on the direct inversion of (3) to get the
size distribution function in terms of the scattering intensity
without the need for prior assumption on the form of the
distribution to be made. These methods will be considered
in the next section.

4. Integral Transform Methods

The methods in the last section were all based on the
assumptions of a certain parametric form of the particle size
distribution. The methods discussed in this section make no
assumption on the form of the size distribution function. The
integral transform method directly inverts integral equation
(3) for the particle size distribution [56]. The method assumes
that nanoparticles are spherically shaped and gets an analytic
expression for the size distribution of the particles, which
involves an integral transform of the experimental scattering
intensity curve. Similar studies [57, 58] have also been carried
out each of which also involves different integral transforms
of the scattering intensity. The integral transforms were
numerically solved. However, these were rather theoretical
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studies, and no attempt was made to analyze real experimen-
tal scattering curves. Equation (4) was derived for estimating
the particle size distribution for a system of polydispersed
particles from the experimental intensity I(s) [59]:

const
Dy (R) =

JOOO (541 (s) — c4) f(s,R)ds, (4)

where f(s,R) is a known function of the size parameter R
and the scattering vector s and ¢, is a constant obtained
from the scattering intensity. The method was validated
for its accuracy by running the method with experimental
scattering intensity curves from a known size distribution
function. It was reported that the discrepancy between the
known distribution function and the distribution function
calculated by (4) was less than 0.5% and in most cases, less
than 0.1% [59]. An improvement of this method was carried
out [60] which is based on an extrapolation of the scattering
data beyond the maximum scattering angle at which data can
be obtained. The integral transform methods were tested on
Ludox4 silica suspensions and gold sols to retrieve the particle
size distribution, which was compared with the particle sizes
observed from electron micrographs [61]. Another improve-
ment of the analytical integral transform method was tried
[62] to reduce termination errors (the inaccuracies associated
with the integral transform). The integral transform method
has also been used to calculate the diameter distribution
of thin spherical shells [63], the diameter distribution of
assemblies of long cylinders [64], the length distribution of
assemblies of thin cylinders [65], the diameter distribution
of thin circular disk [66], and the diameter distribution of
helical structures [67]. Equation (4) was extended for the
application to some nonspherical particles [68]. It was shown
that if the form factor of a particle can be expressed in this
general form

2
R
iy (6B = 28, ©
(sR)
m® (R) = R, (6)
where J,(x) is the Bessel function of the first kind and order
v and « is the effective number of dimension (« = 3 for

Globular particle, 2 for platelets and 1 for rods), (4) can be
rewritten in a function of the generalized form factors. The
form factors of several shapes (e.g., uniform sphere, long
randomly oriented cylinder, and thin disk) can be represented
in the form of (5) with different values of o and f. The
analytical expression of the particle size distribution for
nanoparticles having shapes corresponding to the generalized
form factor is given by

(o]
S'I(s) = J s (sR) Dy (R) R"dR, (7)
0
where n = B+ 1and m = 2« —  — 1. The integral on
the right hand side, well known as the Titchmarsh transform,
has an inverse that gives the size distribution in terms of the

intensity:

R"Dy(R) = J-OOO [s"I(s) - ¢,] ¥ (sR)ds, (8)

where ¢, = lim,_, . [s"I(s)] and ¥(x) is a function involving
the derivative of the Bessel function of the first and second
kind which is given in [27]. An improvement of this integral
transform method is considered [69]. A numerical corrector
method based on the Titchmarsh transform is used to
determine the particle size distribution (PSD) from noisy data
[70].

General drawbacks of the integral transform methods are
their sensitivity to strong termination effects, which leads
to artificial oscillations in the resulting size distribution and
some difficulties in calculating the constant term in (8) which
depends on an extrapolation of the scattering intensity to
infinite angle.

5. Numerical Methods

The numerical method approximates the particle size dis-
tribution by a certain regularized form of a distribution
function, which potentially reduced the termination errors.
Some methods approximate the particle size distribution by a
finite sum of DN(Rj)’s [71-73], where DN(R]-) is a proportion
of particles having size parameter R; for j in a finite. With
the restricted form, the integral transform in (4) becomes a
simple finite sum as

I(s;) = Y Dx (R;)io (sR;) m” (R;)W,AR;,  (9)
j=1

where the experimental intensities are assumed to be avail-
able for a finite number of scattering vectors s; for i =
1,..., N. Let I denote a vector of the experimental intensities
and let D denote a vector of DN(Rj)’s. We obtain a linear
system of equation for D:

AD =1, (10)

where A;; = io(siRj)mz(Rj)WjAR .. There are many versions
of the methods that obtain the discretized distribution func-
tion D. Some of the methods put a certain constraint on D to
obtain a physically valid distribution function. For example,
the nonnegativity constraint is imposed on D to get a solution
[71]. Tikhonov’s classical regularization was also used with a
regularization parameter [72]; find general information for
Tikhonov’s regularization [73].

A different strategy for approximating the size distribu-
tion function is known as the indirect transform method
(ITM) [74]. The method is based on the idea of represent-
ing the distribution function Dy(R) by a superposition of
orthogonal functions known as cubic splines:

Dy(R) =) ¢,B,(R), (1)

v=1

where the coefficients of the summation ¢, are determined
using the algorithm. Other regularization method for obtain-
ing the size distribution function has been considered. The
similar method has been proposed by Svergun et al. [75]
and has been applied to determine the size distribution of
mesoscopic metallic systems [76].



A variant of the original ITM method uses trigonometric
functions [77] in the place of cubic spline functions B, (R) in
(11). Another variant of the indirect transformation method
is the maximum entropy method (MEM) [78, 79]. The MEM
method is based on the original idea of the maximum entropy
developed for image reconstruction [80]. It was first applied
to the small angle scattering experiment [81]. Its accuracy
is comparable with the original method of Glatter [82] and
the Bayesian analysis method [83]. The maximum entropy
method has been tested on both simulated data [84, 85] and
real experimental data [86].

The structure interference method (SIM) [87, 88] has
a certain distinctive feature from the indirect transform
method. It has been reported that the method has a certain
advantage over the ITM method with respect to termination
errors, influence of solution by oscillations, robustness, and
real space resolution [88].

The Monte Carlo fitting (MCF) [89, 90] represents the
particle size distribution as a finite number of spherical
nanoparticles having random sizes, which was first applied to
the wide angle X-ray scattering [91]. The algorithm iteratively
adds more spherical particles having random sizes such that
the resulting particle size distribution has a better agreement
with experimental results. A variant of the method [92] uses a
fixed number of spheres and instead continually changes the
radii of selected spheres to better approximate experimental
intensity. Several other Monte Carlo fitting schemes for
analyzing scattering data have been proposed [93, 94].

6. Consideration of Structure Factor and
Multiple Scattering Effects

The methods discussed in the previous sections have been
based on a common underlying assumption that a system
of nanoparticles being investigated is dilute, and therefore
the effect of the spatial arrangement of nanoparticle to the
small angle scattering intensity is negligible. In addition,
the effect of multiple scattering is assumed to be negligible.
These assumptions do not hold for the system of concentrated
nanoparticles in which the spatial arrangement of nanopar-
ticles affects significantly the measured scattering intensity
[96, 97], particularly a portion of the intensity curve for
small scattering vectors, and the multiple scattering affects
the intensity significantly. Therefore, ignoring the spatial
arrangement and the multiple scattering could lead to a
wrong analysis.

The effect of multiple scattering is analytically studied in
the literature [98, 99]. The analytical form of the effect can
be studied to estimate the effect of multiple scattering and
correct the observed scattering intensity before the analysis
of particle size distribution.

The spatial arrangement of nanoparticles in a system
is typically considered by including a structure factor into
the analysis of the scattered intensity. The structure factor
is a function S(s) depending on the spatial arrangement
of nanoparticles in a system. Multiplying the structural
factor with the theoretical intensity for a dilute system, it
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gives the theoretical intensity for a system of concentrated
nanoparticles.

For a particular case of a monodispersed system, the
scattering intensity is given as

1(s) = NF*(s)S(s)

- NF(s) [1 + g J anr’dr (P (r) — 1) 22|
0

sr
(12)

where F(s) is the form factor corresponding to an assumed
shape of nanoparticle, V is the volume of a system, N
is the number of the particles within the volume, S(s) is
the structure factor depending on the spatial arrangement
of nanoparticles, and P(r) is the pair correlation function,
which characterizes the pair distance function among the
nanoparticles in a system. The liquid state theory [100, 101]
is used for calculating the correlation function under certain
assumptions of various nanoparticle interaction potential
and closure relations that relate the interaction potentials
directly to the direct correlation function. Some of the widely
used interaction potentials are the hard sphere potential, the
sticky hard sphere [102], the Yukawa potential (a.k.a. the
screened coulomb potential), the DLVO potential [103], and
the square-well potential. The closure relation between the
correlation function and the potential is usually based on
various heuristic physical arguments and approximations,
and the common ones are the Percus-Yevick [104], the mean-
spherical approximation, the hypernetted chain, and the
Roger-Young (RY). With a choice of the potentials together
with a choice of the closure relation, the Ornstein-Zernike
integral equation can be solved to yield the correlation
function, and thus the structure factor is calculated using
the integral expression in (12) above. The Ornstein-Zernike
integral equation was solved to get a closed form analytic
expression for the structure factor using the MSA closure and
the Yukawa potential [105].

For polydispersed systems with size and shape polydis-
persity, individual particle sizes and shapes as well as their
spatial arrangement affect the structure factor. The mixed
effect is summarized to the effective structure factor [106].
For polydispersed spherical particles, the effective structure
factor has been calculated and is given in terms of the
partial structure factors, using the hard sphere potential and
the Percus-Yevick approximation [107]. A solution of the
Percus-Yevick approximation using the sticky hard sphere
model for polydispersed particles was obtained [108], while
a solution of the Ornstein-Zernike equation, under the mean
square approximation for a polydispersed system of particles
interacting in a Yukawa force field, was obtained [109]. Some
of the other schemes that consider the effects of polydispersity
on the structure factor are the decoupling approximation
[110], which assumes no correlation between particle size and
particle orientation, and the local monodispersed approxima-
tion [111] assuming that interactions only occur in between
identical spheres. For nonspherical particles, the structure
factors and their deviation from the case of spherical particles
have also been studied [112, 113]. The various expressions for
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the calculation of the effective structure factors have been
incorporated into general fit procedures used to calculate
scattering intensities. For example, the generalized indirect
transform method (GIFT) is developed as an extension
of the ITM discussed in Section 3 [106, 114] to include
appropriate structure factors for both spherical and non-
spherical particles. The applications of the GIFT method for
aqueous nanocrystalline cellulose suspensions [115] and for
a mixture of microemulsions [116] have been demonstrated.
A binary mixture of charged colloidal solution has been also
investigated [117]. The local monodispersed approximation
has been applied to study silver nanoparticles [118], where
the estimated size distribution was comparable with that
obtained from the TEM image analysis of the same sample.

7. Conclusion

We reviewed a wide variety of the available methods for ana-
lyzing the small angle X-ray scattering data of a polydispersed
nanoparticle system to yield its particle size distribution.
The choice of the method to be used for analysis would
necessarily have to depend on several factors such as the
easiness of implementation, prior knowledge for the form
of the particle size distribution, the degree of polydispersity
of a given sample, and the degree of particle concentration.
When the system is known to contain spherically shaped
particles of the same size, the simple methods in Section 2 will
be appropriate. In the case that the particle size distribution
can be expected to be in a simple parametric form, then the
methods described in Section 3 would be the best approach.
When there is no prior knowledge on the form of the size
distribution, the indirect transform methods in Section 4,
involving a certain integral transform without any assump-
tion on the form, may be the better choice. The numerical
methods in Section 5 will provide more computationally
easier alternatives than the indirect transform methods,
which are able to retrieve the particle size distribution of
relatively complex size distribution functions and which are
easier to implement than the integral transform methods. In
the case of concentrated particle systems, we should consider
the effect of the spatial arrangements of nanoparticles in a
system onto a scattering intensity curve, and the structure
factor must be calculated and included with the scattering
intensity calculations. The generalized indirect transform
method mentioned in Section 6 incorporates the structural
factor into the integral transform method and would be the
method of choice to determine the particle size distribution.

As we discussed, the small angle X-ray scattering analysis
provides an effective option of determining the particle
size distribution for various types of nanoparticle systems.
However, it is still recommended that the particle size
distribution determined by one of the small angle X-ray
scattering data analysis methods should be compared with
the one determined by other techniques such as transmis-
sion electron microscope and dynamic light scattering for
validation, especially for the cases requiring high degree of
accuracy.
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