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Paraxial theory of relativistic self-focusing of Gaussian laser beams in plasmas for arbitrary magnitude of intensity of the beam
has been presented in this paper. The nonlinearity in the dielectric constant arises on account of relativistic variation of mass. An
appropriate expression for the nonlinear dielectric constant has been used to study laser beam propagation for linearly/circularly
polarized wave.The variation of beamwidth parameter with distance of propagation, self-trapping condition, and critical power has
been evaluated.The saturating nature of nonlinearity yields two values of critical power of the beam (𝑃cr1 and 𝑃cr2) for self-focusing.
When 𝑃 < 𝑃cr1 < 𝑃cr2 the beam diverges. When 𝑃cr1 < 𝑃 < 𝑃cr2 the beam first converges then diverges and so on.When 𝑃 > 𝑃cr2 the
beamfirst diverges and then converges and so on. Numerical estimates aremade for linearly/circularly polarized wave applicable for
typical values of relativistic laser-plasma interaction process in underdense and overdense plasmas. Since the relativisticmechanism
is instantaneous, this theory is applicable to understanding of self-focusing of laser pulses.

1. Introduction

The interaction of ultrahigh-power laser beams with plasmas
is not only of technological importance but also rich in a
variety of nonlinear phenomena. These phenomena become
particularly interesting and involved when the laser power is
sufficiently intense to cause the electron oscillation (quiver)
velocity to become relativistic [1]. An important process that
can affect the size of the focused spot of the radiation is self-
focusing. In recent years the field of laser plasma interaction
in the relativistic regime has been identified as an emerging
area and is often referred to as high-field science. Several
complex phenomena are included in the area of high-field
science. These phenomena (on account of their nonlinear
nature) are all significantly affected by the field distribution in
the beam, andhence, self-focusing occupies a unique position
in the field as it affects all other phenomena.

Relativistic electron motion in a plasma due to an intense
laser pulse modifies the refractive index and leads to two
effects: relativistic induced transparency and relativistic self-
focusing. In dense plasma with 𝜔 < 𝜔

𝑝
, light cannot

propagate and is reflected from the surface. However, for
relativistic intensities generating large 𝛾 factors, the plasma
becomes transparent. The dependence of the electron mass
on intensity causes significant change of characteristic prop-
erties of the plasma and its nonlinear processes; the increase
in effective electron mass decreases the electron plasma
frequency and makes the penetration of electromagnetic
waves into the overdense area of plasma, which is known
as self-induced transparency or electromagnetically induced
transparency, and is the cause of relativistic self-focusing. A
combination of the relativistic self-focusing and relativistic
induced transparency enables transmission of laser energy
deep into plasmas which is useful for fast ignition of inertial
fusion [2]. This so-called penetration sensitively depends on
the focal position of the laser intensity due to the inhomoge-
neous density profile of the plasma and convergence of the
laser pulse by final focusing optics.

For ultrafast laser pulses lasting the order of a picosecond
or less, the drift velocity of electrons in a plasma can be
comparable to the velocity of light, causing a significant
increase in the mass of the electron and consequently in the
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effective dielectric constant of the plasma. This leads to self-
focusing of the laser beam, as pointed out [3]. The fact that
the relativistic mechanism is the only mechanism of self-
focusing that can manifest itself for subpicosecond pulses
makes the understanding of this mechanism very important
[4, 5]. The earlier analysis concerned with relativistic self-
focusing of laser beams in plasmas ignored the effect of the
saturating nature of the nonlinear dielectric constant and was
essentially a perturbation treatment, based on the quadratic
dependence of the dielectric constant on the electric field of
the beam [6].Hence, such an analysis has limited applicability
to understand the self-focusing of beamswith arbitrarily large
electric field and consequently arbitrarily large nonlinear part
of the dielectric constant.

Relativistic focusing of radiation beams in plasma is
applicable to pulse length 𝜏

𝑅
in the range 1/𝜔 < 𝜏

𝑅
< 𝑟
𝑠
/𝐶
𝑠
,

where C
𝑠
is the ion-acoustic speed [7], and can arise owing to

the creation of a density depression in the plasma as well as
to an increase in the electron mass due to relativistic effects.
The time scale for self-focusing due to a density depression
is longer than that for self-focusing due to relativistic mass
increase. The latter time scale is 𝜏

𝑅
≈ 𝜔
−1, where 𝜔 is the

radiation frequency and is assumed to be much greater than
the electron plasma frequency. The analysis presented here
will be concerned onlywith relativistic self-focusing on a time
scale sufficiently short that the plasma density profile does not
evolve significantly under the influence of the radiation beam.
This implies that the pulse length 𝜏

𝑅
of the radiation beam

must be short comparedwith 𝜏
𝑠
= 𝑟
𝑠
/𝐶
𝑠
(the time scale for the

density depression to occur) and, of course, long compared
with a radiation period 𝜏

𝑅
. We make use of the steady-state

paraxial-ray theory, as developed byAkhamanov et al. [8] and
Sodha et al. [9].

The organization of the paper is as follows. In Section 2
the nonlinear dielectric constant due to relativistic varia-
tion of mass for a time-harmonic plane wave (i.e., a lin-
early/circularly polarized wave) is found. Section 3 is con-
cerned with the relativistic self-focusing equation relating the
variation of beamwidth parameter with distance of propaga-
tion. The self-trapping condition and the critical power are
evaluated in Section 4. Results and discussion are made in
Section 5.

2. Nonlinear Dielectric Constant of the Plasma

The relativistic equation of motion for a point charge is

𝑑

𝑑𝑡
[

𝑚 k

(1 − V2/𝑐2)
1/2
] = 𝑒 [E + (k × B)] , (1)

where 𝑚 is the rest mass of a point charge, c is the velocity
of light in vacuum, E is the electric field, and B is the wave
magnetic field. For a homogeneous plane wave traveling in
the direction of a unit vector n, the electric and magnetic
vectors are perpendicular to n and are related by

B = n × (E
𝑐
) . (2)

Substituting for B on the right-hand side of the equation of
motion, (1) gives

𝑑

𝑑𝑡
[

k

(1 − V2/𝑐2)
1/2
] =

𝑒

𝑚
(1 −

n ⋅ k
𝑐
)E + 𝑒

𝑚𝑐
(E ⋅ k)n.

(3)

Considering the scalar product of (3) with n yields

𝑑

𝑑𝑡
[

k

(1 − V2/𝑐2)
1/2
] =

𝑒

𝑚𝑐
(E ⋅ k) . (4)

Equation (4) together with the energy equation

𝑑

𝑑𝑡
[

𝑚𝑐
2

(1 − V2/𝑐2)
1/2
] = 𝑒E ⋅ k (5)

establishing that

𝜆 ≡ [
1 − n ⋅ k/𝑐
(1 − V2/𝑐2)

1/2
] (6)

is constant.We now eliminate 𝑡 in favour of the phase variable

𝜑 = 𝜔(𝑡 −
n ⋅ r
𝑐
) . (7)

Here 𝜔 is the angular frequency of the wave, and r is the
positive vector of the particle. Then

k =
𝑑r
𝑑𝑡
= 𝜔(1 −

n ⋅ k
𝑐
) r, (8)

where the prime denotes differentiationwith respect to𝜑, and
using (6)

𝑑

𝑑𝑡
[

k

(1 − V2/𝑐2)
1/2
] = 𝜆

𝑑

𝑑𝑡
(

k

1 − n ⋅ k/𝑐
)

= 𝜔
2
𝜆 (1 −

n ⋅ k
𝑐
) r.

(9)

Substitution of (8) and (9) into (3) enables the factor (1 − n ⋅
k/𝑐) to be cleared and leaves

r = 𝑒

𝜆𝑚𝜔2
[E + 𝜔

𝑐
(E ⋅ r)n] (10)

which is a second-order linear differential equation for r as a
function of 𝜑. The dielectric constant of the plasma is given
by

𝜀 = 1 − (

𝜔
2

𝑝

𝜔2
) (

𝑚

𝑚
𝑟

) , (11)

where 𝑚
𝑟
= 𝛾 ⋅𝑚 is the relativistic mass, 𝛾 = (1 − V2/𝑐2)

1/2

is the relativistic factor, and𝜔
𝑝
= (4𝜋𝑛

0
𝑒
2
/𝑚)
1/2 is the plasma
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frequency in the absence of the beam. For a circularly
polarized wave, the components of (10) are

𝑥

=
𝑒𝐸 cos𝜑
𝜆𝑚𝜔2

,

𝑦

=
−𝑒𝐸 sin𝜑
𝜆𝑚𝜔2

,

𝑧

=
𝑒𝐸𝑥
 cos𝜑

8𝑚2𝜆2 𝑐𝜔3
,

(12)

where 𝜑 = (𝜔𝑡 − 𝑘𝑧) is the phase, and 𝜔 and 𝑘 approximately
satisfy the linear dispersion relation

𝜔
2
= 𝜔
2

𝑝
+ 𝑐
2
𝑘
2
. (13)

Using (12), the average relativistic factor is

⟨𝛾⟩ = [1 +
𝑒
2
𝐸
2

𝑚2𝜔2𝑐2
𝐶
1
]

1/2

, (14)

where

𝐶
1
= 1 +

𝑒
2
𝐸
2

16𝜆2𝑚2𝜔2𝑐2
(15)

for self-focusing considering the order of electric field up to
second order and that the value of 𝐶

1
is unity for circularly

polarized wave [10] and half for linearly polarized wave. The
dielectric constant can be written as [9]

𝜀 = 𝜀
0
+ 𝜙 (𝐸

0
𝐸
∗

0
) , (16)

where

𝜀
0
= 1 − (

𝜔
2

𝑝

𝜔2
) (17)

is the linear part of dielectric constant,

𝜙 (𝐸
0
𝐸
∗

0
) =

𝜔
2

𝑝0

𝜔2
[1 + (1 −

1

2
𝛼𝐸
0
𝐸
∗

0
𝐶
1
)

−1/2

] (18)

is the nonlinear relativistic term, and

𝛼 =
2𝑒
2

𝑚2𝜔2𝑐2
. (19)

The effective dielectric constant for arbitrary large nonlinear-
ity can be written as

𝜀 = 𝜀


0
− 𝜀
1
(𝑓) 𝑟
2
, (20)

where 𝑓(𝑧) is the dimensionless beamwidth parameter and
𝜀


0
and 𝜀

1
represent, respectively, the linear and nonlinear

dielectric constant for arbitrary nonlinearity.

3. Relativistic Self-Focusing Equation

Consider the propagation of Gaussian laser beam of fre-
quency𝜔 along z-direction; at 𝑧 = 0 the intensity distribution
of the beam is given by

𝐸𝐸
∗
= 𝐸
2

0
exp(−𝑟

2

𝑟
2

0

) , (21)

and here, “r” is the radial coordinate of the cylindrical
coordinate system, “𝑟

0
” is the initial beamwidth, and 𝐸

0

is the axial amplitude. The wave equation governing the
electric vector of beam in plasmas with the effective dielectric
constant (20) is

∇
2E − ∇ (∇ ⋅ E) + 𝜔

2

𝑐2
𝜀E = 0. (22)

To solve the prevoius equation, the Wentzel-Kramers-
Brillouin (WKB) approximation has been used. In the WKB
approximation, the second term ∇(∇ ⋅ E) of (22) has been
neglected, which is justified when (𝑐2/𝜔2) |1/𝜀∇2 ln 𝜀| ≪ 1.
The electric vector of the main beam can be expressed as

∇
2E + 𝜔

2

𝑐2
𝜀E = 0. (23)

In the presence of the modified background electron con-
centration due to relativistic nonlinearity, the intensity dis-
tribution of the beam inside the plasma can be obtained by
using the WKB and paraxial ray approximations. Following
Akhmanov et al. [8] and Sodha et al. [9] the solution for E
can be written as

E (𝑟, 𝑧) = 𝐴 (𝑟, 𝑧) [ 𝑘 (0)
𝑘 (𝑓)

]

1/2

exp(−𝑖 ∫ 𝑘 (𝑓) 𝑑𝑧) , (24)

where

𝑘 (𝑓) =
𝜔

𝑐
[𝜀


0
(𝑓)]
1/2

,

𝑘 (0) =
𝜔

𝑐
[𝜀


0
(𝑓 = 1)]

1/2

.

(25)

Substituting for E and 𝜀 from (24) and (20) in (23), one
obtains

−2𝑖𝑘 (𝑓)
𝜕𝐴

𝜕𝑧
+
𝜕
2
𝐴

𝜕𝑟2
+
1

𝑟

𝜕𝐴

𝜕𝑟
−
𝜔
2

𝑐2
𝜀
1
(𝑓) 𝑟
2
𝐴 = 0. (26)

Putting A = 𝐴
0
(r, z) exp [−ikS(r, Z)] in (26) and separating

real and imaginary parts we get

2 (
𝜕𝑆

𝜕𝑧
) + (

𝜕𝑆

𝜕𝑟
)

2

+
𝜔
2

𝑐2

𝜀
1
(𝑓)

𝑘2 (𝑓)
𝑟
2

−
1

𝑘2 (𝑓)𝐴
0

(
𝜕
2
𝐴
0

𝜕𝑟2
+
1

𝑟

𝜕𝐴
0

𝜕𝑟
) = 0,

(27)

𝜕𝐴
2

0

𝜕𝑧2
+
𝜕𝑆

𝜕𝑟

𝜕𝐴
2

0

𝜕𝑟
+ 𝐴
2

0
(
𝜕
2
𝑆

𝜕𝑟2
+
1

𝑟

𝜕𝑆

𝜕𝑟
) = 0, (28)



4 ISRN Optics

where 𝑆(𝑟, 𝑧) is called the eikonal and related to the curvature
of the wavefront. For a slightly converging/diverging beam
the solution for a Gaussian laser beam (21) can be written as

𝑆 =
𝑟
2

2
𝛽 (𝑧) + 𝜑 (𝑧) , (29)

𝐴
2

0
=
𝐸
2

0

𝑓2
exp( −𝑟

2

𝑟
2

0
𝑓2
) , (30)

where

𝛽 =
1

𝑓

𝑑𝑓

𝑑𝑧
. (31)

It can be seen previously that 𝛽 is the inverse of radius of cur-
vature of the wavefront and 𝑟

0
𝑓 is the width of the beam. In

the geometrical optics approximation, 𝑟 = 𝑟
0
𝑓(𝑧) represents

a ray in a plane containing the 𝑧-axis. On substituting for
𝑆 into (27), using the paraxial ray approximation, such that
(𝑟/𝑟
0
𝑓) ≪ 1, equating the coefficients of 𝑟2 on both sides of

the resulting equations and substituting for 𝛽 into (29), the
dimensionless beamwidth parameter is given by

𝑘
2
(𝑓)

𝑑
2
𝑓

𝑑𝑧2
=

1

𝑟
4

0
𝑓3
−
𝜔
2

𝑐2
𝜀
1
(𝑓) 𝑓. (32)

Transforming the coordinate 𝑧 and the initial beamwidth 𝑟
0

to dimensionless forms

𝜉 = (
𝑧𝑐

𝑟
2

0
𝜔
) ,

𝜌
0
= (

𝑟
0
𝜔

𝑐
) ,

(33)

we get the characteristic beam propagation equation as

𝑑
2
𝑓

𝑑𝜉2
=

1

𝜀


0
(𝑓) 𝑓3

−
𝜌
2

0
𝑟
2

0
𝜀
1
(𝑓)

𝜀


0
(𝑓)

𝑓. (34)

Physically, (34) governs the variation of beamwidth param-
eter 𝑓 with distance of propagation. Substituting for 𝐸 from
(24) and S, 𝐴

0
, and 𝛽 from (29)–(31) into (20) and using the

paraxial ray approximation, 𝜙 can be written as

𝜙 (𝐸𝐸
∗
)

≈ 𝜙(
𝑘 (0)

𝑘 (𝑓)

𝐸
2

0

2𝑓2
) − 𝑟
2
{

{

{

𝛼

𝜔
2

𝑝0

𝜔2

𝑘 (0)

𝑘 (𝑓)

𝐸
2

0

4𝑟
2

0
𝑓4

× [1 +
𝑘 (0)

𝑘 (𝑓)
𝛼
𝐸
2

0

2𝑓2

×(1 +
𝑘 (0)

𝑘 (𝑓)
𝛼

𝐸
2

0

8𝜆22𝑓2
)]

−3/2

×[1 +
1

4𝜆2

𝑘 (0)

𝑘 (𝑓)
𝛼
𝐸
2

0

2𝑓2
]

}

}

}

(35)

correct to terms in 𝑟2, where

𝜙(
𝑘 (0)

𝑘 (𝑓)

𝐸
2

0

2𝑓2
)

=

𝜔
2

𝑝0

𝜔2

{

{

{

1 − [1 +
𝑘 (0)

𝑘 (𝑓)
𝛼
𝐸
2

0

2𝑓2

×(1 +
𝑘 (0)

𝑘 (𝑓)
𝛼

𝐸
2

0

16𝜆22𝑓2
)]

−1/2
}

}

}

.

(36)

Equation (35) can put into the convenient form of (20), with
[11]

𝜀


0
= 𝜀
0
+

𝜔
2

𝑝0

𝜔2

{

{

{

1 − [1 +
𝑘 (0)

𝑘 (𝑓)
𝛼
𝐸
2

0

2𝑓2

×(1 +
𝑘(0)

𝑘(𝑓)
𝛼

𝐸
2

0

16𝜆22𝑓2
)]

−1/2
}

}

}

,

𝜀
1
= 𝛼

𝜔
2

𝑝0

𝜔2

𝑘 (0)

𝑘 (𝑓)

𝐸
2

0

4𝑟
2

0
𝑓4

×

{

{

{

[1 +
𝑘(0)

𝑘(𝑓)
𝛼
𝐸
2

0

2𝑓2
(1 +

𝑘(0)

𝑘(𝑓)
𝛼

𝐸
2

0

8𝜆22𝑓2
)]

−3/2

×[1 +
1

4𝜆2

𝑘 (0)

𝑘 (𝑓)
𝛼
𝐸
2

0

2𝑓2
]

}

}

}

.

(37)

Consider second order of nonlinearity, for circularly polar-
ized wave; we can rewrite the previous set of equations as

𝜀


0
(𝑓) = 1 −

𝜔
2

𝑝

𝜔2
(1 +

𝑘 (0)

𝑘 (𝑓)

𝛼𝐸
2

0

2𝑓2
)

−1/2

,

𝜀
1
(𝑓) =

𝜔
2

𝑝

4𝜔2

𝛼𝐸
2

0

𝑟
2

0
𝑓4

(1 +
𝑘 (0)

𝑘 (𝑓)

𝛼𝐸
2

0

2𝑓2
)

−3/2

.

(38)

On substituting values of 𝜀
0
(𝑓) and 𝜀

1
(𝑓) from (38) in (34),

the equation governing the beamwidth parameter is

𝑑
2
𝑓

𝑑𝜉2
=

1

[1 −
𝜔
2

𝑝

𝜔
2 (1 +

𝑘(0)

𝑘(𝑓)

𝛼𝐸
2

0

2𝑓
2 )

−1/2

]𝑓3

−

𝜔
2

𝑝

4𝜔
2 𝜌
2

0
𝑟
2

0

𝛼𝐸
2

0

𝑟
2

0
𝑓
4 (1 +

𝑘(0)

𝑘(𝑓)

𝛼𝐸
2

0

2𝑓
2 )

−3/2

[1 −
𝜔
2

𝑝

𝜔
2 (1 +

𝑘(0)

𝑘(𝑓)

𝛼𝐸
2

0

2𝑓
2 )

−1/2

]

𝑓.

(39)
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Figure 1: Dependence of relativistic factor on axial intensity for
linearly and circularly polarized laser beam.

In (39) the first term on right-hand side is responsible for
diffraction divergence of the beam, and the second term cor-
responds to convergence, arising due to nonlinearity through
the relativistic factor of linearly or circularly polarized beam,
which contributes to focusing.

4. Self-Trapping Condition

When the two terms on the right-hand side of (39) bal-
ance each other the beam propagates without convergence
or divergence, which is referred to as uniform waveguide
propagation or self-trapping of the beam. For an initial plane
wavefront of the beam the initial conditions on 𝑓 are 𝑓(𝜉 =

0) = 1 and (𝑑𝑓/𝑑𝜉)
𝜉=0
= 0. As both the terms on right-hand

side cancel each other hence at 𝑧 = 0, (𝑑2𝑓/𝑑𝜉2)
𝜉=0
= 0; since

(𝑑𝑓/𝑑𝜉) is also zero and 𝑓 = 1 at 𝑧 = 0, 𝑓 = 1 for all values of
𝑧; in other words beam can propagate without convergence
or divergence. Therefore, the condition for self-trapping is

𝜌
2

0Lin =
4𝜔
2

𝜔2
𝑝

(1 + 𝛼𝐸
2

0
/2)
3/2

𝛼𝐸
2

0
/2

(40a)

for linearly polarized beam and

𝜌
2

0Cir =
2𝜔
2

𝜔2
𝑝

(1 + 𝛼𝐸
2

0
)
3/2

𝛼𝐸
2

0

(40b)

for circularly polarized beam.The critical power of the beam
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Figure 2: Variation of dielectric function 𝜀 as function of axial
intensity for linearly (solid line) and circularly (dot line) polarized
laser beam. Curves D
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and D
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𝑝
/𝜔)
2 = 0.7 and
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Figure 3: Critical curves, that is, the relation between dimensionless
beam radius 𝜌

0
= (𝑟
0
𝜔/𝑐) and axial intensity for linearly (solid line)

and circularly (dot line) polarized laser beam. Curves 𝐷
0.7

and D
1.2

correspond to (𝜔
𝑝
/𝜔)
2
= 0.7 and 1.2, respectively.

5. Results and Discussion

The differential equation (39) is to study the propagation
of linearly and circularly polarized beams through plasma.
We have chosen parameters accessible for interaction of
such beams with moderately underdense plasma to slightly
overdense plasma. The numerical values are chosen for laser
intensity ranging between I = 1016 to 1018W/cm2, electron
density between 0.1 to 1.5 of critical density, laser frequency
𝜔 = 1.7 × 10

14 sec−1 and initial radius of the beam 𝑟
0

laying between 1 to 3 𝜇m.Thedielectric function given by (20)
and beam propagation equation (39) together with boundary
conditions, are numerically solved. Further we consider the
propagation of the beam in axially inhomogeneous plasma
by including linear density variation in plasma.
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Figure 4: (a) Variation of beamwidth parameter (𝑓) with dimensionless distance of propagation (𝜉) for linearly (solid line) and circularly
(dot line) polarized beams. Curves I, II, III, IV, V, VI, and VII correspond to (𝑃/𝑃cr1) = 0.5, 5, 10, 20, 60, 100, and 200, respectively. Here
(𝜔
𝑝
/𝜔)
2
= 0.7, 𝜌

0
= 4, and (𝑃cr2/𝑃cr1) = 113.22 (for linearly polarized laser beam) and 113.21 (for circularly polarized laser beam). (b)

Variation of beamwidth parameter (f ) with dimensionless distance of propagation (𝜉) for linearly (solid line) and circularly (dot line) polarized
beams. Curves I, II, III, and IV correspond to (𝑃/𝑃cr1)= 10, 60, 100, and 200, respectively. Here (𝜔𝑝/𝜔)

2
= 1.2, 𝜌

0
= 3, and (𝑃cr2/𝑃cr1) = 99.06

(for linearly polarized laser beam) and 64.89 (for circularly polarized laser beam).

Figure 1 shows the variation of relativistic factor 𝛾 versus
intensity for linearly and circularly polarized laser beam.
From the graph it is evident that the growth in relativistic
factor for circularly polarized laser beam ismore as compared
to linearly polarized beam. Figure 2 shows plot of dielectric
function versus axial intensity for linearly and circularly
polarized beams in both underdense and overdense plasmas
corresponding to different concentration of electron density.
It is seen that initially there is an increase in dielectric
function and after a certain value it attains a constant value.
Because of very strong fields, the nonlinearity saturates. As a
result the electromagnetic wave drives all of the plasma out of
the regions of large field intensity and establishes equilibrium
with radiation inside a vacuum channel surrounded by
plasma. As we move from underdense region to overdense
region the saturation effect slows down.

The critical curve (i.e., a plot of normalized radius of the
beam “ 𝜌

0
” against the axial intensity proportional to critical

beam power) (40a) and (40b) is represented by Figure 3 for
linearly and circularly polarized beams atΩ2

𝑝
= (𝜔
𝑝
/𝜔)
2
=

0.7 and 1.2. Equations (40a) and (40b) have two critical
powers 𝑃cr1 and 𝑃cr2, corresponding to two different values
of electric field strength (or intensity of electric field), say
𝐸ocr1 (or 𝐼ocr1) and 𝐸ocr2 (or 𝐼ocr2) such that (𝐸ocr1 < 𝐸ocr2).
The beam can be self-focused when its power 𝑃 lies between
the two critical values (𝑃cr1 < 𝑃 < 𝑃cr2), and the range
(𝑃cr2 − 𝑃cr1) increases rapidly with increasing normalized
radius. The region above the critical curve (i.e., 𝑃cr1 <

𝑃 < 𝑃cr2) is the self-focusing region, and region below the
critical curve is known as the defocusing region. The effect
of different concentration of electron density can be clearly

seen from these critical curves. As concentration of electron
density increases, that is, if we move from underdense region
to overdense region the critical curve shifts downward.

Figures 4(a) and 4(b) show the variations of dimension-
less beamwidth parameter 𝑓 with dimensionless distance of
propagation 𝜉 at relativistic intensity in plasma for different
values of electron density in underdense and overdense
plasmas. From the critical curves forΩ2

𝑝
= 0.7 (𝐷

0.7
) and 𝜌

0
=

4, the value (𝑃cr2/𝑃cr1) = 113.22 for linearly/plane polarized
beam, and (𝑃cr2/𝑃cr1) = 113.21 for circularly polarized beam.
At Ω2
𝑝
= 1.2 (𝐷

1.2
) and 𝜌

0
= 3, (𝑃cr2/𝑃cr1) = 99.06 for lin-

early/plane polarized beam, and (𝑃cr2/𝑃cr1) = 64.889 for cir-
cularly polarized beam.The beam shows focusing/defocusing
for different values of 𝑃/𝑃cr1. This is because as we change
the strength of the electric field, the maxima and minima get
shifted. For a given value of 𝜌

0
when (𝑃cr1 < 𝑃 < 𝑃cr2), the

second term on the RHS of (39) dominates the first term at
𝑧 = 0, and (𝑑2𝑓/𝑑𝜉2) is negative; hence, 𝑓 decreases with the
distance of propagation.

For certain value of 𝜉, the two terms on RHS of (39) get
cancelled resulting in (𝑑2𝑓/𝑑𝜉2)= 0, and for larger values of 𝜉,
RHS becomes positive. However, the beam still continues to
converge on account of the curvature it has already gained,
though (𝑑𝑓/𝑑𝜉) becomes less and less negative. At certain
𝜉, (𝑑2𝑓/𝑑𝜉2) = 0 and 𝑓 = 𝑓min. Beyond this point, the
diffraction term dominates over the nonlinear term, and
hence 𝑓 exhibits the oscillatory behavior. From the figures
it is evident that due to relativistic mass effect, increase
in effective electron mass decreases the electron plasma
frequency and makes the penetration of the beam into the
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Figure 5: (a) Variation of dimensionless axial intensity (𝑞
0
/𝑓2) with dimensionless distance of propagation (𝜉) for linearly/plane (solid line)

and circularly (dot line) polarized beams. Curves I, II, III, IV, and V correspond to (𝑃/𝑃cr1) = 5, 10, 20, 60, and 100, respectively. Remaining
parameters are as mentioned in Figure 4(a). (b) Variation of dimensionless axial intensity (𝑞

0
/𝑓2) with dimensionless distance of propagation

(𝜉) for linearly (solid line) and circularly (dot line) polarized beams. Curves I and II to (𝑃/𝑃cr1) = 10 and 60, respectively. Remaining
parameters are as mentioned in Figure 4(b).
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Figure 6: (a) Variation of beamwidth parameter (𝑓)with dimensionless distance of propagation (𝜉) for linearly (solid line) and circularly (dot
line) polarized beams.Curves (I,D
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/𝜔)
2
= 0.7(1+2.5𝜉),𝜌

0
= 4, and (𝑃cr2/𝑃cr1) = 113.22 (for linearly polarized laser beam)

and 113.21 (for circularly polarized laser beam), and curves (II, D
1.2
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𝑝
/𝜔)
2
= 1.2(1 + 2.5𝜉), 𝜌

0
= 3, and (𝑃cr2/𝑃cr1) = 99.067

(for linearly polarized laser beam) and 64.89 (for circularly polarized laser beam). (b) Variation of dimensionless axial intensity (𝑞
0
/𝑓2) with

dimensionless distance of propagation (𝜉) for linearly (solid line) and circularly (dot line) polarized beams. Curves (I, D
0.7
) correspond to

(𝜔
𝑝
/𝜔)
2
= 0.7(1 + 2.5𝜉), 𝜌

0
= 4, and (𝑃cr2/𝑃cr1) = 113.22 (for linearly polarized laser beam) and 113.21 (for circularly polarized laser beam)

and curves (II, D
1.2
) correspond to (𝜔

𝑝
/𝜔)
2
= 1.2(1 + 2.5𝜉), 𝜌

0
= 3, and (𝑃cr2/𝑃cr1) = 99.067 (for linearly polarized laser beam) and 64.89

(for circularly polarized laser beam).
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overdense region of plasma, which is known as self-induced
transparency. At higher concentration of electron density
beam gets more focused as compared to low concentration
of electron density. The variation of dimensionless axial
intensity (𝛼𝐸2

0
/𝑓
2
) = (𝑞

0
/𝑓
2
) of the beam with distance of

propagation 𝜉 corresponding to Figures 4(a) and 4(b) for
self-focusing region is depicted in Figures 5(a) and 5(b). The
intensity peaks for higher concentration of electron densities
are higher with a reduced distance between two successive
peaks.

Figure 6(a) illustrates the variations of dimensionless
beamwidth parameter 𝑓 with distance of propagation 𝜉 for
different concentrations of electron densities in self-focusing
region with linear increase in electron density. Careful obser-
vation of the results from figure indicates that for linearly
increasing density plasma, minimum value of the normalized
beamwidth parameter (𝑓min) for the second and higher
orders decreases continuously in underdense and overdense
plasmas. In underdense plasma it propagates long distance
as compared to overdense plasma, but its focusing is less.
The corresponding graph for variation of dimensionless axial
intensity (𝑞

0
/𝑓2) of the beam versus distance of propagation

𝜉 is shown in Figure 6(b). From the numerical analysis and
graphs it is evident that both linearly polarized and circularly
polarized beams can propagate through underdense plasma
as well as they penetrate overdense plasma or say they exhibit
self-induced transparency effect.

In underdense plasma there is not much difference in
propagation of linearly polarized and circularly polarized
beams, while the propagation is affected in case of overdense
plasma and focal point changes.

A threshold exists for onset of self-focusing, as this effect
must overcome the spreading of the beam due to diffraction.
A light beam is focused to be self-trapped at any arbitrary
diameter and will thus not spread. Further, self-trapping
occurs at a critical power level, which is independent of the
beam diameter. The theory presented here has a much wide
range of application than the previous one, because it is not
a perturbation treatment. Furthermore, it is applicable at all
intensities—high and low.
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