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We study sectional curvature, Ricci tensor, and scalar curvature of submanifolds of generalized 𝑓.𝑝.𝑘.-space forms. Then we give
an upper bound for foliate 𝜉

𝛼
-horizontal (and vertical) CR-submanifold of a generalized 𝑓.𝑝.𝑘.-space form and an upper bound

for minimal 𝜉
𝛼
-horizontal (and vertical) CR-submanifold of a generalized 𝑓.𝑝.𝑘.-space form. Finally, we give the same results for

special cases of generalized 𝑓.𝑝.𝑘.-space forms such as 𝑆-space forms, generalized Sasakian space forms, Sasakian space forms,
Kenmotsu space forms, cosymplectic space forms, and almost 𝐶(𝛼)-manifolds.
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1. Introduction

In 1978, Bejancu introduced and studied CR-submanifolds of
a Kähler manifold [1, 2]. Since then, many papers appeared
on this topic with ambient manifold such as Sasakian space
form [3], cosymplectic space form [4], and Kenmotsu space
form [5, 6]. Recently Falcitelli and Pastore [7] introduced
generalized globally framed 𝑓-space forms. Globally framed
𝑓-manifolds are studied from the point of view of the
curvature and are introduced and the interrelation with
generalized Sasakian and generalized complex space forms
is pointed out. In this paper, we study CR-submanifolds of
generalized 𝑓-space forms.

The theory of a submanifold of a Sasaki manifold was
investigated from two different points of view: one is the case
where submanifolds are tangent to the structure vector and
the other is the case where those are normal to the structure
vector [8].

In the class of 𝑓-structures introduced in 1963 by Yano
[9], the so-called 𝑓-structures with complemented frames,
also called globally framed 𝑓-structures or 𝑓-structures with
parallelizable kernel (briefly 𝑓.𝑝.𝑘.-structures) [10–13] are
particulary interesting. An 𝑓.𝑝.𝑘.-manifold is a manifold

𝑀2𝑛+𝑠 on which an 𝑓-structure is defined, that is a (1, 1)-
tensor field 𝜑 satisfying 𝜑3 + 𝜑 = 0, of rank 2𝑛, such that the
subbundle ker𝜑 is parallelizable. Then, there exists a global
frame {𝜉

𝑖
}, 𝑖 ∈ {1, . . . , 𝑠}, for the subbundle ker𝜑, with dual

1-form 𝜂𝑖, satisfying 𝜑2 = −𝐼+𝜂𝑖 ⊗𝜉
𝑖
, 𝜂𝑖(𝜉
𝑗
) = 𝛿𝑖
𝑗
, from which

𝜑𝜉
𝑖
= 0, 𝜂𝑖 ∘ 𝜑 = 0 follow. An 𝑓.𝑝.𝑘.-structure on a manifold

𝑀2𝑛+𝑠 is said to be normal if the tensor field 𝑁 = [𝜑, 𝜑] +

2𝑑𝜂𝑖 ⊗ 𝜉
𝑖
vanishes, [𝜑, 𝜑] denoting the Nijenhuis torsion of

𝜑. It is known that one can consider a Riemannian metric
𝑔 on 𝑀2𝑛+𝑠 associated with an 𝑓.𝑝.𝑘.-structure (𝜑, 𝜉

𝑖
, 𝜂𝑖),

such that 𝑔(𝜑𝑋, 𝜑𝑌) = 𝑔(𝑋, 𝑌) − ∑
𝑠

𝑖=1
𝜂𝑖(𝑋)𝜂𝑖(𝑌), for any

𝑋,𝑌 ∈ Γ(𝑇2𝑛+𝑠𝑀), and the structure (𝜑, 𝜉
𝑖
, 𝜂𝑖, 𝑔) is then

called a metric 𝑓.𝑝.𝑘.-structure. Therefore, 𝑇2𝑛+𝑠𝑀 splits as
complementary orthogonal sum of its subbundles Im𝜑 and
ker𝜑. We denote their respective differentiable distributions
by 𝐷 and 𝐷⊥.

Let Ω denote the 2-form on 𝑀2𝑛+𝑠 defined by Ω(𝑋, 𝑌) =

𝑔(𝑋, 𝜑𝑌), for any 𝑋,𝑌 ∈ Γ(𝑇2𝑛+𝑠𝑀).
Several subclasses have been studied fromdifferent points

of view [10, 11, 14–16], also dropping the normality condition,
and, in this case, the term almost precedes the name of
the considered structures or manifolds. As in [10], a metric
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𝑓.𝑝.𝑘.-structure is said a K-structure if it is normal and
the fundamental 2-form Ω is closed; a manifold with a K-
structure is called a K-manifold. In particular, if 𝑑𝜂𝑖 = Ω,
for all 𝑖 ∈ {1, . . . , 𝑠}, the K-structure is said to be an S-
structure and 𝑀2𝑛+𝑠 an S-manifold. Finally, if 𝑑𝜂𝑖 = 0 for
all 𝑖 ∈ {1, . . . , 𝑠}, then theK-structure is called aC-structure
and𝑀2𝑛+𝑠 is said to be aC-manifold.Obviously, if 𝑠 = 1, aK-
manifold 𝑀2𝑛+1 is a quasi Sasakian manifold, a C-manifold
is a cosymplectic manifold, and an S-manifold is a Sasakian
manifold.

The purpose of the present paper is to study Ricci tensor,
sectional curvature, and scalar curvature of submanifolds of
a generalized 𝑓.𝑝.𝑘.-space form. In Section 2, we state defini-
tions of 𝑓.𝑝.𝑘.-space form, its curvature tensor, 𝜉

𝛼
-horizontal

CR-submanifold, and 𝜉
𝛼
-vertical CR-submanifold. Section 3

is devoted to the study sectional curvature of submanifold
of an 𝑓.𝑝.𝑘.-space form. Finally, in Section 4, we investigate
Ricci tensor and scalar curvature of submanifold of an𝑓.𝑝.𝑘.-
space form and obtain upper bound for scalar curvature.

2. Preliminaries

We recall that the Levi-Civita connection∇ of ametric𝑓.𝑝.𝑘.-
manifold satisfies the following formula [10, 11]:

2𝑔 ((∇
𝑋
𝜑)𝑌, 𝑍)

= 3𝑑Ω (𝑋, 𝜑𝑌, 𝜑𝑍) − 3𝑑Ω (𝑋, 𝑌, 𝑍)

+ 𝑔 (𝑁 (𝑌, 𝑍) , 𝜑𝑋) + 𝑁(2)
𝑗

(𝑌, 𝑍) 𝜂
𝑗𝑋

+ 𝑑𝜂𝑗 (𝜑𝑌,𝑋) 𝜂𝑗 (𝑍) − 2𝑑𝜂𝑗 (𝜑𝑍,𝑋) 𝜂𝑗 (𝑌) ,

(1)

where 𝑁(2)
𝑗

is given by 𝑁(2)
𝑗

(𝑋, 𝑌) = 2𝑑𝜂𝑗(𝜑𝑋, 𝑌) − 2𝑑𝜂𝑗

(𝜑𝑌,𝑋).
Furthermore, for S-manifolds we have ∇

𝑋
𝜉
𝑗
= −𝜑𝑋, 𝑗 =

1, . . . , 𝑠, [10]. Putting 𝜉 = ∑
𝑠

𝑗=1
𝜉
𝑗
, 𝜂 = ∑

𝑠

𝑗=1
𝜂
𝑗
is its dual form

with respect to 𝑔 and

(∇
𝑋
𝜑)𝑌 = 𝑔 (𝜑𝑋, 𝜑𝑌) 𝜉 + 𝜂 (𝑌) 𝜑

2𝑋. (2)

We remark that (2) together with £
𝜉𝑖
𝑔 = 0 and £

𝜉𝑖
𝜂𝑗 = 0,

𝑖, 𝑗 ∈ {1, . . . , 𝑠}, characterizes the S-manifolds among the
metric 𝑓.𝑝.𝑘.-manifolds.

A metric 𝑓.𝑝.𝑘.-manifold (𝑀2𝑛+𝑠, 𝜑, 𝜉
𝑖
, 𝜂𝑖, 𝑔) has point-

wise constant (p.c.) 𝜑-sectional curvature if at any 𝑝 ∈

𝑀2𝑛+𝑠, 𝑐(𝑝) = 𝑅
𝑝
(𝑋, 𝜑𝑋,𝑋, 𝜑𝑋) does not depend on the 𝜑-

section spanned by {𝑋, 𝜑𝑋}, for any unit 𝑋 ∈ 𝐷
𝑝
. Several

results involving the pointwise constancy of the 𝜑-sectional
curvatures of an almost contact metric manifold (i.e., for
𝑠 = 1) are recently obtained in [17–19]. We refer to [20] for
a systematic exposition of the classical curvature results on
contact metric manifolds.

We recall some known results.

Proposition 1 (see [6]). A Sasaki manifold (𝑀2𝑛+𝑠, 𝜑, 𝜉, 𝜂, 𝑔)

has p.c.𝜑-sectional curvature 𝑐 if and only if its curvature tensor
field verifies

𝑅 (𝑋, 𝑌, 𝑍)

=
1

4
(𝑐 + 3) {𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋, 𝑍) 𝑌}

+
1

4
(𝑐 − 1) {𝑔 (𝑋, 𝜑𝑍) 𝜑𝑌 − 𝑔 (𝑌, 𝜑𝑍) 𝜑𝑋

+ 2𝑔 (𝑋, 𝜑𝑌) 𝜑𝑍 + 𝜂 (𝑋) 𝜂 (𝑍) 𝑌

− 𝜂 (𝑌) 𝜂 (𝑍)𝑋 + 𝑔 (𝑋, 𝑍) 𝜂 (𝑌) 𝜉

−𝑔 (𝑌, 𝑍) 𝜂 (𝑋) 𝜉} ,

(3)

for any 𝑋,𝑌, 𝑍 tangent to 𝑀2𝑛+1.

A Sasaki manifold 𝑀2𝑛+1 with constant 𝜑-sectional cur-
vature 𝑐 ∈ R is called a Sasakian space form and denoted by
𝑀2𝑛+1(𝑐). It is well known that, if 𝑛 ≥ 2, a Sasaki manifold
𝑀2𝑛+1 with p.c. 𝜑-sectional curvature 𝑐 is a Sasakian space
form.As examples of Sasakian space forms,wementionR2𝑛+1
and 𝑆2𝑛+1, with standard Sasakian structures [14].

Definition 2 (see [10]). An almost contact metric mani-
fold (𝑀2𝑛+𝑠, 𝜑, 𝜉, 𝜂, 𝑔) is a generalized Sasakian space form,
denoted by (𝑀2𝑛+𝑠, 𝑓

1
, 𝑓
2
, 𝑓
3
), if it admits three smooth

functions𝑓
1
,𝑓
2
,𝑓
3
such that its curvature tensor field verifies

that, for any 𝑋,𝑌, 𝑍 ∈ 𝑇𝑀

𝑅 (𝑋, 𝑌, 𝑍)

= 𝑓
1
{𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋, 𝑍) 𝑌}

+ 𝑓
2
{𝑔 (𝑋, 𝜑𝑍) 𝜑𝑌 − 𝑔 (𝑌, 𝜑𝑍) 𝜑𝑋

+2𝑔 (𝑋, 𝜑𝑌) 𝜑𝑍}

+ 𝑓
3
{𝜂 (𝑋) 𝜂 (𝑍) 𝑌 − 𝜂 (𝑌) 𝜂 (𝑍)𝑋

+𝑔 (𝑋, 𝑍) 𝜂 (𝑌) 𝜉 − 𝑔 (𝑌, 𝑍) 𝜂 (𝑋) 𝜉} ,

(4)

Remark 3. Any generalized Sasakian space form has p.c. 𝜑-
sectional curvature 𝑐 = 𝑓

1
+3𝑓
2
. Obviously, a Sasaki manifold

of p.c. 𝜑-sectional curvature 𝑐 satisfies (4) with 𝑓
1
= (1/4)(𝑐+

3) and 𝑓
2
= 𝑓
3
= (1/4)(𝑐 − 1). A cosymplectic manifold with

p.c. 𝜑-sectional curvature 𝑐 satisfies (4) with 𝑓
1
= 𝑓
2
= 𝑓
3
=

(1/4)𝑐.

Proposition 4 (see [10, 21]). An 𝑆-manifold 𝑀2𝑛+𝑠 has p.c. 𝜑-
sectional curvature 𝑐 if and only if its curvature tensor field
verifies
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𝑅 (𝑋, 𝑌, 𝑍)

=
1

4
(𝑐 + 3𝑠) {𝑔 (𝜑𝑋, 𝜑𝑍) 𝜑2𝑌

−𝑔 (𝜑𝑌, 𝜑𝑍) 𝜑2𝑋}

+
1

4
(𝑐 − 𝑠) {𝑔 (𝑍, 𝜑𝑌) 𝜑𝑋 − 𝑔 (𝑍, 𝜑𝑋) 𝜑𝑌

+2𝑔 (𝑋, 𝜑𝑌) 𝜑𝑍}

+ {𝜂 (𝑋) 𝜂 (𝑍) 𝜑
2𝑌 − 𝜂 (𝑌) 𝜂 (𝑍) 𝜑

2𝑋

+𝑔 (𝜑𝑌, 𝜑𝑍) 𝜂 (𝑌) 𝜉 − 𝑔 (𝜑𝑋, 𝜑𝑍) 𝜂 (𝑋) 𝜉} .

(5)

for any 𝑋,𝑌, 𝑍 tangent to 𝑀2𝑛+1.

An 𝑆-manifold𝑀2𝑛+𝑠 with constant𝜑-sectional curvature
𝑐 ∈ R is called an 𝑆-space-form and denoted by 𝑀2𝑛+𝑠(𝑐).
Moreover, it is also well known that if 𝑛 ≥ 2, then an 𝑆-
manifold with p.c. 𝜑-sectional curvature 𝑐 is an 𝑆-space form.
We remark that for 𝑠 = 1 (5) reduces to (3).

Definition 5. In [22], Oubiña introduced the notion of a
trans-Sasakian manifold. An almost contact metric manifold
𝑀 is called trans-Sasakian manifold if there exist two func-
tions 𝛼 and 𝛽 on 𝑀 such that [22–24]

(∇
𝑋
𝜑) (𝑌) = 𝛼 {𝑔 (𝑋, 𝑌) 𝜉 − 𝜂 (𝑌)𝑋}

+ 𝛽 {𝑔 (𝜑𝑋, 𝑌) 𝜉 − 𝜂 (𝑌) 𝜑𝑋} ,
(6)

for vector fields 𝑋,𝑌 on 𝑀. From (6) it is easy to see that

∇
𝑋
𝜉 = −𝛼𝜑𝑋 + 𝛽 (𝑋 − 𝜂 (𝑋)) 𝜉. (7)

In particular, if 𝛽 = 0, then 𝑀 is said to be an 𝛼-
Sasakianmanifold. Sasakianmanifolds appear as examples of
𝛼-Sasakian manifolds with 𝛼 = 1.

On the other hand, if 𝛼 = 0, then 𝑀 is said to be a 𝛽-
Kenmotsu manifold. Kenmotsu manifolds, defined in [25],
are particular examples with 𝛽 = 1.

Another important kind of trans-Sasakian manifolds is
that of cosymplectic manifolds obtained for 𝛼 = 𝛽 = 0.

Proposition 6 (see [25]). An almost contact metric manifold
is said to be an almost 𝐶(𝛼)-manifold if its Riemannian
curvature tensor verifies

𝑅 (𝑋, 𝑌, 𝑍,𝑊) = 𝑅 (𝑋, 𝑌, 𝜑𝑍, 𝜑𝑊)

+ 𝛼 {𝑔 (𝑋,𝑊) 𝑔 (𝑌, 𝑍)

− 𝑔 (𝑋, 𝑍) 𝑔 (𝑌,𝑊)

+ 𝑔 (𝑋, 𝜑𝑍) 𝑔 (𝑌, 𝜑𝑊)

−𝑔 (𝑋, 𝜑𝑊)𝑔 (𝑌, 𝜑𝑍)} ,

(8)

for vector fields𝑋,𝑌,𝑍, and𝑊 on𝑀, where𝛼 is a real number.
Moreover, if such amanifold has constant𝜑-sectional curvature
equal to 𝑐, then its curvature tensor is given by

𝑅 (𝑋, 𝑌)𝑍

=
1

4
(𝑐 + 3𝛼2) {𝑔 (𝑌, 𝑍)𝑋 − 𝑔 (𝑋,𝑍) 𝑌}

+
1

4
(𝑐 − 𝛼2) {𝑔 (𝑋, 𝜑𝑍) 𝜑𝑌 − 𝑔 (𝑌, 𝜑𝑍) 𝜑𝑋

+ 2𝑔 (𝑋, 𝜑𝑌) 𝜑𝑍

+ 𝜂 (𝑋) 𝜂 (𝑍) 𝑌 − 𝜂 (𝑌) 𝜂 (𝑍)𝑋

+ 𝑔 (𝑋, 𝑍) 𝜂 (𝑌) 𝜉

−𝑔 (𝑌, 𝑍) 𝜂 (𝑋) 𝜉} ,

(9)

and so, it is a generalized Sasakian space form with 𝑓
1

=

(1/4)(𝑐 + 3𝛼2) and 𝑓
2
= 𝑓
3
= (1/4)(𝑐 − 𝛼2).

Let F denote any set of smooth function 𝐹
𝑖𝑗
on 𝑀2𝑛+𝑠

such that 𝐹
𝑖𝑗

= 𝐹
𝑗𝑖
for any 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑠}.

Definition 7 (see [7]). A generalized 𝑓.𝑝.𝑘.-space form,
denoted by 𝑀2𝑛+𝑠(𝐹

1
, 𝐹
2
,F), is a metric 𝑓.𝑝.𝑘.-manifold

(𝑀2𝑛+𝑠, 𝜑, 𝜉
𝑖
, 𝜂𝑖, 𝑔)which admits smooth functions𝐹

1
,𝐹
2
, and

F such that its curvature tensor field verifies
𝑅 (𝑋, 𝑌, 𝑍)

= 𝐹
1
{𝑔 (𝜑𝑋, 𝜑𝑍) 𝜑2𝑌 − 𝑔 (𝜑𝑌, 𝜑𝑍) 𝜑2𝑋}

+ 𝐹
2
{𝑔 (𝑍, 𝜑𝑌) 𝜑𝑋 − 𝑔 (𝑍, 𝜑𝑋) 𝜑𝑌

+2𝑔 (𝑋, 𝜑𝑌) 𝜑𝑍}

+
𝑠

∑
𝑖,𝑗=1

𝐹
𝑖𝑗
{𝜂𝑖 (𝑋) 𝜂

𝑗

(𝑍) 𝜑
2𝑌

− 𝜂𝑖 (𝑌) 𝜂
𝑗

(𝑍) 𝜑
2𝑋

+ 𝜂𝑖 (𝑋) 𝜉
𝑗
𝑔 (𝜑𝑌, 𝜑𝑍)

−𝜂𝑖 (𝑌) 𝜉
𝑗
𝑔 (𝜑𝑋, 𝜑𝑍)} .

(10)

For 𝑠 = 1, we obtain a generalized Sasakian space form
𝑀2𝑛+1(𝑓

1
, 𝑓
2
, 𝑓
3
) with 𝑓

1
= 𝐹
1
, 𝑓
2
= 𝐹
2
and 𝑓

3
= 𝐹
1
− 𝐹
11
. In

particular, if the given structure is either Sasakian, Kenmotsu,
or possibly cosymplectic, then (10) holds with 𝐹

11
= 1, 𝐹

1
=

(1/4)(𝑐 + 3), 𝐹
2
= (1/4)(𝑐 − 1), and 𝑓

3
= 𝐹
1
− 𝐹
11

= (1/4)(𝑐 −
1) = 𝑓

2
in the first case, 𝐹

11
= −1, 𝐹

1
= (1/4)(𝑐 − 3), 𝐹

2
=

(1/4)(𝑐+1) and𝑓
3
= 𝐹
1
−𝐹
11

= (1/4)(𝑐+1) = 𝑓
2
in the second

case, and 𝐹
11

= 0, 𝐹
1
= (1/4)𝑐, 𝐹

2
= (1/4)𝑐, and 𝑓

3
= (1/4)𝑐

in the last case.

Definition 8. Let 𝑀 be an 𝑚-dimensional submanifold
immersed in 𝑀. 𝑀 is said to be an invariant submanifold
if 𝜉
𝛼

∈ 𝑇𝑀 for any 1 ≤ 𝛼 ≤ 𝑠 and 𝜑𝑋 ∈ 𝑇𝑀 for any
𝑋 ∈ 𝑇𝑀. On the other hand, it is said to be an anti-invariant
submanifold if 𝜑𝑋 ∈ 𝑇⊥𝑀 for any 𝑋 ∈ 𝑇𝑀.
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An𝑚-dimensional Riemannian submanifold𝑀 of a gen-
eralized 𝑓.𝑝.𝑘.-space form 𝑀

2𝑛+𝑠 is called a CR-submanifold
if 𝜉
𝛼
’s are tangent to 𝑀 (so, dim𝑀 ≥ 𝑠) and there exist two

differentiable distributions 𝐷 and 𝐷⊥ on 𝑀 satisfying

(i) 𝑇𝑀 = 𝐷 ⊕ 𝐷⊥ (direct sum),
(ii) the distribution𝐷 is invariant under 𝜑, that is, 𝜑𝐷

𝑥
=

𝐷
𝑥
for any 𝑥 ∈ 𝑀,

(iii) the distribution 𝐷⊥ is anti-invariant under 𝜑, that is,
𝜑𝐷⊥
𝑥

⊆ 𝑇⊥
𝑥
𝑀 for any 𝑥 ∈ 𝑀.

We denote by 2𝑝 and 𝑞 the real dimensions of𝐷
𝑥
and𝐷⊥

𝑥
,

respectively, for any 𝑥 ∈ 𝑀. Then, if 𝑝 = 0, we have an anti-
invariant submanifold tangent to 𝜉

1
, . . . , 𝜉

𝑠
, and if 𝑞 = 0, we

have an invariant submanifold.
As an example, it is easy to prove that each hypersurface

of 𝑀 which is tangent to 𝜉
1
, . . . , 𝜉

𝑠
inherits the structure of

CR-submanifold of𝑀. Also, pseudoumbilical, totally contact
umbilical, totally contact geodesic, totally umbilical, and
totally geodesic hypersurfaces of a generalized 𝑆-space form
are also generalized 𝑆-space forms, and,moreover, the bundle
space of a principal toroidal bundle over aKählerianmanifold
and thewarped product of R times a generalized 𝑆-space form
are generalized 𝑆-space forms, too [26].

Definition 9. The 𝜑-sectional curvature 𝐻 of 𝑀 determined
by a unit vector 𝑋 ∈ 𝐷 orthogonal to 𝜉

𝛼
’s is the sectional

curvature of the plane section spanned by𝑋 and𝜑𝑋. Also, we
denote by Ric(𝑋, 𝑌) (and𝐾(𝑋, 𝑌)) Ricci tensor (and sectional
curvature) determined by (orthonormal) vector fields {𝑋, 𝑌},
respectively.

Definition 10. A CR-submanifold 𝑀 of a generalized 𝑓.𝑝.𝑘.-
space form 𝑀

2𝑛+𝑠 is said to be 𝐷-totally geodesic (resp., 𝐷⊥-
totally geodesic) if ℎ(𝑋, 𝑌) = 0 for any𝑋,𝑌 ∈ 𝐷 (resp.,𝑋,𝑌 ∈
𝐷⊥), and it is said to be (𝐷,𝐷⊥)-mixed totally geodesic if
ℎ(𝑋, 𝑌) = 0 for any 𝑋 ∈ 𝐷, 𝑌 ∈ 𝐷⊥.

Also, CR-submanifold 𝑀 is said to be minimal if 𝜇 = 0,
where 𝜇 is themean curvature vector, defined by 𝜇 = (1/(2𝑛+
𝑠))trace(ℎ).

Definition 11. Let 𝑀 be a CR-submanifold with horizontal
distribution𝐷 and vertical distribution𝐷⊥. The pair (𝐷,𝐷⊥)
is called 𝜉

𝛼
-horizontal if 𝜉𝑥

𝛼
∈ 𝐷
𝑥
for any 𝑥 ∈ 𝑀, and in a

similar way the pair (𝐷,𝐷⊥) is called 𝜉
𝛼
-vertical if 𝜉𝑥

𝛼
∈ 𝐷⊥
𝑥

for any 𝑥 ∈ 𝑀.

Definition 12. Let dim𝑀 = 𝑛 = 2𝑝+ 𝑠+ 𝑞 and {𝑒
1
, 𝑒
2
, . . . , 𝑒

2𝑝
,

𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑠
, 𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑞
} be a local field of orthonormal

frames on 𝑇𝑀 such that in case when 𝑀 is 𝜉
𝛼
-horizontal,

{𝑒
1
, 𝑒
2
, . . . , 𝑒

2𝑝
, 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑠
} is a local frame field on 𝐷 and

{𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑞
} is a local frame field on 𝐷⊥.

Let 𝑀 be an 𝜉
𝛼
-horizontal CR-submanifold of 𝑀. The

mean curvature vector field 𝜇 of 𝑀 in 𝑀 is defined by

𝜇 =
1

2𝑝 + 𝑠 + 𝑞
{

2𝑝+𝑠

∑
𝑖=1

ℎ (𝑒
𝑖
, 𝑒
𝑖
) +

𝑞

∑
𝑖=1

ℎ (𝑒
𝑖
, 𝑒
𝑖
)} . (11)

If 𝜇 = 0, then 𝑀 is said to be minimal. Now, we will define

𝜇
𝐷

=
1

2𝑝 + 𝑠

2𝑝+𝑠

∑
𝑖=1

ℎ (𝑒
𝑖
, 𝑒
𝑖
) ,

𝜇
𝐷
⊥ =

1

𝑞

𝑞

∑
𝑖=1

ℎ (𝑒
𝑖
, 𝑒
𝑖
) .

(12)

If 𝜇
𝐷

= 0, then the CR-submanifold 𝑀 is said to be 𝐷-min-
imal, and if 𝜇

𝐷
⊥ = 0, then it is said to be𝐷⊥-minimal. Similar

definitions can be given for 𝜉
𝛼
-vertical CR-submanifolds.

We denote by 𝑃 and 𝑄 the projection morphisms of
𝑇𝑀 on 𝐷 and 𝐷⊥, respectively. We call 𝐷 (resp., 𝐷⊥) the
horizontal (resp., vertical) distribution. Then for any vector
field 𝑋 tangent to 𝑀, we have:

𝑋 = 𝑃𝑋 + 𝑄𝑋, (13)

where 𝑃𝑋 and 𝑄𝑋 belong to the distribution 𝐷 (horizontal
part) and 𝐷⊥ (vertical part), respectively. Also, for a vector
field 𝑁 normal to 𝑀, we put:

𝜑𝑁 = 𝑡𝑁 + 𝑓𝑁, (14)

where 𝑡𝑁 and 𝑓𝑁 denote the horizontal and normal compo-
nent of 𝜑𝑁, respectively.

Definition 13. Let 𝑀 be a CR-submanifold of an ambient
manifold𝑀, with horizontal distribution𝐷. Then𝐷 is called
involutive (or integrable) if [𝑋, 𝑌] ∈ 𝐷 for any 𝑋,𝑌 ∈ 𝐷
where [𝑋, 𝑌] is Lie bracket of 𝑋,𝑌. Also, 𝑀 is a foliate if 𝐷
is involutive (or integrable).

Let 𝑀 be an 𝑚-dimensional submanifold immersed in a
generalized 𝑓.𝑝.𝑘.-space form 𝑀

2𝑛+𝑠. The Gauss-Weingarten
formulas are given by

∇
𝑋
𝑌 = ∇

𝑋
𝑌 + ℎ (𝑋, 𝑌) ; 𝑋, 𝑌 ∈ 𝑇𝑀,

∇
𝑋
𝑁 = −𝐴

𝑁
𝑋 + ∇⊥

𝑋
𝑁; 𝑋 ∈ 𝑇𝑀,𝑁 ∈ 𝑇⊥𝑀,

(15)

where ∇⊥ is the connection in the normal bundle, ℎ is the
second fundamental form of 𝑀 and 𝐴

𝑁
the Weingarten

endomorphism associated with𝑁.Then𝐴
𝑁
and ℎ are related

by:

𝑔 (𝐴
𝑁
𝑋,𝑌) = 𝑔 (ℎ (𝑋, 𝑌) ,𝑁) . (16)

We denote by 𝑅 and 𝑅 the curvature tensor fields
associated with ∇ and ∇, respectively. The Gauss equation is
given by

𝑅 (𝑋, 𝑌, 𝑍,𝑊) = 𝑅 (𝑋, 𝑌, 𝑍,𝑊) + 𝑔 (ℎ (𝑋,Z) , ℎ (𝑌,𝑊))

− 𝑔 (ℎ (𝑋,𝑊) , ℎ (𝑌, 𝑍)) ,

(17)

where 𝑋,𝑌, 𝑍, and 𝑊 belong to 𝑇𝑀.
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3. Sectional Curvature of Submanifolds

Let 𝑀 be a submanifold of a generalized 𝑓.𝑝.𝑘.-space form
𝑀
2𝑛+𝑠

(𝐹
1
, 𝐹
2
,F). Then from the equation of Gauss, we have

𝑅 (𝑋, 𝑌, 𝑍,𝑊)

= 𝑅 (𝑋, 𝑌, 𝑍,𝑊) − 𝑔 (ℎ (𝑋, 𝑍) , ℎ (𝑌,𝑊))

+ 𝑔 (ℎ (𝑋,𝑊) , ℎ (𝑌, 𝑍))

= 𝐹
1
{𝑔 (𝜑𝑋, 𝜑𝑍) 𝑔 (𝜑2𝑌,𝑊)

−𝑔 (𝜑𝑌, 𝜑𝑍) 𝑔 (𝜑2𝑋,𝑊)}

+ 𝐹
2
{𝑔 (𝑍, 𝜑𝑌) 𝑔 (𝜑𝑋,𝑊)

− 𝑔 (𝑍, 𝜑𝑋) 𝑔 (𝜑𝑌,𝑊)

+2𝑔 (𝑋, 𝜑𝑌) 𝑔 (𝜑𝑍,𝑊)}

+
𝑠

∑
𝑖,𝑗=1

𝐹
𝑖𝑗
{𝜂𝑖 (𝑋) 𝜂

𝑗

(𝑍) 𝑔 (𝜑2𝑌,𝑊)

− 𝜂𝑖 (𝑌) 𝜂
𝑗

(𝑍) 𝑔 (𝜑2𝑋,𝑊)

+ 𝜂𝑖 (𝑋) 𝜂
𝑗

(𝑊) 𝑔 (𝜑𝑌, 𝜑𝑍)

−𝜂𝑖 (𝑌) 𝜂
𝑗

(𝑊) 𝑔 (𝜑𝑋, 𝜑𝑍)}

− 𝑔 (ℎ (𝑋, 𝑍) , ℎ (𝑌,𝑊))

+ 𝑔 (ℎ (𝑋,𝑊) , ℎ (𝑌, 𝑍)) ,

(18)

for any 𝑋,𝑌, 𝑍, and 𝑊 tangent to 𝑀.
Let 𝐾

𝑀
(𝑋, 𝑌) be the sectional curvature determined by

orthonormal vectors 𝑋 and 𝑌. Then from (18), we have

𝐾
𝑀

(𝑋, 𝑌)

= 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ (𝑋, 𝑌)‖
2 + 3𝐹

2
𝑔2 (𝑋, 𝜑𝑌)

+ 𝐹
1

{
{
{

(1 −
𝑠

∑
𝑘=1

𝜂𝑘(𝑋)
2) (1 −

𝑠

∑
𝑘=1

𝜂𝑘(𝑌)
2)

− (
𝑠

∑
𝑘=1

𝜂𝑘 (𝑋) 𝜂
𝑘

(𝑌))

2

}
}
}

+
𝑠

∑
𝑖,𝑗=1

𝐹
𝑖𝑗
{𝜂𝑖 (𝑋) 𝜂

𝑗

(𝑋)(1 −
𝑠

∑
𝑘=1

𝜂𝑘(𝑌)
2)

+ 𝜂𝑖 (𝑌) 𝜂
𝑗

(𝑌)(1 −
𝑠

∑
𝑘=1

𝜂𝑘(𝑋)
2)

+2𝜂𝑖 (𝑋) 𝜂
𝑗

(𝑌)
𝑠

∑
𝑘=1

𝜂𝑘 (𝑋) 𝜂
𝑘

(𝑌)} .

(19)

Thus we have the following theorem.

Theorem 14. Let 𝑀 be a submanifold of a generalized 𝑓.𝑝.𝑘.-
space form 𝑀

2𝑛+𝑠

(𝐹
1
, 𝐹
2
,F). Then the sectional curvature of

𝑀 determined by orthonormal tangent vectors {𝑋, 𝑌} is given
by

𝐾
𝑀

(𝑋, 𝑌)

= 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ(𝑋, 𝑌)‖
2 + 3𝐹

2
𝑔2 (𝑋, 𝜑𝑌)

+ 𝐹
1

{
{
{

(1 −
𝑠

∑
𝑘=1

𝜂𝑘(𝑋)
2)(1 −

𝑠

∑
𝑘=1

𝜂𝑘(𝑌)
2)

−(
𝑠

∑
𝑘=1

𝜂𝑘 (𝑋) 𝜂
𝑘

(𝑌))

2

}
}
}

+
𝑠

∑
𝑖,𝑗=1

𝐹
𝑖𝑗
{𝜂𝑖 (𝑋) 𝜂

𝑗

(𝑋)(1 −
𝑠

∑
𝑘=1

𝜂𝑘(𝑌)
2)

+ 𝜂𝑖 (𝑌) 𝜂
𝑗

(𝑌)(1 −
𝑠

∑
𝑘=1

𝜂𝑘(𝑋)
2)

+2𝜂𝑖 (𝑋) 𝜂
𝑗

(𝑌)
𝑠

∑
𝑘=1

𝜂𝑘 (𝑋) 𝜂
𝑘

(𝑌)} .

(20)

From this we have the following corollaries for the sec-
tional curvature of submanifold determined by orthonormal
tangent vectors {𝑋, 𝑌}.

Corollary 15. The sectional curvature of a submanifold of an
𝑆-space form 𝑀

2𝑛+𝑠

(𝑐) is given by

𝐾
𝑀

(𝑋, 𝑌)

= 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ(𝑋, 𝑌)‖
2

+
3

4
(𝑐 − 𝑠) 𝑔

2 (𝑋, 𝜑𝑌) +
1

4
(𝑐 + 3𝑠)

×
{
{
{

(1 −
𝑠

∑
𝑘=1

𝜂𝑘(𝑋)
2)(1 −

𝑠

∑
𝑘=1

𝜂𝑘(𝑌)
2)

−(
𝑠

∑
𝑘=1

𝜂𝑘 (𝑋) 𝜂
𝑘

(𝑌))

2

}
}
}

+
𝑠

∑
𝑖,𝑗=1

{𝜂𝑖 (𝑋) 𝜂
𝑗

(𝑋)(1 −
𝑠

∑
𝑘=1

𝜂𝑘(𝑌)
2)

+ 𝜂𝑖 (𝑌) 𝜂
𝑗

(𝑌)(1 −
𝑠

∑
𝑘=1

𝜂𝑘(𝑋)
2)

+2𝜂𝑖 (𝑋) 𝜂
𝑗

(𝑌)
𝑠

∑
𝑘=1

𝜂𝑘 (𝑋) 𝜂
𝑘

(𝑌)} .

(21)
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Proof. We will get the result by using 𝐹
𝑖𝑗

= 1, for all 1 ≤ 𝑖, 𝑗 ≤
𝑠; 𝐹
1
= (1/4)(𝑐 + 3𝑠); 𝐹

2
= (1/4)(𝑐 − 𝑠) in (20).

Corollary 16. The sectional curvature of a submanifold of a
generalized Sasakian space form 𝑀(𝑐) is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ(𝑋, 𝑌)‖
2 + 𝑓
1

+ 3𝑓
2
𝑔2 (𝑋, 𝜑𝑌) − 𝑓

3
(𝜂2 (𝑋) + 𝜂2 (𝑌)) .

(22)

Proof. We will get the result by using 𝑠 = 1, 𝐹
1
= 𝑓
1
, 𝐹
2
= 𝑓
2
,

and 𝐹
11

= 𝑓
1
− 𝑓
3
in (20).

Corollary 17. The sectional curvature of a submanifold of a
Sasakian space form 𝑀(𝑐) is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ(𝑋, 𝑌)‖
2

+
1

4
(𝑐 + 3) +

1

4
(𝑐 − 1)

× (3𝑔2 (𝑋, 𝜑𝑌) − 𝜂2 (𝑋) − 𝜂2 (𝑌)) .

(23)

Proof. We get the result by using 𝑓
1
= (1/4)(𝑐 + 3), 𝑓

2
= 𝑓
3
=

(1/4)(𝑐 − 1) in (22).

Corollary 18. The sectional curvature of a submanifold of a
Kenmotsu space form 𝑀(𝑐) is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ(𝑋, 𝑌)‖
2

+
1

4
(𝑐 − 3) +

1

4
(𝑐 + 1)

× (3𝑔2 (𝑋, 𝜑𝑌) − 𝜂2 (𝑋) − 𝜂2 (𝑌)) .

(24)

Proof. We get the result by using 𝑓
1
= (1/4)(𝑐 − 3) and 𝑓

2
=

𝑓
3
= (1/4)(𝑐 + 1) in (22).

Corollary 19. The sectional curvature of a submanifold of a
cosymplectic space form 𝑀(𝑐) is given by

𝐾
𝑀

(𝑋, 𝑌)

= 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ(𝑋, 𝑌)‖
2

+
1

4
𝑐 (1 + 3𝑔2 (𝑋, 𝜑𝑌) − 𝜂2 (𝑋) − 𝜂2 (𝑌)) .

(25)

Proof. By taking 𝑓
1
= 𝑓
2
= 𝑓
3
= (1/4)𝑐 in (22), we obtain the

above.

Corollary 20. The sectional curvature of a submanifold of an
almost 𝐶(𝛼)-manifold 𝑀(𝑐) is given by

𝐾
𝑀

(𝑋, 𝑌)

= 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ(𝑋, 𝑌)‖
2

+
1

4
(𝑐 + 3𝛼2)

+
1

4
(𝑐 − 𝛼2) (3𝑔2 (𝑋, 𝜑𝑌) − 𝜂2 (𝑋) − 𝜂2 (𝑌)) .

(26)

Proof. By getting 𝑓
1
= (1/4)(𝑐 + 3𝛼2), 𝑓

2
= 𝑓
3
= (1/4)(𝑐 − 𝛼2)

in (22), we obtain (26).

Proposition 21. If 𝑀 is a 𝜉
𝛼
-horizontal CR-submanifold of

a generalized 𝑓.𝑝.𝑘.-space form 𝑀
2𝑛+𝑠, then the sectional

curvature of 𝑀 determined by 𝑋,𝑌 ∈ 𝐷⊥ is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌))

− ‖ℎ(𝑋, 𝑌)‖
2 + 𝐹
1
.

(27)

Proof. From (20) and by replacing 𝜂𝑘(𝑋) = 0 = 𝜂𝑘(𝑌); 1 ≤
𝑘 ≤ 𝑠 and 𝑔(𝑋, 𝜑𝑌) = 0 we get the result immediately.

Corollary 22. If 𝑀 is a 𝜉
𝛼
-horizontal CR-submanifold of an

𝑆-space form 𝑀
2𝑛+𝑠

(𝑐), then the sectional curvature of 𝑀
determined by 𝑋,𝑌 ∈ 𝐷⊥ is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌))

− ‖ℎ(𝑋, 𝑌)‖
2 +

1

4
(𝑐 + 3𝑠) .

(28)

Corollary 23. If 𝑀 is a 𝜉-horizontal CR-submanifold of a
generalized Sasakian space form 𝑀(𝑐), then the sectional
curvature of 𝑀 determined by 𝑋,𝑌 ∈ 𝐷⊥ is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ(𝑋, 𝑌)‖
2 + 𝑓
1
. (29)

Corollary 24. If 𝑀 is a 𝜉-horizontal CR-submanifold of a
Sasakian space form 𝑀(𝑐), then the sectional curvature of 𝑀
determined by 𝑋,𝑌 ∈ 𝐷⊥ is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌))

− ‖ℎ(𝑋, 𝑌)‖
2 +

1

4
(𝑐 + 3) .

(30)

Corollary 25. If 𝑀 is a 𝜉-horizontal CR-submanifold of a
Kenmotsu space form 𝑀(𝑐), then the sectional curvature of 𝑀
determined by 𝑋,𝑌 ∈ 𝐷⊥ is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌))

− ‖ℎ(𝑋, 𝑌)‖
2 +

1

4
(𝑐 − 3) .

(31)

Corollary 26. If 𝑀 is a 𝜉-horizontal CR-submanifold of a
cosymplectic space form 𝑀(𝑐), then the sectional curvature of
𝑀 determined by 𝑋,𝑌 ∈ 𝐷⊥ is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ(𝑋, 𝑌)‖
2 +

1

4
𝑐. (32)

Corollary 27. If 𝑀 is a 𝜉-horizontal CR-submanifold of
a 𝐶(𝛼)-manifold 𝑀(𝑐), then the sectional curvature of 𝑀
determined by 𝑋,𝑌 ∈ 𝐷⊥ is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌))

− ‖ℎ(𝑋, 𝑌)‖
2 +

1

4
(𝑐 + 3𝛼2) .

(33)
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Proposition 28. If 𝑀 is a 𝜉
𝛼
-vertical CR-submanifold of

a generalized 𝑓.𝑝.𝑘.-space form 𝑀
2𝑛+𝑠, then the sectional

curvature of 𝑀 determined by 𝑋,𝑌 ∈ 𝐷 is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ (𝑋, 𝑌)‖
2

+ 𝐹
1
+ 3𝐹
2
𝑔2 (𝑋, 𝜑𝑌) .

(34)

Corollary 29. If 𝑀 is a 𝜉
𝛼
-vertical CR-submanifold of an

𝑆-space form 𝑀
2𝑛+𝑠

(𝑐), then the sectional curvature of 𝑀
determined by 𝑋,𝑌 ∈ 𝐷 is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ (𝑋, 𝑌)‖
2

+
1

4
(𝑐 + 3𝑠) +

3

4
(𝑐 − 𝑠) 𝑔

2 (𝑋, 𝜑𝑌) .
(35)

Corollary 30. If 𝑀 is a 𝜉-vertical CR-submanifold of space
form 𝑀(𝑐), then the sectional curvature of 𝑀 determined by
𝑋,𝑌 ∈ 𝐷,

(i) where 𝑀(𝑐) is a generalized Sasakian space form, is
given by:

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ (𝑋, 𝑌)‖
2

+ 𝑓
1
+ 3𝑓
2
𝑔2 (𝑋, 𝜑𝑌) ,

(36)

(ii) where 𝑀(𝑐) is a Sasakian space form, is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ (𝑋, 𝑌)‖
2

+
1

4
(𝑐 + 3) +

3

4
(𝑐 − 1) 𝑔

2 (𝑋, 𝜑𝑌) ,
(37)

(iii) where 𝑀(𝑐) is a Kenmotsu space form, is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ (𝑋, 𝑌)‖
2

+
1

4
(𝑐 − 3) +

3

4
(𝑐 + 1) 𝑔

2 (𝑋, 𝜑𝑌) ,
(38)

(iv) where 𝑀(𝑐) is a cosymplectic space form, is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (X, 𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ (𝑋, 𝑌)‖
2

+
1

4
𝑐 (1 + 3𝑔2 (𝑋, 𝜑𝑌)) ,

(39)

(v) where 𝑀(𝑐) is a 𝐶(𝛼)-manifold, is given by

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ (𝑋, 𝑌)‖
2

+
1

4
(𝑐 + 3𝛼2) +

3

4
(𝑐 − 𝛼2) 𝑔2 (𝑋, 𝜑𝑌) .

(40)

Proposition 31. The 𝜑-sectional curvature of a CR-subman-
ifold of a generalized 𝑓.𝑝.𝑘.-space form 𝑀

2𝑛+𝑠

(𝐹
1
, 𝐹
2
,F),

determined by 𝑋 ∈ 𝑇𝑀, is given by

𝐻(𝑋) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝜑𝑋, 𝜑𝑋)) −
ℎ(𝑋, 𝜑𝑋)


2

+ 𝐹
1
+ 3𝐹
2
.

(41)

Proof. By using 𝜂𝑘(𝑋) = 0, for all 1 ≤ 𝑘 ≤ 𝑠 in (20), we will
get the result.

Proposition 32. The 𝜑-sectional curvature of a CR-subman-
ifold of a generalized Sasakian space form 𝑀(𝑐), determined
by 𝑋 ∈ 𝑇𝑀 is given by

𝐻(𝑋) = 𝑔 (ℎ (𝑋,X) , ℎ (𝜑𝑋, 𝜑𝑋))

−
ℎ(𝑋, 𝜑𝑋)


2

+ 𝑓
1
+ 3𝑓
2
.

(42)

Corollary 33. The 𝜑-sectional curvature of a CR-submanifold
of either an 𝑆-space form, a Sasakian space form, a Kenmotsu
space form, a cosymplectic space form, or an almost 𝐶(𝛼)-
manifold 𝑀

2𝑛+𝑠, determined by 𝑋 ∈ 𝑇𝑀, is given by:

𝐻(𝑋) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝜑𝑋, 𝜑𝑋)) −
ℎ(𝑋, 𝜑𝑋)


2

+ 𝑐. (43)

We recall the following Lemma [27].

Lemma 34. Let 𝑀 be a foliate 𝜉
𝛼
-horizontal CR-submanifold

of a 𝑆-space form 𝑀
2𝑛+𝑠

(𝑐); then

ℎ (𝜑𝑋, 𝜑𝑌) = −ℎ (𝑋, 𝑌) ; 𝑋, 𝑌 ∈ 𝐷. (44)

Proposition 35. If 𝑀 is a foliate 𝜉
𝛼
-horizontal CR-subman-

ifold of a 𝑆-space form 𝑀
2𝑛+𝑠

(𝑐); then

𝐻(𝑋) ≤ 𝑐; 𝑋 ∈ 𝐷, (45)

and the equality holds if and only if 𝑀 is 𝐷-totally geodesic.

Corollary 36. If 𝑀 is a foliate 𝜉-horizontal CR-submanifold
of a generalized Sasakian space form 𝑀(𝑐), then

𝐻(𝑋) ≤ 𝑓
1
+ 3𝑓
2
; 𝑋 ∈ 𝐷, (46)

and the equality holds if and only if 𝑀 is 𝐷-totally geodesic.

Corollary 37. If 𝑀 is a foliate 𝜉-horizontal CR-submanifold
of either a Sasakian space form, a Kenmotsu space form, a
cosymplectic space form, or an almost 𝐶(𝛼)-manifold form
𝑀(𝑐), then

𝐻(𝑋) ≤ 𝑐; 𝑋 ∈ 𝐷, (47)

and the equality holds if and only if 𝑀 is 𝐷-totally geodesic.

Proposition38. If𝑀 be a𝐷⊥-minimal 𝜉
𝛼
-horizontal CR-sub-

manifold of a generalized 𝑓.𝑝.𝑘.-space form 𝑀
2𝑛+𝑠

(𝐹
1
, 𝐹
2
,F);

then 𝑀 is 𝐷⊥-totally geodesic iff

𝐾
𝑀

(𝑋, 𝑌) = 𝐹
1
, (48)

for any 𝑋,𝑌 ∈ 𝐷⊥.

Proof. Let𝑀 is𝐷⊥-minimal 𝜉
𝛼
-horizontal CR-submanifold

of generalized 𝑓.𝑝.𝑘.-space form 𝑀
2𝑛+𝑠, then by definition of

𝐷⊥-minimal, we have:
𝑞

∑
𝑖=1

ℎ (𝑒
𝑖
, 𝑒
𝑖
) = 0, (49)
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where {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑞
} is a local frame field on 𝐷⊥. Therefore,

for any 𝑋 ∈ 𝐷⊥

ℎ (𝑋,𝑋) = 0. (50)

On the other hand, from (20), we have for 𝑋,𝑌 ∈ 𝐷⊥

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌)) − ‖ℎ(𝑋, 𝑌)‖
2 + 𝐹
1
. (51)

Hence, 𝑀 is 𝐷⊥-totally geodesic if and only if for any 𝑋,𝑌 ∈
𝐷⊥

𝐾
𝑀

(𝑋, 𝑌) = 𝐹
1
. (52)

Proposition 39. If𝑀 is a𝐷-minimal 𝜉
𝛼
-vertical CR-subman-

ifold of a generalized 𝑓.𝑝.𝑘.-space form𝑀
2𝑛+𝑠

(𝐹
1
, 𝐹
2
,F), then

𝑀 is 𝐷-totally geodesic if and only if

𝐾
𝑀

(𝑋, 𝑌) = 𝐹
1
, (53)

for any 𝑋,𝑌 ∈ 𝐷 with 𝑔(𝑋, 𝜑𝑌) = 0.

Proposition 40. If 𝑀 is a 𝜉
𝛼
-horizontal CR-submanifold and

(𝐷,𝐷⊥)-mixed totally geodesic of a generalized 𝑓.𝑝.𝑘.-space
form 𝑀

2𝑛+𝑠

(𝐹
1
, 𝐹
2
,F), then

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌))

+ 𝐹
1
(1 −

𝑠

∑
𝑘=1

𝜂𝑘(𝑋)
2)

+
𝑠

∑
𝑖,𝑗=1

𝐹
𝑖𝑗
𝜂𝑖 (𝑋) 𝜂

𝑗

(𝑋) ,

(54)

for any 𝑋 ∈ 𝐷 and 𝑌 ∈ 𝐷⊥.

Proof. By using 𝜂𝑘(𝑌) = 0, for all 1 ≤ 𝑘 ≤ 𝑠 and 𝑔(𝑋, 𝜑𝑋) = 0
and ℎ(𝑋, 𝑌) = 0, we arrive at the aforementioned equation,
easily.

Proposition 41. If 𝑀 is a 𝜉
𝛼
-vertical CR-submanifold and

(𝐷,𝐷⊥)-mixed totally geodesic of a generalized 𝑓.𝑝.𝑘.-space
form 𝑀

2𝑛+𝑠

(𝐹
1
, 𝐹
2
,F), then

𝐾
𝑀

(𝑋, 𝑌) = 𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑌, 𝑌))

+ 𝐹
1
(1 −

𝑠

∑
𝑘=1

𝜂𝑘(𝑌)
2)

+
𝑠

∑
𝑖,𝑗=1

𝐹
𝑖𝑗
𝜂𝑖 (𝑌) 𝜂

𝑗

(𝑌) ,

(55)

for any 𝑋 ∈ 𝐷 and 𝑌 ∈ 𝐷⊥.

Proof. By using 𝜂𝑘(𝑋) = 0, for all 1 ≤ 𝑘 ≤ 𝑠, 𝑔(𝑋, 𝜑𝑋) =
0, ℎ(𝑋, 𝑌) = 0 and (20), we arrive at the abovementioned
equation, easily.

4. The Ricci Tensor and Scalar
Curvature of a Submanifold

Let 𝑀 be a submanifold of a generalized 𝑓.𝑝.𝑘.-space form
𝑀
2𝑛+𝑠

(𝐹
1
, 𝐹
2
,F). Then it is straightforward to calculate the

Ricci tensor of 𝑀 as follows

Ric (𝑋, 𝑌) =
𝑛

∑
𝑘=1

𝑔 (𝑅 (𝑒
𝑘
, 𝑋) 𝑌, 𝑒

𝑘
)

=
𝑛

∑
𝑘=1

𝐹
1
{𝑔 (𝜑𝑒

𝑘
, 𝜑𝑌) 𝑔 (𝜑2𝑋, 𝑒

𝑘
)

−𝑔 (𝜑𝑋, 𝜑𝑌) 𝑔 (𝜑2𝑒
𝑘
, 𝑒
𝑘
)}

+
𝑛

∑
𝑘=1

𝐹
2
{𝑔 (𝑌, 𝜑𝑋) 𝑔 (𝜑𝑒

𝑘
, 𝑒
𝑘
)

− 𝑔 (𝑌, 𝜑𝑒
𝑘
) 𝑔 (𝜑𝑋, 𝑒

𝑘
)

+2𝑔 (𝑒
𝑘
, 𝜑𝑋) 𝑔 (𝜑𝑌, 𝑒

𝑘
)}

+
𝑛

∑
𝑘=1

𝑠

∑
𝑖,𝑗=1

𝐹
𝑖𝑗
{𝜂𝑖 (𝑒
𝑘
) 𝜂𝑗 (𝑌) 𝑔 (𝜑2𝑋, 𝑒

𝑘
)

− 𝜂𝑖 (𝑋) 𝜂
𝑗

(𝑌) 𝑔 (𝜑2𝑋, 𝑒
𝑘
)

+ 𝜂𝑖 (𝑒
𝑘
) 𝜂𝑗 (𝑒

𝑘
) 𝑔 (𝜑X, 𝜑𝑌)

−𝜂𝑖 (𝑋) 𝜂
𝑗 (𝑒
𝑘
) 𝑔 (𝜑𝑒

𝑘
, 𝜑𝑌)}

− 𝑔 (ℎ (𝑒
𝑘
, 𝑌) , ℎ (𝑋, 𝑒

𝑘
))

+ 𝑔 (ℎ (𝑒
𝑘
, 𝑒
𝑘
) , ℎ (𝑋, 𝑌))

= 𝐹
1
{ − 𝑔 (𝜑𝑋, 𝜑𝑌) − 𝑔 (𝜑𝑋, 𝜑𝑌)

×
𝑛

∑
𝑘=1

(−1 +
𝑠

∑
𝛼=1

(𝜂𝛼 (𝑒
𝑘
))
2

)}

+ 3𝐹
2
{𝑔 (𝑋, 𝑌) −

𝑠

∑
𝛼=1

𝜂𝛼 (𝑋) 𝜂
𝛼

(𝑌)}

+
𝑠

∑
𝑖,𝑗=1

𝐹
𝑖𝑗
{−
𝑛

∑
𝑘=1

𝜂𝑖 (𝑒
𝑘
) 𝜂𝑗 (𝑌) 𝑔 (𝜑𝑋, 𝜑𝑒

𝑘
)

+ 𝜂𝑖 (𝑋) 𝜂
𝑗

(𝑌)
𝑛

∑
𝑘=1

𝑔 (𝜑𝑒
𝑘
, 𝜑𝑒
𝑘
)

+ 𝑔 (𝜑𝑋, 𝜑𝑌)
𝑛

∑
𝑘=1

𝜂𝑖 (𝑒
𝑘
) 𝜂𝑗 (𝑒

𝑘
)

−𝜂𝑖 (𝑋)
𝑛

∑
𝑘=1

𝜂𝑗 (𝑒
𝑘
) 𝑔 (𝜑𝑌, 𝜑𝑒

𝑘
)}
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+
𝑛

∑
𝑘=1

[𝑔 (ℎ (𝑒
𝑘
, 𝑒
𝑘
) , ℎ (𝑋,𝑋))

−𝑔 (ℎ (𝑋, 𝑒
𝑘
) , ℎ (𝑌, 𝑒

𝑘
))]

= 𝐹
1
(𝑛 − 𝑠 − 1)

× (𝑔 (𝑋, 𝑌) −
𝑠

∑
𝛼=1

𝜂𝛼 (𝑋) 𝜂
𝛼

(𝑌))

+ 3𝐹
2
(𝑔 (𝑋, 𝑌) −

𝑠

∑
𝛼=1

𝜂𝛼 (𝑋) 𝜂
𝛼

(𝑌))

+
𝑠

∑
𝑖,𝑗=1

𝐹
𝑖𝑗
(𝑛 − 𝑠) 𝜂

𝑖

(𝑋) 𝜂
𝑗

(𝑌)

+ (
𝑠

∑
𝑖=1

𝐹
𝑖𝑖
)(𝑔 (𝑋, 𝑌) −

𝑠

∑
𝛼=1

𝜂𝛼 (𝑋) 𝜂
𝛼

(𝑌))

+
𝑛

∑
𝑘=1

[𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑒
𝑘
, 𝑒
𝑘
))

−𝑔 (ℎ (𝑋, 𝑒
𝑘
) , ℎ (𝑌, 𝑒

𝑘
))] .

(56)

Also, the scalar curvature 𝜌 of a submanifold𝑀 of𝑀2𝑛+𝑠(𝐹
1
,

𝐹
2
,F) is then given by

𝜌 =
𝑛

∑
𝑡=1

Ric (𝑒
𝑡
, 𝑒
𝑡
) = (𝐹

1
(𝑛 − 𝑠 − 1) + 3𝐹

2
)

× (
𝑛

∑
𝑡=1

𝑔 (𝑒
𝑡
, 𝑒
𝑡
) −
𝑛

∑
𝑡=1

𝑠

∑
𝛼=1

(𝜂𝛼 (𝑒
𝑡
))
2

)

+
𝑠

∑
𝑖,𝑗=1

𝐹
𝑖𝑗
(𝑛 − 𝑠)

𝑛

∑
𝑡=1

𝜂𝑖 (𝑒
𝑡
) 𝜂𝑗 (𝑒

𝑡
) + (

𝑠

∑
𝑖=1

𝐹
𝑖𝑖
)

× (
𝑛

∑
𝑡=1

𝑔 (𝑒
𝑡
, 𝑒
𝑡
) −
𝑛

∑
𝑡=1

𝑠

∑
𝛼=1

(𝜂𝛼 (𝑒
𝑡
))
2

)

+
𝑛

∑
𝑡=1

𝑛

∑
𝑘=1

[𝑔 (ℎ (𝑒
𝑡
, 𝑒
𝑡
) , ℎ (𝑒

𝑘
, 𝑒
𝑘
))

−𝑔 (ℎ (𝑒
𝑡
, 𝑒
𝑘
) , ℎ (𝑒

𝑡
, 𝑒
𝑘
))]

= (𝑛 − 𝑠) ((𝑛 − 𝑠 − 1) 𝐹
1
+ 3𝐹
2
)

+ (𝑛 − 𝑠)
𝑠

∑
𝑖=1

𝐹
𝑖𝑖
+ (𝑛 − 𝑠)

𝑠

∑
𝑖=1

𝐹
𝑖𝑖

+
𝑛

∑
𝑖,𝑗=1

[𝑔 (ℎ (𝑒
𝑖
, 𝑒
𝑖
) , ℎ (𝑒

𝑗
, 𝑒
𝑗
))

−𝑔 (ℎ (𝑒
𝑖
, 𝑒
𝑗
) , ℎ (𝑒

𝑖
, 𝑒
𝑗
))] .

(57)

Thus, we obtain the following.

Theorem 42. Let𝑀 be a submanifold of a generalized 𝑓.𝑝.𝑘.-
space form 𝑀

2𝑛+𝑠

(𝐹
1
, 𝐹
2
,F). Then the Ricci tensor and scalar

curvature of 𝑀 (resp.) are given by

Ric (𝑋, 𝑌) = ((𝑛 − 𝑠 − 1) 𝐹
1
+ 3𝐹
2
+
𝑠

∑
𝑖=1

𝐹
𝑖𝑖
)𝑔 (𝜑𝑋, 𝜑𝑌)

+ (𝑛 − 𝑠)
𝑠

∑
𝑖,𝑗=1

𝐹
𝑖𝑗
𝜂𝑖 (𝑋) 𝜂

𝑗

(𝑌)

+
𝑛

∑
𝑘=1

[𝑔 (ℎ (𝑋,𝑋) , ℎ (𝑒
𝑘
, 𝑒
𝑘
))

−𝑔 (ℎ (𝑋, 𝑒
𝑘
) , ℎ (𝑌, 𝑒

𝑘
))] ,

𝜌 = (𝑛 − 𝑠)((𝑛 − 𝑠 − 1) 𝐹
1
+ 3𝐹
2
+ 2
𝑠

∑
𝑖=1

𝐹
𝑖𝑖
)

+
𝑛

∑
𝑖,𝑗=1

[𝑔 (ℎ (𝑒
𝑖
, 𝑒
𝑖
) , ℎ (𝑒

𝑗
, 𝑒
𝑗
))

−𝑔 (ℎ (𝑒
𝑖
, 𝑒
𝑗
) , ℎ (𝑒

𝑖
, 𝑒
𝑗
))] .

(58)

Theorem 43. Let 𝑀 be a minimal CR-submanifold of a
generalized 𝑓.𝑝.𝑘.-space form 𝑀

2𝑛+𝑠. Then

Ric (𝑋, 𝑌)

− ((𝑛 − 𝑠 − 1) 𝐹
1
+ 3𝐹
2
+
𝑠

∑
𝑖=1

𝐹
𝑖𝑖
)𝑔 (𝜑𝑋, 𝜑𝑌)

− (𝑛 − 𝑠)
𝑠

∑
𝑖,𝑗=1

𝐹
𝑖𝑗
𝜂𝑖 (𝑋) 𝜂

𝑗

(𝑌)

(59)

is negative semidefinite and

𝜌 ≤ (𝑛 − 𝑠)

× ((𝑛 − 𝑠 − 1) 𝐹
1
+ 3𝐹
2
+ 2
𝑠

∑
𝑖=1

𝐹
𝑖𝑖
) .

(60)

Theorem 44. Let 𝑀 be a 𝜉
𝛼
-horizontal (resp., 𝜉

𝛼
-verti-

cal) CR-submanifold of a generalized 𝑓.𝑝.𝑘.-space form
𝑀
2𝑛+𝑠

(𝐹
1
, 𝐹
2
,F).Then theRicci tensor of𝑀 for any𝑋,𝑌 ∈ 𝐷⊥

(resp., 𝑋,𝑌 ∈ 𝐷) is given by

Ric (𝑋, 𝑌) =((𝑛 − 𝑠 − 1) 𝐹
1
+ 3𝐹
2
+
𝑠

∑
𝑖=1

𝐹
𝑖𝑖
)𝑔 (𝑋, 𝑌)

+
𝑛

∑
𝑖=1

[𝑔 (ℎ (𝑋, 𝑌) , ℎ (𝑒
𝑖
, 𝑒
𝑖
))

−𝑔 (ℎ (𝑋, 𝑒
𝑖
) , ℎ (𝑌, 𝑒

𝑖
))] .

(61)
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Table 1

Manifold Ricci tensor of Minimal 𝜉
𝛼
-horizontal CR-submanifold

𝑀
2𝑛+𝑠

(𝐹
1
, 𝐹
2
,F) ((𝑛 − 𝑠 − 1) 𝐹

1
+ 3𝐹
2
+
𝑠

∑
𝑖=1

𝐹
𝑖𝑖
)𝑔(𝜑𝑋, 𝜑𝑌) + (𝑛 − 𝑠)

𝑠

∑
𝑖,𝑗=1

𝐹
𝑖𝑗
𝜂𝑖(𝑋)𝜂𝑗(𝑌)

𝑀
2𝑛+𝑠 1

4
(3𝑐 + 𝑠 + (𝑛 − 𝑠 − 1)(𝑐 + 3𝑠))𝑔(𝜑𝑋, 𝜑𝑌) + (𝑛 − 𝑠)

𝑠

∑
𝑖,𝑗=1

𝜂𝑖(𝑋)𝜂𝑗(𝑌)

𝑀(𝑓
1
, 𝑓
2
, 𝑓
3
) ((𝑛 − 1)𝑓

1
+ 3𝑓
2
− 𝑓
3
)𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌)(3𝑓

2
+ (𝑛 − 2)𝑓

3
)

𝑀Sas(𝑐)
1

4
𝑔(𝑋, 𝑌)(𝑛(𝑐 + 3) + 𝑐 − 5) −

1

4
(𝑐 − 1)(𝑛 + 1)𝜂(𝑋)𝜂(𝑌)

𝑀Ken(𝑐)
1

4
𝑔(𝑋, 𝑌)(𝑛(𝑐 − 3) + 𝑐 + 5) −

1

4
(𝑐 + 1)(𝑛 + 1)𝜂(𝑋)𝜂(𝑌)

𝑀cosym(𝑐)
1

4
𝑐(𝑛 + 1)(𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌))

𝑀
𝐶(𝛼)

(𝑐)
1

4
𝑔(𝑋, 𝑌)(𝑛(𝑐 + 3𝛼2) + 𝑐 − 5𝛼2) −

1

4
(𝑛 + 1)(𝑐 − 𝛼2)𝜂(𝑋)𝜂(𝑌)

Where𝑀2𝑛+𝑠(𝐹
1
, 𝐹
2
,F),𝑀2𝑛+𝑠,𝑀(𝑓

1
, 𝑓
2
, 𝑓
3
),𝑀Sas(𝑐),𝑀Ken(𝑐),𝑀cosym(𝑐), and𝑀𝐶(𝛼)(𝑐) denote generalized 𝑓.𝑝.𝑘.-space form, 𝑆-space form, generalized

Sasakian space form, Sasakian space form, Kenmotsu space form, cosymplectic space form, and 𝐶(𝛼)-space form, respectively.

Table 2

Manifold Scalar curvature of Minimal 𝜉
𝛼
-horizontal CR-submanifold

𝑀
2𝑛+𝑠

(𝐹
1
, 𝐹
2
,F) (𝑛 − 𝑠) ((𝑛 − 𝑠 − 1) 𝐹

1
+ 3𝐹
2
+ 2
𝑠

∑
𝑖=1

𝐹
𝑖𝑖
)

𝑀
2𝑛+𝑠 1

4
(𝑛 − 𝑠)(3𝑐 + 5𝑠 + (𝑛 − 𝑐 − 1)(𝑐 + 3𝑠))

𝑀(𝑓
1
, 𝑓
2
, 𝑓
3
) (𝑛 − 1)(𝑛𝑓

1
+ 3𝑓
2
− 2𝑓
3
)

𝑀Sas(𝑐)
1

4
(𝑛 − 1)(𝑐 − 1 + 𝑛(𝑐 + 3))

𝑀Ken(𝑐)
1

4
(𝑛 − 1)(𝑐 + 1 + 𝑛(𝑐 − 3))

𝑀cosym(𝑐)
1

4
𝑐(𝑛2 − 1)

𝑀
𝐶(𝛼)

(𝑐)
1

4
(𝑛 − 1)(𝑐 − 𝛼2 + 𝑛(𝑐 + 3𝛼2))

Where𝑀2𝑛+𝑠(𝐹
1
, 𝐹
2
,F),𝑀2𝑛+𝑠,𝑀(𝑓

1
, 𝑓
2
, 𝑓
3
),𝑀Sas(𝑐),𝑀Ken(𝑐),𝑀cosym(𝑐), and𝑀𝐶(𝛼)(𝑐) denote generalized 𝑓.𝑝.𝑘.-space form, 𝑆-space form, generalized

Sasakian space form, Sasakian space form, Kenmotsu space form, cosymplectic space form, and 𝐶(𝛼)-space form, respectively.

Theorem 45. Let 𝑀 be minimal 𝜉
𝛼
-horizontal (resp., 𝜉

𝛼
-

vertical) CR-submanifold of a generalized 𝑓.𝑝.𝑘.-space form
𝑀
2𝑛+𝑠

(𝐹
1
, 𝐹
2
,F). Then for any 𝑋,𝑌 ∈ 𝐷⊥ (resp., 𝑋,𝑌 ∈ 𝐷)

Ric (𝑋, 𝑌) − ((𝑛 − 𝑠 − 1) 𝐹
1
+ 3𝐹
2
+
𝑠

∑
𝑖=1

𝐹
𝑖𝑖
)𝑔 (𝑋, 𝑌) (62)

is negative semidefinite.

Corollary 46. One has for Ricci tensor of minimal 𝜉
𝛼
-hor-

izontal CR-submanifold Table 1.

Corollary 47. One has for scalar curvature ofminimal 𝜉
𝛼
-hor-

izontal CR-submanifold Table 2.

Remark 48. Similar results can bewritten forminimal 𝜉
𝛼
-ver-

tical CR-submanifolds, easily.
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ica dell’Università di Trieste, vol. 24, no. 1-2, pp. 147–159, 1992.



Geometry 11

[6] M. H. Shahid, “Anti-invariant submanifolds of a Kenmotsu
manifold,” Kuwait Journal of Science & Engineering, vol. 23, no.
2, pp. 145–151, 1996.

[7] M. Falcitelli and A. M. Pastore, “Generalized globally framed f -
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Mathématiques de Roumanie, vol. 52, no. 100, pp. 291–305, 2009.

[8] K. Yano and M. Kon, CR Submanifolds of Kaehlerian and
Sasakian Manifolds, vol. 30, Birkhäuser, Boston, Mass, USA,
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