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We develop a simple model for a self-gravitating spherically symmetric relativistic star which begins to collapse from an initially
static configuration by dissipating energy in the form of radial heat flow. We utilize the model to show how local anisotropy affects
the collapse rate and thermal behavior of gravitationally evolving systems.

1. Introduction

In cosmology and astrophysics, there exist many outstanding
issues relating to a dynamical system collapsing under the
influence of its own gravity. In view of Cosmic Censorship
Conjecture, the general relativistic prediction is that such a
collapsemust terminate into a space-time singularity covered
under its event horizon though there are several counter
examples where it has been shown that a naked singularity
is more likely to be formed (see [1] and references therein).
In astrophysics, the end stage of a massive collapsing star
has long been very much speculative in nature [1, 2]. From
classical gravity perspective, to get a proper understanding of
the nature of collapse and physical behavior of a collapsing
system, construction of a realistic model of the collapsing
system is necessary. This, however, turns out to be a difficult
task because of the highly nonlinear nature of the governing
field equations. To reduce the complexity, various simplifying
methods are often adopted and the pioneering work of
Oppenheimer and Snyder [3] was a first step in this direction
when collapse of a highly idealized spherically symmetric
dust cloud was studied. Since then, various attempts have
been made to develop realistic models of gravitationally
collapsing systems to understand the nature and properties
of collapsing objects. It got a tremendous impetus when
Vaidya [4] presented a solution describing the exterior
gravitational field of a stellar body with outgoing radiation

and Santos [5] formulated the junction conditions joining
the interior space time of the collapsing object to the Vaidya
exterior metric [4]. These developments have enabled many
investigators to construct realistic models of gravitationally
evolving systems and also to analyze critically relevance of
various factors such as shear, density inhomogeneity, local
anisotropy, electromagnetic field, viscosity, and so forth, on
the physical behaviour of collapsing bodies [6–52]. In the
absence of any established theory governing gravitational
collapse, such investigations have been found to be very use-
ful to get a proper understanding about systems undergoing
gravitational collapse.

The aim of the present work is to develop a simple
model of a collapsing star and investigate the impact of
pressure anisotropy on the overall behaviour of the collapsing
body. Anisotropic stresses may occur in astrophysical objects
for various reasons which include phase transition, density
inhomogeneity, shear, and electromagnetic field [10, 53, 54].
In [53], it has been shown that influences of shear, elec-
tromagnetic field, and so forth on self-bound systems can
be absorbed if the system is considered to be anisotropic,
in general. Local anisotropy has been a well-motivated
factor in the studies of astrophysical objects and its role on
the gross features of static stellar configurations have been
investigated by many authors (see, e.g., [10, 11, 55–59] and
references therein). For dynamical systems, though pressure
anisotropy is, in general, incorporated in the construction,
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very few works have been reported till date where impacts
of anisotropy have been discussed explicitly [12–14, 26, 60].
Appropriate junction conditions for an anisotropic fluid
collapsing on the background space time described by the
Vaidya metric have been obtained in [27]. Considering a
spheroidal geometry of Vaidya and Tikekar [61], Sarwe and
Tikekar [50] have analyzed the impact of geometry vis-a-vis
matter composition on the collapse of stellar bodies which
begin to collapse from initial static configurations possess-
ing equal compactness. Sharma and Tikekar [51, 52] have
investigated the evolution of nonadiabatic collapse of a shear-
free spherically symmetric object with anisotropic stresses
on the background of space-time obtained by introducing
an inhomogeneous perturbation in the Robertson-Walker
space-time.

In the present work, we have developed a model describ-
ing a shear-free spherically symmetric fluid distribution radi-
ating away its energy in the form of radial heat flux. The
star begins its collapse from an initially static configuration
whose energy-momentum tensor describing the material
composition has been assumed to be anisotropic, in general.
To develop themodel of the initial static star, we have utilized
the Finch and Skea [62] ansatz which has earlier been found
to be useful to develop physically acceptable models capable
of describing realistic stars in equilibrium [63–66]. The back
ground space-time for a static configuration for the given
ansatz has a clear geometrical interpretation as may be found
in [65]. By assuming a particular form of the anisotropic
parameter, we have solved the relevant field equations and
constructed a model for the initial static stellar configuration
which could either be isotropic or anisotropic in nature. The
solution provided by Finch and Skea [62] is a subclass of
the solution provided here. Since, the solution presented here
provides a wider range of values of the anisotropic parameter,
it enables us to examine the impact of anisotropic stresses on
the evolution of a large class of initial static configurations.

Our paper has been organized as follows. In Section 2,
we have presented the basic equations governing the system
undergoing non-adiabatic radiative collapse. In Section 3, by
assuming a particular anisotropic profile, we have solved the
relevant field equations to develop amodel for the initial static
star. In Section 4, by stipulating the boundary conditions
across the surface separating the stellar configuration from
the Vaidya [4] space-time, we have solved the surface equa-
tion which governs the evolution of the initial static star that
begins to collapse when the equilibrium is lost. In Section 5,
we have analyzed the impact of anisotropy on gravitationally
collapsing systems by considering evolution of initial static
stars which could either be isotropic or anisotropic. Impact of
anisotropy on the evolution of temperature has been analyzed
in Section 6. Finally, some concluding remarks have been
made in Section 7.

2. Equations Governing the Collapsing System

We write the line element describing the interior space-time
of a spherically symmetric star collapsing under the influence

of self-gravity (in standard coordinates 𝑥0 = 𝑡, 𝑥1 = 𝑟, 𝑥2 = 𝜃,
and 𝑥3 = 𝜙) as

𝑑𝑠
2

−
= −𝐴
2

0
(𝑟) 𝑑𝑡
2

+ 𝑓
2
(𝑡) [𝐵
2

0
(𝑟) 𝑑𝑟

2
+ 𝑟
2
(𝑑𝜃
2
+ sin2𝜃𝑑𝜙2)] ,

(1)

where, 𝐴
0
(𝑟), 𝐵
0
(𝑟), and 𝑓(𝑡) are yet to be determined. Note

that in (1), if we set𝑓(𝑡) = 1, themetric corresponds to a static
spherically symmetric configuration.

We assume that the matter distribution of the collaps-
ing object is an imperfect fluid described by an energy-
momentum tensor of the form

𝑇
𝛼𝛽
= (𝜌 + 𝑝

𝑡
) 𝑢
𝛼
𝑢
𝛽
+ 𝑝
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𝛼
,

(2)

where 𝜌 represents the energy density 𝑝
𝑟
and 𝑝

𝑡
, respectively,

denote fluid pressures along the radial and transverse direc-
tions; 𝑢𝛼 is the 4-velocity of the fluid; 𝜒𝛼 is a unit space-like
4-vector along the radial direction; and 𝑞𝛼 = (0, 𝑞1, 0, 0) is the
heat flux vector which is orthogonal to the velocity vector so
that 𝑢𝛼𝑢

𝛼
= −1 and 𝑢𝛼𝑞

𝛼
= 0.

The Einstein’s field equations governing the evolution of
the system are then obtained as (we set 𝐺 = 𝑐 = 1)

8𝜋𝜌 =

1

𝑓
2
[

1

𝑟
2
−

1

𝑟
2
𝐵
2

0

+

2𝐵


0

𝑟𝐵
3

0

] +

3
̇

𝑓
2

𝐴
2

0
𝑓
2
, (3)
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3
. (6)

In (3)–(6), a “prime” denotes differentiation with respect to 𝑟
and a “dot” denotes differentiation with respect to 𝑡. Making
use of (4) and (5), we define the anisotropic parameter of the
collapsing object as
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We rewrite (3)–(5) as

8𝜋𝜌 =
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𝑠
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2
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2
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2
, (8)
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where 𝜌
𝑠
, (𝑝
𝑟
)
𝑠
and (𝑝

𝑡
)
𝑠
denote the energy-density, radial

pressure, and tangential pressure, respectively, of the initial
static star.

3. Interior Space-Time of the Initially
Static Configuration

In our construction, we assume that an initially static star
(with 𝑓(𝑡) = 1 in (1)), described by metric potentials 𝐴

0
(𝑟),

𝐵
0
(𝑟), and anisotropy Δ

𝑠
(𝑟), starts collapsing if, for some

reasons, it loses its equilibrium. To develop a model of the
initially static configuration, we first assume that the aniso-
tropic parameter is separable in its variables so that Δ(𝑟, 𝑡) =
Δ
𝑠
(𝑟)/𝑓
2
(𝑡). Equation (7) then reduces to
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(11)

which is independent of 𝑡. Equation (11) can only be solved if
any two of the unknown functions (𝐴

0
, 𝐵
0
, and Δ

𝑠
(𝑟)) are

specified. To develop a physically reasonable model of the
initial static configuration, we first utilize the Finch and Skea
[62] ansatz for the metric potential 𝐵

0
given by

𝐵
2

0
(𝑟) = (1 +

𝑟
2

𝑅
2
) , (12)

where 𝑅 is the curvature parameter describing the geometry
of the configuration. In the static case, the ansatz (12) has
a clear geometric characterization and has been found to
yield realistic models for compact stellar objects [64–66].
Substituting (12) in (11), we obtain

(
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𝑠
]𝐴
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(13)

where we have used the following transformation:

𝑥
2
= (1 +

𝑟
2

𝑅
2
) . (14)

To solve (13), we assume a particular anisotropic profile

Δ
𝑠
(𝑥) =

𝛼 (𝑥
2
− 1) (2 − 𝑥

2
)

𝑅
2
𝑥
6

,
(15)

where 𝛼 is the measure of anisotropy. The motivation for
choosing the particular form of the anisotropy parameter is
the following: (1) it is physically reasonable as the anisotropy
vanishes at the center (𝑟 = 0, i.e., 𝑥 = 1) as expected, and
(2) it provides a solution of (13) in closed form. Note that
𝛼 = 0 corresponds to an initial static star which is isotropic
in nature. Substituting (15) in (13), we get

𝑑
2
𝐴
0

𝑑𝑥
2
−

2

𝑥

𝑑𝐴
0

𝑑𝑥

+ [1 −

𝛼 (𝑥
2
− 2)

𝑥
2

]𝐴
0
= 0, (16)

whose solution is obtained as

𝐴
0
(𝑥) = 𝑃𝑥

3/2
𝐽
(1/2)√9−8𝛼

(−𝑖𝑥√−1 + 𝛼)

+ 𝑄𝑥
3/2
𝑌
(1/2)√9−8𝛼

(−𝑖𝑥√−1 + 𝛼) ,

(17)

where 𝑃 and 𝑄 are integration constants,
𝐽
(1/2)√9−8𝛼

(−𝑖𝑥√−1 + 𝛼) is the Bessel function of first
kind of order (1/2)√9 − 8𝛼, and 𝑌

(1/2)√9−8𝛼
(−𝑖𝑥√−1 + 𝛼) is

the Bessel function of second kind of order (1/2)√9 − 8𝛼. It
is obvious that the solution is valid for 𝛼 < 1. At 𝛼 = 1, the
Bessel function encounters a singularity and, therefore, we
shall deal with the 𝛼 = 1 case separately.

Special Cases

Case 1 (𝛼 = 0 (Δ
𝑠
(𝑟) = 0). That is, initial static configuration

is isotropic in nature). Equation (13) reduces to

𝑑
2
𝐴
0

𝑑𝑥
2
−

2

𝑥

𝑑𝐴
0

𝑑𝑥

+ 𝐴
0
= 0, (18)

whose solution is found to be

𝐴
0
(𝑥) = [(𝐶 − 𝐷𝑥) cos𝑥 + (𝐶𝑥 + 𝐷) sin𝑥] , (19)

where, 𝐶 and 𝐷 are integration constants. This particular
solution has been found previously in [62]. However, the
solution (19) can be obtained directly from the solution (17)
by substituting 𝛼 = 0 and setting 𝐶 = −√2/𝜋𝑄 and 𝐷 =

√2/𝜋𝑃.

Case 2 (𝛼 = 1 (Δ
𝑠
(𝑟) ̸= 0)). Equation (16) reduces to

𝑑
2
𝐴
0

𝑑𝑥
2
−

2

𝑥

𝑑𝐴
0

𝑑𝑥

+

2

𝑥
2
𝐴
0
= 0, (20)

whose solution is given by

𝐴
0 (
𝑥) = 𝐴𝑥 + 𝐵𝑥

2
, (21)

where 𝐴 and 𝐵 are integration constants [64]. Unfortunately,
the above solution can not be regained from the general
solution (17) due to the properties of Bessel functions and
should be treated separately.

We thus have amodel for an initially static stellar configu-
ration which could either be isotropic or anisotropic in
nature. After loss of equilibrium, the initially static star starts
collapsing, and to generate a solution of the subsequent evol-
ving system, we need to determine 𝑓(𝑡). This will be taken up
in the following section.
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4. Exterior Space-Time and
Junction Conditions

In our construction, evolution of the collapsing object is
governed by the function𝑓(𝑡)which can be determined from
the boundary conditions across the boundary surface joining
the interior space-time and the exterior space-time described
by the Vaidya [4] metric

𝑑𝑠
2

+
= −(1 −

2𝑚 (V)

𝑟

) 𝑑V
2
− 2𝑑V𝑑𝑟 + 𝑟

2
𝑑 (𝑑𝜃
2
+ sin2𝜃𝑑𝜙2) .

(22)

In (22), V denotes the retarded time and 𝑚(V) represents the
total mass of the collapsing star. The junction conditions are
determined by assuming a time-like 3-surface Σ which sep-
arates the interior and the exterior manifolds [5]. Continuity
of the metric space times ((𝑑𝑠2

−
)
Σ
= (𝑑𝑠

2

+
)
Σ
= 𝑑𝑠
2

Σ
) and the
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= 𝐾
+
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Σ
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Σ
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Σ
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From (25) and (27), the mass enclosed within the boundary
surface at any instant 𝑡 within a boundary surface 𝑟 ≤ 𝑟

Σ
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be written as
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Combining (6), (9), and (26), together within the condition
(𝑝
𝑟
)
𝑠
(𝑟 = 𝑟

Σ
) = 0, we deduce the surface equation governing

the collapsing matter in the form

2
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̇
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− 2𝑛

̇
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where we have defined

𝑛 = [
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0

𝐵
0

]

Σ

. (30)

Note that for a given initial static configuration 𝑛 appears as
a constant in (29). Following Bonnor et al. [6], we write (29)
as a first order differential equation

̇
𝑓 = −

2𝑛

√𝑓

(1 − √𝑓) , (31)

which admits a solution

𝑡 =

1

𝑛

[

𝑓

2

+ √𝑓 + ln(1 − √𝑓)] . (32)

Note that at 𝑡 → −∞, that is, at the onset of collapse, 𝑓 = 1
and 𝑓(𝑡) → 0 as 𝑡 → 0.

We, therefore, have a complete description of the interior
and exterior space-times of the collapsing body. In the
following section, we shall analyze the impact of anisotropy
by making use of the solutions thus obtained.

5. Physical Analysis

To understand the nature of collapse, we assume that a star
starts its collapse at 𝑡 = −∞ (i.e., 𝑓(𝑡) = 1) and the initial
static star is described by the parameters 𝐴

0
, 𝐵
0
, and Δ

𝑠
.

We assume that the collapsing object has an initial radius
𝑟
Σ
(𝑡 → −∞) = 𝑟

𝑠
and mass 𝑚(𝑟

𝑠
, −∞) = 𝑚

𝑠
satisfying the

condition 2𝑚
𝑠
/𝑟
𝑠
< 1. If for some reason, instability develops

inside the star, it begins to collapse. The comoving boundary
surface (𝑟𝑓)

Σ
= 𝑟
𝑠
𝑓(𝑡) then starts shrinking until it reaches its

Schwarzschild horizon value [𝑟𝑓(𝑡bh)]Σ = 𝑟𝑠𝑓(𝑡bh) = 2𝑚(V),
where 𝑡 = 𝑡bh denotes the time of formation of the black hole
corresponding to the value of 𝑓(𝑡) = 𝑓bh.

From (28), the mass of the evolving star at any instant 𝑡
within the boundary radius 𝑟

Σ
may be written as

𝑚(𝑟
Σ
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𝑠
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𝑟
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𝐴
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2

]
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where mass of the initial static star has the form
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𝑠
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Consequently, the condition (𝑟𝑓bh)Σ = 2𝑚(V) yields
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[

[
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]
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]
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and the time of black hole formation is obtained as

𝑡bh =
1

𝑛

[

𝑓bh
2

+ √𝑓bh + ln(1 − √𝑓bh)] . (36)

The model parameters (namely, 𝑅, 𝑃, and 𝑄) involving the
initial static star are determinedusing the following boundary
conditions:

𝐴
0
(𝑟
𝑠
) = (1 −
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𝑠

𝑟
𝑠
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, (37)
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𝑟
)
𝑠
(𝑟
𝑠
) = 0, (39)

where we have matched the static interior space-time to the
Schwarzschild exterior and imposed the condition that the
radial pressure ((𝑝

𝑟
)
𝑠
) must vanish at the boundary.
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Table 1: Data for collapsing systems having different values of the anisotropic parameter 𝛼. All the configurations start collapsing with initial
masses𝑚

𝑠
= 3.25M

⊙
and radii 𝑟

𝑠
= 20 km.

𝛼 𝑃 𝑄 𝑅 (km) 𝑛 𝑓bh 𝑡bh 𝑟bh (km) 𝑚bh (M⊙)

0.9 0.2848 −0.6341 20.8427 0.0244 0.2298 −2.3914 4.596 2.2980

0.6 0.3800 −0.4994 20.8427 0.0163 0.2298 −3.5816 4.596 2.2980

0.3 0.4065 −0.4619 20.8427 0.0142 0.2298 −4.1074 4.596 2.2980

0 0.42067 −0.4418 20.8427 0.0131 0.2298 −4.4578 4.596 2.2980

−0.3 0.4300 −0.4287 20.8427 0.0124 0.2298 −4.7239 4.596 2.2980

−0.6 0.4367 −0.4192 20.8427 0.0118 0.2298 −4.9401 4.596 2.2980

−0.9 0.4418 −0.4120 20.8427 0.0114 0.2298 −5.1230 4.596 2.2980

−1.5 0.4493 −0.4012 20.8427 0.0108 0.2298 −5.4231 4.596 2.2980

𝑓

0.0 0.2 0.4 0.6 0.8 1.0

𝑡

0

−50

−100

−150

−200

𝛼 = 0.9
𝛼 = 0

𝛼 = −0.9

Figure 1: Variation of 𝑓(𝑡) for different anisotropic parameters.

Now, to get an insight about the effects of anisotropy, we
consider different initial static configurations, both isotropic
(𝛼 = 0) and anisotropic (𝛼 ̸= 0).We consider different initially
static stellar configurations of identical initial masses and
radii (we have assumed𝑚

𝑠
= 3.25𝑀

⊙
and radius 𝑟

𝑠
= 20 km)

with different values of the anisotropic parameter 𝛼. Using
numerical procedures, we have calculated the corresponding
model parameters and also evaluated the time of formation
of black holes 𝑡bh and radius (𝑟bh = 𝑟

𝑠
𝑓bh) and mass (𝑚bh)

of the black hole formed. Our results have been compiled
in Table 1. Variations of 𝑓(𝑡) for different choices of the
anisotropic parameter 𝛼 have been shown in Figure 1. We
have also calculated the rate of collapse in our model for
different anisotropic parameters. The collapse rate, in our
model, is obtained as

Θ = 𝑢
𝛽

;𝛽
=

3
̇

𝑓

𝐴
0
𝑓

=

6𝑛 (√𝑓 − 1)

𝐴
0
𝑓√𝑓

. (40)

The collapse rate turns out to be Θ = −0.101464, −0.102096,
−0.100749 for 𝛼 = 0, 0.9, −0.9, respectively. Since, the
collapsing object contracts in size as time evolves Θ, in our

construction, turns out to be negative. However, from the
absolute values of Θ, we note that for a positive anisotropy
(𝑝
𝑟
> 𝑝
𝑡
) the collapse rate increases as compared to an iso-

tropic star while for a negative value of 𝛼 (𝑝
𝑡
> 𝑝
𝑟
), the rate

decreases. From Table 1, we note the following.

Case 1.When𝛼 > 0 (implying𝑝
𝑟
> 𝑝
𝑡
), the horizon is formed

at a faster rate as compared to 𝛼 = 0, that is, isotropic case.

Case 2. When 𝛼 < 0 (implying 𝑝
𝑡
> 𝑝
𝑟
), the horizon is

formed at a slower rate as compared to 𝛼 = 0, that is, isotropic
case.

Similar observations may be found in [12]. However, we
note that mass and radius of the collapsed configuration do
not depend on anisotropy in our formulation.

6. Thermal Behaviour

To analyze the impact of anisotropy on the evolution of
temperature of the collapsing system, we use the relativistic
Maxwell-Cattaneo relation for temperature governing the
heat transport [60, 67, 68] given by

𝜏 (𝑔
𝛼𝛽
+ 𝑢
𝛼
𝑢
𝛽
) 𝑢
𝛿
𝑞
𝛽;𝛿
+ 𝑞
𝛼

= −𝜅 (𝑔
𝛼𝛽
+ 𝑢
𝛼
𝑢
𝛽
) [𝑇
,𝛽
+ 𝑇�̇�
𝛽
] ,

(41)

where 𝜅(≥ 0) is the thermal conductivity and 𝜏(≥ 0) is the
relaxation time. For the line element (1), (41) reduces to

𝜏

𝑑

𝑑𝑡

(𝑞𝑓𝐵
0
) + 𝑞
1
𝑓𝐴
0
𝐵
0
= −𝜅

1

𝑓𝐵
0

𝑑

𝑑𝑟

(𝐴
0
𝑇) . (42)

Following an earlier work [51], we write the relativistic
Fourier heat transport equation by setting 𝜏 = 0 in (42). For
𝜏 = 0, combining (6) and (42), we get

8𝜋𝜅(𝐴
0
𝑇)

=

2𝐴


0
̇

𝑓

𝐴
0
𝑓

. (43)
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Figure 2: Evolution of surface temperature for different anisotropic
parameters.

Let us now assume that the thermal conductivity varies as 𝜅 =
𝛾𝑇
𝜔, where 𝛾 and 𝜔 are constants. Equation (43) then yields

8𝜋𝛾(𝐴
0
𝑇)

=

2𝐴


0
𝑇
−𝜔

𝐴
0

[

2𝑛 (√𝑓 − 1)

𝑓√𝑓

] , (44)

where we have used (31). Integrating the above equation, we
get

𝑇
𝜔+1

=

𝑛 (√𝑓 − 1)

2𝜋𝛾𝑓√𝑓

(

ln𝐴
0

𝐴
0

) + 𝑇
0 (
𝑡) , (45)

To get a simple estimate of temperature evolution, we set 𝜔 =
0, 𝛾 = 1, and 𝑇

0
(𝑡) = 0 and evaluate the surface temperature

at any instant as

𝑇 (𝑟
Σ
, 𝑡) =

𝑛 (√𝑓 − 1)

2𝜋𝑓√𝑓

(

ln𝐴
0

𝐴
0

)

Σ

. (46)

Time evolution of the surface temperature for different
anisotropic parameter 𝛼 has been shown in Figure 2, where
we have used the data from Table 1.

7. Discussions

We have developed a minimalistic and basic framework of
a gravitationally collapsing system which has allowed us to
examine the impact of pressure anisotropy explicitly. In our
construction, we have ignored the effects of various other
factors relevant to collapsing systems such as shear, viscosity,
and charge.Moreover, the line element describing the interior
space-time has been assumed to be spherically symmetric
where the metric functions have been chosen to be separable
in its variables. Though formulation of a more general
framework is always preferred to describe a realistic situation,
the simple model developed here provides a mechanism to

capture the impact of anisotropy on gravitational collapse
successfully. Though, as pointed out in [53], effects of factors
like shear, charge, and so forth on self-bound systems can
be absorbed by considering the system to be anisotropic, in
general, we intend to formulate a more general framework
so as to examine the combined impacts of various factor
relevant to gravitationally collapsing systems. These issues
will be taken up elsewhere.
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[36] W. Barreto, B. Rodŕıguez, L. Rosales, and O. Serrano, “Self-
similar and charged radiating spheres: an anisotropic approach,”
General Relativity andGravitation, vol. 39, no. 1, pp. 23–39, 2007.

[37] C. Ghezzi, “Relativistic structure, stability, and gravitational
collapse of charged neutron stars,” Physical Review D, vol. 72,
Article ID 104017, 2005.

[38] R. Goswami and P. S. Joshi, “Gravitational collapse of an
isentropic perfect fluid with a linear equation of state,” Classical
and Quantum Gravity, vol. 21, no. 15, Article ID 3645, 2004.

[39] R. Goswami and P. S. Joshi, “What role do pressures play
in determining the final end state of gravitational collapse?”
Classical and Quantum Gravity, vol. 19, article 129, no. 20, 2002.

[40] R. Goswami and P. S. Joshi, “Black hole formation in perfect
fluid collapse,” Physical Review D, vol. 69, Article ID 027502,
2004.

[41] S. Chakraborty and T. Bandyopadhyay, “Collapsing inhomoge-
neous dust in the background of perfect (or anisotropic) fluid,”
International Journal of Modern Physics D, vol. 17, no. 08, pp.
1271–1281, 2008.

[42] D. M. Eardley and L. Smarr, “Time functions in numerical
relativity: marginally bound dust collapse,” Physical Review D,
vol. 19, no. 8, pp. 2239–2259, 1979.

[43] F. C.Mena, B. C. Nolan, and R. Tavakol, “Role of anisotropy and
inhomogeneity in Lemaitre-Tolman-Bondi collapse,” Physical
Review D, vol. 70, no. 8, Article ID 084030, 2004.

[44] S. Thirukkanesh and S. D. Maharaj, “Charged relativistic
spheres with generalized potentials,” Mathematical Methods in
the Applied Sciences, vol. 32, no. 6, pp. 684–701, 2009.

[45] K. S. Govinder, M. Govender, and R. Maartens, “On radiating
stellar collapse with shear,” Monthly Notices of the Royal Astro-
nomical Society, vol. 299, no. 3, pp. 809–810, 1998.
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