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X-ray reflectometry is a powerful tool for investigations on rough surface and interface structures ofmultilayered thin filmmaterials.
The X-ray reflectivity has been calculated based on the Parratt formalism, accounting for the effect of roughness by the theory of
Nevot-Croce conventionally. However, in previous studies, the calculations of theX-ray reflectivity often show a strange effect where
interference effects would increase at a rough surface. And estimated surface and interface roughnesses from the X-ray reflectivity
measurements did not correspond to the TEM image observation results.The strange result had its origin in a used equation due to
a serious mistake in which the Fresnel transmission coefficient in the reflectivity equation is increased at a rough interface because
of a lack of consideration of diffuse scattering. In this review, a new accurate formalism that corrects this mistake is presented. The
new accurate formalism derives an accurate analysis of the X-ray reflectivity from amultilayer surface of thin filmmaterials, taking
into account the effect of roughness-induced diffuse scattering. The calculated reflectivity by this accurate reflectivity equation
should enable the structure of buried interfaces to be analyzed more accurately.

1. Introduction

X-rays scattered from amaterial surface at a glancing angle of
incidence provide a wealth of information on the structure of
the surface layer of materials. X-ray scattering spectroscopy
is a powerful tool for investigations on rough surface and
interface structures of multilayered thin film materials [1–
23], and X-ray reflectometry is used for such investigations
of various materials in many fields [14, 15, 20]. In many
previous studies in X-ray reflectometry, the X-ray reflectivity
was calculated based on the Parratt formalism [1], coupled
with the use of the theory of Nevot and Croce to include
roughness [2]. However, the calculated results of the X-ray
reflectivity done in this way often showed strange results
where the amplitude of the oscillation due to the interference
effects would increase for a rougher surface.

Because the X-ray scattering vector in a specular reflec-
tivity measurement is normal to the surface, it provides-
the density profile solely in the direction perpendicular to

surface. Specular reflectivity measurements can yield the
magnitude of the average roughness perpendicular to surface
and interfaces but cannot give information about the lateral
extent of the roughness. In previous studies, the effect of
roughness on the calculation of the X-ray reflectivity only
took into account the effect of the density changes of the
medium in a direction normal to the surface and interface.
On the other hand, diffuse scattering can provide information
about the lateral extent of the roughness. In contrast to
previous calculations of the X-ray reflectivity, in the present
analysis, we consider the effect of a decrease in the intensity of
penetrated X-rays due to diffuse scattering at a rough surface
and rough interface.

In this review, we show that the strange result has its
origin in a currently used equation due to a seriousmistake in
which the Fresnel transmission coefficient in the reflectivity
equation is increased at a rough interface, and the increase
in the transmission coefficient completely overpowers any
decrease in the value of the reflection coefficient because of
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Figure 1: Cross-section image of GaAs/Si(110) by TEM observa-
tion.

a lack of consideration of diffuse scattering. The mistake in
Nevot and Croce’s treatment originates in the fact that the
modified Fresnel coefficients were calculated based on the
theory which contains the X-ray energy conservation rule at
surface and interface. In their discussion, the transmission
coefficients were replaced approximately by the reflection
coefficients by the ignoring diffuse scattering term at the
rough interface and according to the principle of conserva-
tion energy at the rough interface also.The errors of transmit-
tance without themodification cannot be ignored. It is mean-
ingless to try to preciselymatch the numerical result based on
a wrong calculating formula even to details of the reflectivity
profile of the experimental result. Thus, because Nevot
and Croce’s treatment of the Parratt formalism contains a
fundamental mistake regardless of the size of roughness, this
approach needs to be corrected. In the present study, we
present a new accurate formalism that corrects this mistake
and thereby derive an accurate analysis of the X-ray reflectiv-
ity from amultilayer surface, taking into account the effect of
roughness-induced diffuse scattering. The calculated reflec-
tivity obtained by the use of this accurate reflectivity equation
gives a physically reasonable result and should enable the
structure of buried interfaces to be analyzed more accurately.
This paper is the review article that is edited based on the two
research articles of IOP Science [22, 23] and the later study.

2. TEM Observation and X-Ray Reflectivity
Measurement for Surfaces and Interfaces of
Multilayered Thin Film Materials

The surface and interfacial roughness of the same sample
of multilayered thin film material was measured by trans-
mission electron microscopy (TEM) and compared them
with those fromX-ray reflectivity measurements.The surface
sample for examination was prepared as follows; a GaAs layer
was grown on Si(110) by molecular beam epitaxy (MBE).
From TEM observations, the thickness of the GaAs layer
was 48 nm, the root-mean-square (rms) roughness of the
GaAs surface was about 2.8 nm, and the rms roughness of the
interface between GaAs and Si was about 0.7 nm. Figure 1
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Figure 2: Measured X-ray reflectivity from a silicon wafer covered
with a thin (48 nm) GaAs layer.

shows a cross-section image of this GaAs/Si(110) sample
observed by TEM.

X-ray reflectivity measurements were performed using a
Cu-K𝛼1 X-ray beam from an 18 kW rotating-anode source.
Figure 2 shows the measured reflectivity of X-rays (wave
length 0.154 nm) from aGaAs layer with a thickness of 48 nm
on a silicon wafer. The decrease in signal for angles larger
than the total reflection critical angle shows oscillations.
These oscillations are caused by interference between X-rays
that reflect from the surface of GaAs layer and those that
reflect from the interface of the GaAs layer and Si substrate.
The characteristics of these oscillations reflect the surface
roughness and the interface roughness.

3. X-Ray Reflectivity Analysis

In Section 3.1, we consider the calculation of the X-ray
reflectivity from a multilayer material by the Parratt for-
malism [1], and in Section 3.2, the calculation of the X-ray
reflectivity when roughness exists in the surface and the
interface is considered.

3.1. X-ray Reflectivity from a Multilayer Material with a Flat
Surface and Flat Interface. The intensity of X-rays propagat-
ing in the surface layers of a material, that is, the electric and
magnetic fields, can be obtained from Maxwell’s equations
[24]. The effects of the material on the X-ray intensity are
characterized by a complex refractive index 𝑛, which varies
with depth.We divide amaterial in which the density changes
continuously with depth into 𝑁 layers with an index 𝑗. The
complex refractive index of the 𝑗th layer is 𝑛𝑗. The vacuum is
denoted as 𝑗 = 0 and 𝑛0 = 1. The thickness of the 𝑗th layer
is ℎ𝑗, the thickness of the bottom layer being assumed to be
infinite.

The reflectance of an 𝑁-layer multilayer system can be
calculated using the recursive formalism given by Parratt [1].
In the following, we show in detail the process of obtaining
Parratt’s expression and, further, show that this expression
requires conservation of energy at the interface. We go on to
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show that the dispersion of the energy by interface roughness
cannot be correctly accounted for Parratt’s expression.

Following that approach, let 𝑛𝑗 be the refractive index of
the 𝑗th layer, defined as

𝑛𝑗 = 1 − 𝛿𝑗 − 𝑖𝛽𝑗, (1)

where 𝛿𝑗 and 𝛽𝑗 are the real and imaginary parts of the
refractive index. These optical constants are related to the
atomic scattering factor and electron density of the 𝑗th layer
material.

ForX-rays of wavelength𝜆, the optical constants of the𝑗th
layer material consisting of𝑁𝑖𝑗 atoms per unit volume can be
expressed as

𝛿𝑗 =
𝜆
2
𝑟𝑒

2𝜋
∑
𝑖

𝑓1𝑖𝑁𝑖𝑗, 𝛽𝑗 =
𝜆
2
𝑟𝑒

2𝜋
∑
𝑖

𝑓2𝑖𝑁𝑖𝑗, (2)

where 𝑟𝑒 is the classical electron radius and 𝑓1𝑖 and 𝑓2𝑖 are the
real and imaginary parts of the atomic scattering factor of the
𝑖th element atom, respectively.

We take the vertical direction to the surface as the 𝑧-axis,
with the positive direction pointing towards the bulk. The
scattering plane is made the 𝑥-𝑧-plane. The wave vector k𝑗
of the 𝑗th layer is related to the refractive index 𝑛𝑗 of the 𝑗th
layer by

k𝑗 ⋅ k𝑗
𝑛2𝑗

=
𝜔
2

𝑐2
= const, (3)

and, as this necessitates that the 𝑥, 𝑦-direction components of
the wave vector are constant, then the 𝑧-direction component
of the wave vector of the 𝑗th layer is

𝑘𝑗,𝑧 = √𝑛
2
𝑗k0 ⋅ k0 − 𝑘20,𝑥. (4)

In the 0th layer, that is, in vacuum,

𝑛0 = 1, k0 ⋅ k0 = 𝑘
2
,

𝑘 =
2𝜋

𝜆
=
𝜔

𝑐
.

(5)

In the 𝑗th layer, the components of the wave vector are

𝑘𝑗,𝑥 = 𝑘 cos 𝜃, 𝑘𝑗,𝑦 = 0,

𝑘𝑗,𝑧 = 𝑘√𝑛
2
𝑗 − cos2𝜃.

(6)

The electric field of X-ray radiation at a glancing angle of
incidence 𝜃 is expressed as

E0 (𝑧) = A0 exp [𝑖 (k0 ⋅ r − 𝜔𝑡)] . (7)

The incident radiation is usually decomposed into two
geometries to simplify the analysis, onewith the incident elec-
tric field 𝐸 parallel to the plane of incidence (𝑝-polarization)
and one with 𝐸 perpendicular to that plane (𝑠-polarization).
An arbitrary incident wave can be represented in terms
of these two polarizations. Thus, 𝐸0𝑥 and 𝐸0𝑧 correspond to
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Figure 3: Reflected and transmitted X-rays.

𝑝-polarization and 𝐸0𝑦 to 𝑠-polarization; those components
of the amplitude’s electric vector are expressed as

𝐴0𝑥 = −𝐴0𝑝 sin 𝜃, 𝐴0𝑦 = 𝐴0𝑠,

𝐴0𝑧 = 𝐴0𝑝 cos 𝜃.
(8)

The components of the wave vector of the incident X-rays are

𝑘0𝑥 = 𝑘 cos 𝜃, 𝑘0𝑦 = 0, 𝑘0𝑧 = 𝑘 sin 𝜃. (9)

The electric field of reflected X-ray radiation of exit angle 𝜃 is
expressed as

E󸀠0 (𝑧) = A󸀠0 exp [𝑖 (k
󸀠
0 ⋅ r − 𝜔𝑡)] , (10)

where

𝑘
󸀠
0𝑥 = 𝑘0𝑥, 𝑘

󸀠
0𝑦 = 0, 𝑘

󸀠
0𝑧 = −𝑘0𝑧. (11)

Because an X-ray is a transverse wave, the amplitude and
the wave vector are orthogonal as follows:

A𝑗 ⋅ k𝑗 = 0, A󸀠𝑗 ⋅ k
󸀠
𝑗 = 0. (12)

We consider the relation of the electric field E0 of X-rays
incident at a flat surface from vacuum, the electric field E1
of X-rays propagating in the first layer material, the electric
field E󸀠0 of X-rays reflected from the surface exit to vacuum,
and the electric field E󸀠1 of X-rays propagating toward to the
surface in the first layer material, as shown in Figure 3.

The electric fields E1, E󸀠1 in the first layer material below
the surface are expressed as

E1 (𝑧) = A1 exp [𝑖 (k1 ⋅ r − 𝜔𝑡)] ,

E󸀠1 (𝑧) = A󸀠1 exp [𝑖 (k
󸀠
1 ⋅ r − 𝜔𝑡)] .

(13)

where

𝑘
󸀠
1𝑥 = 𝑘1𝑥, 𝑘

󸀠
1𝑦 = 0, 𝑘

󸀠
1𝑧 = −𝑘1𝑧,

𝑘1,𝑥 = 𝑘 cos 𝜃, 𝑘1𝑦 = 0, 𝑘1,𝑧 = 𝑘√𝑛
2
1 − cos2𝜃.

(14)
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The relation of the amplitudes 𝐴0, 𝐴
󸀠
0, 𝐴1, and 𝐴

󸀠
1 can be

found from the continuity equations of the electric fields for
the interface between the 0th and 1th layers as follows:

𝐴0,𝑥 + 𝐴
󸀠
0,𝑥 = 𝐴1,𝑥 + 𝐴

󸀠
1,𝑥,

𝐴0,𝑦 + 𝐴
󸀠
0,𝑦 = 𝐴1,𝑦 + 𝐴

󸀠
1,𝑦,

𝑘0,𝑥𝐴0,𝑥 + 𝑘
󸀠
0,𝑥𝐴
󸀠
0,𝑥 = 𝑘1,𝑥𝐴1,𝑥 + 𝑘

󸀠
1,𝑥𝐴
󸀠
1,𝑥,

𝑘0,𝑦𝐴0,𝑦 + 𝑘
󸀠
0,𝑦𝐴
󸀠
0,𝑦 = 𝑘1,𝑦𝐴1,𝑦 + 𝑘

󸀠
1,𝑦𝐴
󸀠
1,𝑦.

(15)

Another relation of the amplitudes 𝐴0, 𝐴
󸀠
0, 𝐴1, and 𝐴

󸀠
1 can

be found from the continuity equations of themagnetic fields
for the interface between the 0th and 1th layers is shown as
follows:

𝑘0,𝑧𝐴0,𝑦 − 𝑘0,𝑦𝐴0,𝑧 + 𝑘
󸀠
0,𝑧𝐴
󸀠
0,𝑦 − 𝑘

󸀠
0,𝑦𝐴
󸀠
0,𝑧

= 𝑘1,𝑧𝐴1,𝑦 − 𝑘1,𝑦𝐴1,𝑧 + 𝑘
󸀠
1,𝑧𝐴
󸀠
1,𝑦 − 𝑘

󸀠
1,𝑦𝐴
󸀠
1,𝑧,

𝑘0,𝑧𝐴0,𝑥 − 𝑘0,𝑥𝐴0,𝑧 + 𝑘
󸀠
0,𝑧𝐴
󸀠
0,𝑥 − 𝑘

󸀠
0,𝑥𝐴
󸀠
0,𝑧

= 𝑘1,𝑧𝐴1,𝑥 − 𝑘1,𝑥𝐴1,𝑧 + 𝑘
󸀠
1,𝑧𝐴
󸀠
1,𝑥 − 𝑘

󸀠
1,𝑥𝐴
󸀠
1,𝑧.

(16)

From the previous equations, these amplitudes are related by
the Fresnel coefficient tensorΦ for refraction and the Fresnel
coefficient tensorΨ for reflection as follows:

(
A󸀠0
A1
) = (
Ψ0,1 Φ1,0

Φ0,1 Ψ1,0
)(

A0
A󸀠1
) . (17)

Here, the Fresnel coefficient tensor Φ for refraction at the
interface between the 0th and 1th layers is given by

Φ0,1,𝑥𝑥 =
2𝑘1,𝑧k0 ⋅ k0

𝑘0,𝑧k1 ⋅ k1 + 𝑘1,𝑧k0 ⋅ k0
,

Φ1,0,𝑥𝑥 =
2𝑘0,𝑧k1 ⋅ k1

𝑘0,𝑧k1 ⋅ k1 + 𝑘1,𝑧k0 ⋅ k0
,

Φ0,1,𝑦𝑦 =
2𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
,

Φ1,0,𝑦𝑦 =
2𝑘1,𝑧

𝑘1,𝑧 + 𝑘0,𝑧
,

Φ0,1,𝑧𝑧 =
2𝑘0,𝑧k0 ⋅ k0

𝑘0,𝑧k1 ⋅ k1 + 𝑘1,𝑧k0 ⋅ k0
,

Φ1,0,𝑧𝑧 =
2𝑘1,𝑧k1 ⋅ k1

𝑘0,𝑧k1 ⋅ k1 + 𝑘1,𝑧k0 ⋅ k0
,

Φ0,1,𝑥𝑦 = Φ0,1,𝑦𝑥 = Φ0,1,𝑦𝑧 = 0,

Φ1,0,𝑥𝑦 = Φ1,0,𝑦𝑥 = Φ1,0,𝑦𝑧 = 0,

Φ0,1,𝑧𝑦 = Φ0,1,𝑧𝑥 = Φ0,1,𝑥𝑧 = 0,

Φ1,0,𝑧𝑦 = Φ1,0,𝑧𝑥 = Φ1,0,𝑥𝑧 = 0.

(18)

The Fresnel coefficient tensorΨ for reflection from the inter-
face between the 0th and 1th layers is given by

Ψ0,1,𝑥𝑥 =
𝑘1,𝑧k0 ⋅ k0 − 𝑘0,𝑧k1 ⋅ k1
𝑘0,𝑧k1 ⋅ k1 + 𝑘1,𝑧k0 ⋅ k0

,

Ψ1,0,𝑥𝑥 =
𝑘0,𝑧k1 ⋅ k1 − 𝑘1,𝑧k0 ⋅ k0
𝑘0,𝑧k1 ⋅ k1 + 𝑘1,𝑧k0 ⋅ k0

,

Ψ0,1,𝑦𝑦 =
𝑘0,𝑧 − 𝑘1,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
,

Ψ1,0,𝑦𝑦 =
𝑘1,𝑧 − 𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
,

Ψ0,1,𝑧𝑧 = −
𝑘1,𝑧k0 ⋅ k0 − 𝑘0,𝑧k1 ⋅ k1
𝑘0,𝑧k1 ⋅ k1 + 𝑘1,𝑧k0 ⋅ k0

,

Ψ1,0,𝑧𝑧 =
𝑘1,𝑧k0 ⋅ k0 − 𝑘0,𝑧k1 ⋅ k1
𝑘0,𝑧k1 ⋅ k1 + 𝑘1,𝑧k0 ⋅ k0

,

Ψ0,1,𝑥𝑦 = Ψ0,1,𝑦𝑥 = Ψ0,1,𝑦𝑧 = 0,

Ψ1,0,𝑥𝑦 = Ψ1,0,𝑦𝑥 = Ψ1,0,𝑦𝑧 = 0,

Ψ0,1,𝑧𝑦 = Ψ0,1,𝑧𝑥 = Ψ0,1,𝑥𝑧 = 0,

Ψ1,0,𝑧𝑦 = Ψ1,0,𝑧𝑥 = Ψ1,0,𝑥𝑧 = 0.

(19)

Here, we consider the reflection from a flat surface of a single
layer. The reflection coefficient is defined as the ratio 𝑅0,1 of
the reflected electric field to the incident electric field at the
surface of the material. The reflection coefficient 𝑅0,1 from a
single-layer flat surface is equal to the Fresnel coefficientΨ0,1
for reflection, as the following shows

A󸀠0 = R0,1A0 = Ψ0,1A0. (20)

In general, when X-rays that are linearly polarized at an
angle 𝜒 impinge on the surface at an angle of incidence 𝜃, the
components of the amplitude’s electric vector are expressed
as

A0 = (

𝐴0𝑥

𝐴0𝑦

𝐴0𝑧

) =(

−𝐴0𝑝 sin 𝜃

𝐴0𝑠

𝐴0𝑝 cos 𝜃

) ,

(

𝐴0𝑝

𝐴0𝑠

) = (
𝐴0 sin𝜒

𝐴0 cos𝜒
) .

(21)
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The amplitudes of reflected X-ray radiation are expressed as

A󸀠0 = (

𝐴
󸀠
0𝑥

𝐴
󸀠
0𝑦

𝐴
󸀠
0𝑧

)

= (

Ψ0,1,𝑥𝑥 0 0

0 Ψ0,1,𝑦𝑦 0

0 0 Ψ0,1,𝑧𝑧

)(

𝐴0𝑥
𝐴0𝑦
𝐴0𝑧

) ,

A󸀠0 = (

𝐴
󸀠
0𝑥

𝐴
󸀠
0𝑦

𝐴
󸀠
0𝑧

) = 𝐴0(

−Ψ0,1,𝑥𝑥 sin𝜒 sin 𝜃

Ψ0,1,𝑦𝑦 cos𝜒

Ψ0,1,𝑧𝑧 sin𝜒 cos 𝜃

) .

(22)

The X-ray reflectivity 𝑅 is

𝑅 =
󵄨󵄨󵄨󵄨R0,1

󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨
A󸀠0 ⋅ A

󸀠
0

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨A0 ⋅ A0

󵄨󵄨󵄨󵄨
. (23)

Then

𝑅 = Ψ0,1,𝑥𝑥Ψ
∗
0,1,𝑥𝑥sin

2
𝜒sin2𝜃

+ Ψ0,1,𝑦𝑦Ψ
∗
0,1,𝑦𝑦cos

2
𝜒 + Ψ0,1,𝑧𝑧Ψ

∗
0,1,𝑧𝑧sin

2
𝜒cos2𝜃,

(24)

where

Ψ0,1,𝑥𝑥 =
𝑘1,𝑧𝑛
2
0 − 𝑘0,𝑧𝑛

2
1

𝑘0,𝑧𝑛
2
1 + 𝑘1,𝑧𝑛

2
0

,

Ψ0,1,𝑦𝑦 =
𝑘0,𝑧 − 𝑘1,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
,

Ψ0,1,𝑧𝑧 = −
𝑘1,𝑧𝑛
2
0 − 𝑘0,𝑧𝑛

2
1

𝑘0,𝑧𝑛
2
1 + 𝑘1,𝑧𝑛

2
0

,

Ψ0,1,𝑥𝑥Ψ
∗
0,1,𝑥𝑥 =

−𝑘0,𝑧𝑛
2
1 + 𝑘1,𝑧

𝑘0,𝑧𝑛
2
1 + 𝑘1,𝑧

−𝑘0,𝑧𝑛
∗2
1 + 𝑘

∗
1,𝑧

𝑘0,𝑧𝑛
∗2
1 + 𝑘

∗
1,𝑧

,

Ψ0,1,𝑦𝑦Ψ
∗
0,1,𝑦𝑦 =

𝑘0,𝑧 − 𝑘1,𝑧

𝑘0,𝑧 + 𝑘1,𝑧

𝑘0,𝑧 − 𝑘
∗
1,𝑧

𝑘0,𝑧 + 𝑘
∗
1,𝑧

,

Ψ0,1,𝑧𝑧Ψ
∗
0,1,𝑧𝑧 =

𝑘0,𝑧𝑛
2
1 − 𝑘1,𝑧

𝑘0,𝑧𝑛
2
1 + 𝑘1,𝑧

𝑘0,𝑧𝑛
∗2
1 − 𝑘

∗
1,𝑧

𝑘0,𝑧𝑛
∗2
1 + 𝑘

∗
1,𝑧

,

= Ψ0,1,𝑥𝑥Ψ
∗
0,1,𝑥𝑥.

(25)

Then,

𝑅 = Ψ0,1,𝑦𝑦Ψ
∗
0,1,𝑦𝑦cos

2
𝜒 + Ψ0,1,𝑧𝑧Ψ

∗
0,1,𝑧𝑧sin

2
𝜒. (26)

Taking an average for 𝜒,

𝑅 = ⟨Ψ0,1,𝑦𝑦Ψ
∗
0,1,𝑦𝑦cos

2
𝜒 + Ψ0,1,𝑧𝑧Ψ

∗
0,1,𝑧𝑧sin

2
𝜒⟩
𝜒
. (27)

Then

𝑅 =
(Ψ0,1,𝑦𝑦Ψ

∗
0,1,𝑦𝑦 + Ψ0,1,𝑧𝑧Ψ

∗
0,1,𝑧𝑧)

2
. (28)

For the reflectivity in the case of 𝑠-polarized X-rays incident,

𝑅 = Ψ0,1,𝑦𝑦Ψ
∗
0,1,𝑦𝑦. (29)

Next, we consider the reflection from a flat surface of a
multilayer with flat interfaces. We consider the electric field
E𝑗−1 of X-rays propagating in the (𝑗 − 1)th layer material,
the electric field E𝑗 of X-rays propagating in the 𝑗th layer
material, and the electric field E󸀠𝑗−1 of X-rays reflected from
the 𝑗th layer material at 𝑧 = 𝑧𝑗−1,𝑗 of the interface between
the (𝑗 − 1)th layer and 𝑗th layers as shown in Figure 4.

The electric fields E𝑗−1, E󸀠𝑗−1 at the interface between the
(𝑗−1)th layer and 𝑗th layer and the electric fieldsE𝑗, E󸀠𝑗 below
the interface between the (𝑗 − 1)th layer and 𝑗th layer are
expressed as

E𝑗−1 (𝑧𝑗−1,𝑗)

= A𝑗−1 exp [𝑖 (𝑘𝑗−1,𝑥𝑥 + 𝑘𝑗−1,𝑦𝑦 + 𝑘𝑗−1,𝑧ℎ𝑗−1 − 𝜔𝑡)] ,

E󸀠𝑗−1 (𝑧𝑗−1,𝑗)

= A󸀠𝑗−1 exp [𝑖 (𝑘𝑗−1,𝑥𝑥 + 𝑘𝑗−1,𝑦𝑦 − 𝑘𝑗−1,𝑧ℎ𝑗−1 − 𝜔𝑡)] ,

E𝑗 (𝑧𝑗−1,𝑗) = A𝑗 exp [𝑖 (𝑘𝑗,𝑥𝑥 + 𝑘𝑗,𝑦𝑦 − 𝜔𝑡)] ,

E󸀠𝑗 (𝑧𝑗−1,𝑗) = A󸀠𝑗 exp [𝑖 (𝑘𝑗,𝑥𝑥 + 𝑘𝑗,𝑦𝑦 − 𝜔𝑡)] .
(30)

The electric fields of X-rays at the interface between the (𝑗 −
1)th layer and 𝑗th layer can be formally expressed as follows:

E𝑗 (𝑧𝑗−1,𝑗) = Φ𝑗−1,𝑗E𝑗−1 (𝑧𝑗−1,𝑗) +Ψ𝑗,𝑗−1E
󸀠
𝑗 (𝑧𝑗−1,𝑗) ,

E󸀠𝑗−1 (𝑧𝑗−1,𝑗) = Ψ𝑗−1,𝑗E𝑗−1 (𝑧𝑗−1,𝑗) +Φ𝑗,𝑗−1E
󸀠
𝑗 (𝑧𝑗−1,𝑗) ,

(31)

where Ψ𝑗−1,𝑗 is the Fresnel coefficient tensor for reflection
from the interface between the 𝑗 − 1 and 𝑗 layers, andΦ𝑗−1,𝑗
is the Fresnel coefficient tensor for refraction at the interface
between the 𝑗 − 1 and 𝑗 layers. In addition, the electric field
within the 𝑗th layer varies with depth ℎ𝑗 as follows:

E𝑗 (𝑧𝑗,𝑗+1) = E𝑗 (𝑧𝑗−1,𝑗) exp (𝑖𝑘𝑗,𝑧ℎ𝑗) ,

E󸀠𝑗 (𝑧𝑗,𝑗+1) = E󸀠𝑗 (𝑧𝑗−1,𝑗) exp (−𝑖𝑘𝑗,𝑧ℎ𝑗) .
(32)

The amplitudes 𝐴𝑗 and 𝐴
󸀠
𝑗 at the 𝑗th layer are derived from

the previous equations for the interface between the 𝑗−1 and
𝑗 layers as follows:

A󸀠𝑗−1 exp (−𝑖𝑘𝑗−1,𝑧ℎ𝑗−1)

= Ψ𝑗−1,𝑗A𝑗−1 exp (𝑖𝑘𝑗−1,𝑧ℎ𝑗−1) +Φ𝑗,𝑗−1A
󸀠
𝑗,

A𝑗 = Φ𝑗−1,𝑗A𝑗−1 exp (𝑖𝑘𝑗−1,𝑧ℎ𝑗−1) +Ψ𝑗,𝑗−1A
󸀠
𝑗.

(33)
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j−1(z) = j−1exp[i{kj−1,xx + kj−1,yy + kj−1,z(z − zj−2,j−1) − 𝜔t}]AE
󳰀
j−1(z) =

󳰀
j−1exp[i{kj−1,xx + kj−1,y j−1,z(z − zj−2,j−1) − 𝜔t}]AE

j−1(zj−1,j) = j−1exp[i{kj−1,xx + kj−1,yy + kj−1,zhj−1 − 𝜔t}]AE 󳰀
j−1(zj−1,j) =

󳰀
j−1exp[i{kj−1,xx + kj−1,y j−1,zhj−1 − 𝜔t}]AE

j(zj,j) = jexp[i{kj,xx + kj,yy − 𝜔t}]AE 󳰀
j(zj−1,j) =

󳰀
jexp[i{kj,xx + kj,yy − 𝜔t}]AE

j(z) = jexp[i{kj,xx + kj,yy + kj,z(z − zj−1,j) − 𝜔t}]AE
j(z) = jexp[i{kj,xx + kj,y j,z(z − zj−1,j) − 𝜔t}]
󳰀 󳰀AE

E󳰀j(zj,j+1) = A󳰀
jexp[i{kj,xx + kj,yy − kj,zhj − 𝜔t}]Ej(zj,j+1) = Ajexp[i{kj,xx + kj,yy + kj,zhj − 𝜔t}]

Ej+1(zj,j+1) = Aj+1exp[i{kj+1,xx + k+j+1,yy − 𝜔t}] E󳰀j+1(zj,j+1) = A󳰀
j+1exp[i{kj+1,xx + k+j+1,yy − 𝜔t}]

Ej+1(z) = Aj+1exp[i{kj+1,xx + kj+1,yy + kj+1,z(z − zj,j+1) − 𝜔t}]

E󳰀j+1(z) = A󳰀
j+1exp[i{kj+1,xx + kj+1,yy − kj+1,z(z − zj,j+1) − 𝜔t}]

z = zj,j+1

j-layer

j − 1-layer

y − k

y − k

y − k

z = zj−1,j

Figure 4: Reflection and transmission of X-rays in the (𝑗 − 1)th, 𝑗th, and (𝑗 + 1)th layers of a multilayer material.

This relation is expressed by the following matrix:

(
A󸀠𝑗−1 exp (−𝑖𝑘𝑗−1,𝑧ℎ𝑗−1)

A𝑗
)

= (

Ψ𝑗−1,𝑗 Φ𝑗,𝑗−1

Φ𝑗−1,𝑗 Ψ𝑗,𝑗−1

)(

A𝑗−1 exp (𝑖𝑘𝑗−1,𝑧ℎ𝑗−1)

A󸀠𝑗
) .

(34)

Here, the Fresnel coefficient tensor Φ for refraction at the
interface between the (𝑗 − 1)th and 𝑗th layers is given by

Φ𝑗−1,𝑗,𝑥𝑥 =
2𝑘𝑗,𝑧k𝑗−1 ⋅ k𝑗−1

𝑘𝑗−1,𝑧k𝑗 ⋅ k𝑗 + 𝑘𝑗,𝑧k𝑗−1 ⋅ k𝑗−1
,

Φ𝑗,𝑗−1,𝑥𝑥 =
2𝑘𝑗−1,𝑧k𝑗 ⋅ k𝑗

𝑘𝑗−1,𝑧k𝑗 ⋅ k𝑗 + 𝑘𝑗,𝑧k𝑗−1 ⋅ k𝑗−1
,

Φ𝑗−1,𝑗,𝑦𝑦 =
2𝑘𝑗−1,𝑧

𝑘𝑗−1,𝑧 + 𝑘𝑗,𝑧
,

Φ𝑗,𝑗−1,𝑦𝑦 =
2𝑘𝑗,𝑧

𝑘𝑗,𝑧 + 𝑘𝑗−1,𝑧
,

Φ𝑗−1,𝑗,𝑧𝑧 =
2𝑘𝑗−1,𝑧k𝑗−1 ⋅ k𝑗−1

𝑘𝑗−1,𝑧k𝑗 ⋅ k𝑗 + 𝑘𝑗,𝑧k𝑗−1 ⋅ k𝑗−1
,

Φ𝑗,𝑗−1,𝑧𝑧 =
2𝑘𝑗,𝑧k𝑗 ⋅ k𝑗

𝑘𝑗−1,𝑧k𝑗 ⋅ k𝑗 + 𝑘𝑗,𝑧k𝑗−1 ⋅ k𝑗−1
,

Φ𝑗−1,𝑗,𝑥𝑦 = Φ𝑗−1,𝑗,𝑦𝑥 = Φ𝑗−1,𝑗,𝑦𝑧 = 0,

Φ𝑗,𝑗−1,𝑥𝑦 = Φ𝑗,𝑗−1,𝑦𝑥 = Φ𝑗,𝑗−1,𝑦𝑧 = 0,

Φ𝑗−1,𝑗,𝑧𝑦 = Φ𝑗−1,𝑗,𝑧𝑥 = Φ𝑗−1,𝑗,𝑥𝑧 = 0,

Φ𝑗,𝑗−1,𝑧𝑦 = Φ𝑗,𝑗−1,𝑧𝑥 = Φ𝑗,𝑗−1,𝑥𝑧 = 0.

(35)

The Fresnel coefficient tensorΨ for reflection from the inter-
face between the 𝑗 − 1 and 𝑗 layers is given by

Ψ𝑗−1,𝑗,𝑥𝑥 =
𝑘𝑗,𝑧k𝑗−1 ⋅ k𝑗−1 − 𝑘𝑗−1,𝑧k𝑗 ⋅ k𝑗
𝑘𝑗−1,𝑧k𝑗 ⋅ k𝑗 + 𝑘𝑗,𝑧k𝑗−1 ⋅ k𝑗−1

,

Ψ𝑗,𝑗−1,𝑥𝑥 =
𝑘𝑗−1,𝑧k𝑗 ⋅ k𝑗 − 𝑘𝑗,𝑧k𝑗−1 ⋅ k𝑗−1
𝑘𝑗−1,𝑧k𝑗 ⋅ k𝑗 + 𝑘𝑗,𝑧k𝑗−1 ⋅ k𝑗−1

,

Ψ𝑗−1,𝑗,𝑦𝑦 =
𝑘𝑗−1,𝑧 − 𝑘𝑗,𝑧

𝑘𝑗−1,𝑧 + 𝑘𝑗,𝑧
,

Ψ𝑗,𝑗−1,𝑦𝑦 =
𝑘𝑗,𝑧 − 𝑘𝑗−1,𝑧

𝑘𝑗−1,𝑧 + 𝑘𝑗,𝑧
,

Ψ𝑗−1,𝑗,𝑧𝑧 = −
𝑘𝑗,𝑧k𝑗−1 ⋅ k𝑗−1 − 𝑘𝑗−1,𝑧k𝑗 ⋅ k𝑗
𝑘𝑗−1,𝑧k𝑗 ⋅ k𝑗 + 𝑘𝑗,𝑧k𝑗−1 ⋅ k𝑗−1

,

Ψ𝑗,𝑗−1,𝑧𝑧 =
𝑘𝑗,𝑧k𝑗−1 ⋅ k𝑗−1 − 𝑘𝑗−1,𝑧k𝑗 ⋅ k𝑗
𝑘𝑗−1,𝑧k𝑗 ⋅ k𝑗 + 𝑘𝑗,𝑧k𝑗−1 ⋅ k𝑗−1

,

Ψ𝑗−1,𝑗,𝑥𝑦 = Ψ𝑗−1,𝑗,𝑦𝑥 = Ψ𝑗−1,𝑗,𝑦𝑧 = 0,

Ψ𝑗,𝑗−1,𝑥𝑦 = Ψ𝑗,𝑗−1,𝑦𝑥 = Ψ𝑗,𝑗−1,𝑦𝑧 = 0,

Ψ𝑗−1,𝑗,𝑧𝑦 = Ψ𝑗−1,𝑗,𝑧𝑥 = Ψ𝑗−1,𝑗,𝑥𝑧 = 0,

Ψ𝑗,𝑗−1,𝑧𝑦 = Ψ𝑗,𝑗−1,𝑧𝑥 = Ψ𝑗,𝑗−1,𝑥𝑧 = 0.

(36)

The amplitudes A𝑗−1 and A󸀠𝑗−1 of the electric fields E𝑗−1,
E󸀠𝑗−1 at the 𝑗th layer and the amplitudes A𝑗 and A󸀠𝑗 of
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the electric fields E𝑗, E󸀠𝑗 at the (𝑗 + 1)th layer are related by
the following equations:

(
Φ𝑗−1,𝑗 0

0 Φ𝑗−1,𝑗
)(

A𝑗−1

A󸀠𝑗−1
)

= (
exp (−𝑖𝑘𝑗−1,𝑧ℎ𝑗−1) 0

0 exp (𝑖𝑘𝑗−1,𝑧ℎ𝑗−1)
)

× (
1 −Ψ𝑗,𝑗−1

Ψ𝑗−1,𝑗 (Φ𝑗−1,𝑗Φ𝑗,𝑗−1 −Ψ𝑗−1,𝑗Ψ𝑗,𝑗−1)
)(

A𝑗

A󸀠𝑗
) .

(37)
For 𝑠-polarization, the Fresnel coefficients are

Φ𝑗−1,𝑗,𝑦𝑦 =
2𝑘𝑗−1,𝑧

𝑘𝑗−1,𝑧 + 𝑘𝑗,𝑧
, Φ𝑗,𝑗−1,𝑦𝑦 =

2𝑘𝑗,𝑧

𝑘𝑗−1,𝑧 + 𝑘𝑗,𝑧
.

Ψ𝑗−1,𝑗,𝑦𝑦 =
𝑘𝑗−1,𝑧 − 𝑘𝑗,𝑧

𝑘𝑗−1,𝑧 + 𝑘𝑗,𝑧
, Ψ𝑗,𝑗−1,𝑦𝑦 =

𝑘𝑗,𝑧 − 𝑘𝑗−1,𝑧

𝑘𝑗−1,𝑧 + 𝑘𝑗,𝑧
.

(38)

Then, the relations between the amplitudes 𝐴𝑗−1, 𝐴
󸀠
𝑗−1, 𝐴𝑗,

and 𝐴󸀠𝑗 at the interface of the (𝑗 − 1)th and 𝑗th layers are
expressed as follows:

(

𝐴𝑗−1

𝐴
󸀠
𝑗−1

) = (
exp (−𝑖𝑘𝑗−1,𝑧ℎ𝑗−1) 0

0 exp (𝑖𝑘𝑗−1,𝑧ℎ𝑗−1)
)

×(

𝑘𝑗−1,𝑧 + 𝑘𝑗,𝑧

2𝑘𝑗−1,𝑧

𝑘𝑗−1,𝑧 − 𝑘𝑗,𝑧

2𝑘𝑗−1,𝑧

𝑘𝑗−1,𝑧 − 𝑘𝑗,𝑧

2𝑘𝑗−1,𝑧

𝑘𝑗−1,𝑧 + 𝑘𝑗,𝑧

2𝑘𝑗−1,𝑧

)(

𝐴𝑗

𝐴
󸀠
𝑗

) .

(39)
The reflection coefficient is defined as the ratio R0,1 of

the reflected electric field to the incident electric field at the
surface of the material and is given by

A󸀠0 = R0,1A0. (40)

The reflection coefficient R𝑗−1,𝑗 of the electric field E󸀠𝑗−1 to the
electric field E𝑗−1 at the interface of (𝑗 − 1)th layer and 𝑗th
layer is

A󸀠𝑗−1 = R𝑗−1,𝑗A𝑗−1, (41)

and the ratio 𝑅𝑗−1,𝑗 is related to the ratio 𝑅𝑗,𝑗+1 as follows:

R𝑗−1,𝑗 =
Ψ𝑗−1,𝑗 + (Φ𝑗−1,𝑗Φ𝑗,𝑗−1 −Ψ𝑗−1,𝑗Ψ𝑗,𝑗−1)R𝑗,𝑗+1

1 −Ψ𝑗,𝑗−1R𝑗,𝑗+1

× exp (2𝑖𝑘𝑗−1,𝑧ℎ𝑗−1) .

(42)

Here, from the relation between the Fresnel coefficient for
reflection and the Fresnel coefficient for refraction,

Φ𝑗−1,𝑗Φ𝑗,𝑗−1 −Ψ𝑗−1,𝑗Ψ𝑗,𝑗−1 = 1,

Ψ𝑗−1,𝑗 = − Ψ𝑗,𝑗−1.
(43)

We can formulate the following relationship:

R𝑗−1,𝑗 =
Ψ𝑗−1,𝑗 + R𝑗,𝑗+1
1 +Ψ𝑗−1,𝑗R𝑗,𝑗+1

exp (2𝑖𝑘𝑗−1,𝑧ℎ𝑗−1) . (44)

It is reasonable to assume that no wave will be reflected back
from the substrate, so that

R𝑁,𝑁+1 = 0. (45)

Then, the X-ray reflectivity is simply

𝑅 =
󵄨󵄨󵄨󵄨𝑅0,1

󵄨󵄨󵄨󵄨
2
. (46)

3.2. Previous Calculations of X-Ray Reflectivity When Rough-
ness Exists at the Surface and Interface. When the surface
and interface have roughness, the Fresnel coefficient for
reflection is reduced by the roughness [8–19]. The effect of
the roughness was previously put into the calculation based
on the theory of Nevot and Croce [2]. The effect of such
roughness was taken into account only through the effect of
the changes in density of themedium in a vertical direction to
the surface and interface. With the use of relevant roughness
parameters like the root-mean-square (rms) roughness 𝜎𝑗−1,𝑗
of the 𝑗th layer, the reduced Fresnel reflection coefficient Ψ󸀠
for 𝑠-polarization is transformed as follows:

Ψ
󸀠
𝑗,𝑗−1 = Ψ𝑗,𝑗−1 exp (−2𝑘𝑗,𝑧𝑘𝑗−1,𝑧𝜎

2
𝑗,𝑗−1) , (47)

and the X-ray reflectivity is calculated using the following
equation:

𝑅𝑗−1,𝑗 =
𝑅𝑗,𝑗+1 + Ψ

󸀠
𝑗−1,𝑗

1 + 𝑅𝑗,𝑗+1Ψ
󸀠
𝑗−1,𝑗

exp (2𝑖𝑘𝑗−1,𝑧ℎ𝑗−1) . (48)

Figure 5 shows the result (dots) of a calculation based
on these expressions of the reflectivity of X-rays from a
GaAs layer with a thickness of 48 nm on Si substrate. The
rms roughness of the interface of GaAs and Si was set to
0.7 nm, the value derived from the TEM observations. The
rms roughness of the GaAs surface was set to 2.8 nm, the
value derived from the AFM measurements. The agreement
of the calculated and experimental results in Figure 2 is not
good.The calculated result suggests the following: if the value
of the surface roughness and the interfacial roughness in the
calculation would be made larger, the calculated result will
more closely approach the experimental result. In the TEM
observation and AFMmeasurements, one half of the peak to
peak value of the interface roughness equates to 1 nm, and
that of the GaAs surface is 4 nm. We then recalculated the
reflectivity values of this order for the surface roughness and
the interface roughness in the calculation. Three calculated
results for a roughness of GaAs surface of 3.5 nm, 4 nm, and
4.5 nm, with an interface roughness of 1 nm are shown in
Figure 6.

Although the calculated results didmore closely approach
those from experiment, they still showed poor agree-
ment. The ratio of the oscillation amplitude to the value of
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Figure 5: Calculated (dots) and measured (line) reflectivity from a
GaAs layer with a thickness of 48 nm on a Si substrate. The surface
roughness 𝜎1 is 2.8 nm and the interfacial roughness 𝜎2 is 0.7 nm.
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Figure 6: Calculated (dotted, dashed, and thin lines) and measured
(thick line) reflectivity from a GaAs layer with a thickness of 48 nm
on a Si substrate. In the calculation, the interface roughness 𝜎2
is 1.0 nm. Three calculated results with the roughness 𝜎1 of GaAs
surface set at 3.5 nm, 4 nm, and 4.5 nm are shown.

the reflectivity near an angle of incidence of 0.36∘ in the
calculated reflectivity for the GaAs surface of 4 nm roughness
in Figure 6 is larger than that of the reflectivity for a small
roughness of 2.8 nm in Figure 2, that is, near an angle of
incidence of 0.36∘ interference effects appear to increase the
reflectivity in the case of large roughness. It seems very
strange that interference effects would operate in this way.

Figure 7 shows the reflectivity from a GaAs-covered
silicon wafer, solid line shows the calculated result in the case
of flat surface and flat interface, dashed line shows the calcu-
lated result in the case that the surface has an rms roughness
of 4 nm, and dotted line shows the equivalent result when
the surface and interface both have an rms roughness of
4 nm. In the latter case, the reflectivity curve (dots) decreases
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Figure 7: Calculated reflectivity from a GaAs layer with a thickness
of 48 nm on a Si substrate. The solid curve is for a flat surface and a
flat interface.The dashed curve is for a surface roughness 𝜎1 of 4 nm
and a flat interface, while the dotted curve is for a surface roughness
𝜎1 of 4 nm and interface roughness 𝜎2 of 4 nm.

more quickly than that in Figure 3. However, the ratio of the
oscillation amplitude to the value of the reflectivity does not
decrease. It seems unnatural that the effect of interference
does not also decrease at a rough surface and interface,
because the amount of coherent X-rays should reduce due to
diffuse scattering at a rough surface and interface.

In the reflectivity curve (dashed line) for a surface rough-
ness of 4 nm and with a flat interface, the ratio of the oscilla-
tion amplitude to the size of the reflectivity near an angle of
incidence of 0.36∘ is much larger than the reflectivity of the
flat surface in Figure 3. It seems very strange that the inter-
ference effects would increase so much at a rough surface.

To probe these effects further, we then recalculated the
reflectivity for surface roughness of 3.5 nm, 4 nm, and 4.5 nm,
and with a flat interface. Those calculated reflectivity results
are shown in Figure 8. The ratio of the oscillation amplitude
to the reflectivity near an angle of incidence of 0.36∘ in
calculated reflectivity is larger in all cases than that of the
reflectivity in the case of a flat surface in Figure 3.

For most angles of incidence within this range, the reflec-
tivity of the surface with a roughness of 4 nm is near themean
value of the reflectivity of surfaces with roughnesses of 3.5 nm
and 4.5 nm. However, near an angle of incidence of 0.36∘, the
reflectivity of the surface with a roughness of 4 nm is very
much attenuated compared to that same average. It seems
very strange that the reflectivity of the average roughness has
a value quite different from the mean value of the reflectivity
of each roughness, because the value of the roughness is not
the value of the amplitude of a rough surface but the standard
deviation value of various amplitudes of rough surface.

Figure 9 shows the reflectivity from a tungsten-covered
silicon wafer calculated by the theory in use prior to this
work. The ratio of the oscillation amplitude to the value of
the reflectivity from a surface with an rms surface roughness
of 0.3 nm (dashed line) does not decrease near an angle of
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Figure 8: Calculated reflectivity from a GaAs layer with a thickness
of 48 nmon a Si substrate. In the calculation, the interface roughness
𝜎2 is 0 nm.Three calculated results are shown for aGaAs surfacewith
an rms roughness 𝜎1 of 3.5 nm, 4 nm, and 4.5 nm.
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Figure 9: X-ray reflectivity from a silicon wafer covered with a thin
(10 nm) tungsten film calculated by the theory in use prior to this
work. Solid line shows the case of a flat surface. Dashed line shows
the case of a surface with an rms surface roughness of 0.3 nm.

incidence of 1.8∘ but increases. This result is strange and not
reasonable.

3.3. Effect of Roughness on X-Ray Reflectivity of Multilayer
Surface. We now consider the previous strange result of the
X-ray reflectivity which was calculated based on the Parratt
formalism [1] with the use of the Nevot and Croce approach
to account for roughness [2]. In that calculation, the X-
ray reflectivity is derived using the relation of the reflection
coefficient 𝑅𝑗−1,𝑗 and 𝑅𝑗,𝑗+1 as follows:

𝑅𝑗−1,𝑗 =
𝑅𝑗,𝑗+1 + Ψ

󸀠
𝑗−1,𝑗

1 + 𝑅𝑗,𝑗+1Ψ
󸀠
𝑗−1,𝑗

exp (2𝑖𝑘𝑗−1,𝑧ℎ𝑗−1) , (49)

where the reduced Fresnel reflection coefficient Ψ󸀠 that takes
into account the effect of the roughness is as follows:

Ψ
󸀠
𝑗,𝑗−1 = Ψ𝑗,𝑗−1 exp (−2𝑘𝑗,𝑧𝑘𝑗−1,𝑧𝜎

2
𝑗,𝑗−1) . (50)

However, the relationship between the reflection coefficients
𝑅𝑗−1,𝑗 and 𝑅𝑗,𝑗+1 was originally derived as the following
equation:

R𝑗−1,𝑗 =
Ψ
󸀠
𝑗−1,𝑗 + (Φ

󸀠
𝑗−1,𝑗Φ

󸀠
𝑗,𝑗−1 −Ψ

󸀠
𝑗−1,𝑗Ψ

󸀠
𝑗,𝑗−1)R𝑗,𝑗+1

1 −Ψ󸀠𝑗,𝑗−1R𝑗,𝑗+1

× exp (2𝑖𝑘𝑗−1,𝑧ℎ𝑗−1) .

(51)

Here, the following conditional relations between the Fresnel
coefficient for reflection and refraction are relevant to the
previous equation:

Φ
󸀠
𝑗−1,𝑗Φ

󸀠
𝑗,𝑗−1 −Ψ

󸀠
𝑗−1,𝑗Ψ

󸀠
𝑗,𝑗−1 = 1, (52)

Ψ
󸀠
𝑗−1,𝑗 = −Ψ

󸀠
𝑗,𝑗−1, (53)

then,

Φ
󸀠
𝑗−1,𝑗Φ

󸀠
𝑗,𝑗−1 +Ψ

󸀠2
𝑗,𝑗−1 = 1, (54)

that is,

Φ
󸀠
𝑗−1,𝑗Φ

󸀠
𝑗,𝑗−1 = 1 −Ψ

󸀠2
𝑗,𝑗−1. (55)

The Fresnel coefficients for refraction at the rough inter-
face are derived using the Fresnel reflection coefficient Ψ as
follows:

Φ
󸀠
𝑗−1,𝑗Φ

󸀠
𝑗,𝑗−1 −Φ𝑗−1,𝑗Φ𝑗,𝑗−1

= Ψ
2
𝑗,𝑗−1 (1 − exp (−2𝑘𝑗,𝑧𝑘𝑗−1,𝑧𝜎

2
𝑗,𝑗−1)) > 0,

(56)

Φ
󸀠
𝑗−1,𝑗Φ

󸀠
𝑗,𝑗−1

= Φ𝑗−1,𝑗Φ𝑗,𝑗−1 + (1 −Φ𝑗−1,𝑗Φ𝑗,𝑗−1)

× (1 − exp (−2𝑘𝑗,𝑧𝑘𝑗−1,𝑧𝜎
2
𝑗,𝑗−1)) .

(57)

Therefore, the Fresnel coefficients for refraction at the rough
interface are necessarily larger than the Fresnel coefficient for
refraction at the flat interface. The resulting increase in the
transmission coefficient completely overpowers any decrease
in the value of the reflection coefficient.These coefficients for
refraction obviously contain a mistake because the penetra-
tion of X-rays should decrease at a rough interface because
of diffuse scattering. We propose that the unnatural results
in the previous calculation of the X-ray reflectivity originate
from the fact that diffuse scattering was not considered. In
fact (52) contains the X-ray energy conservation rule at the
interface as the following identity equation for the Fresnel
coefficient:

Φ𝑗−1,𝑗Φ𝑗,𝑗−1 − Ψ𝑗−1,𝑗Ψ𝑗,𝑗−1 = Φ𝑗−1,𝑗Φ𝑗,𝑗−1 + Ψ
2
𝑗−1,𝑗 = 1.

(58)
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Here, we consider the energy flow of the X-ray. In elec-
tromagnetic radiation, E, H, the energy flow is equal to the
Poynting vector

p = 1
4
(E∗ ×H + E ×H∗) , (59)

where

H = √
𝜀

𝜇

k
𝑘
× E, (60)

and 𝜀 and 𝜇 are the dielectric and magnetic permeability.The
Poynting vector is therefore

p = 1
4
√
𝜀

𝜇
(E∗ × (k

𝑘
× E) + E × (k

𝑘
× E)
∗

)

=
1

4
√
𝜀

𝜇
(
k
𝑘
E∗ ⋅ E + k∗

𝑘
E ⋅ E∗) = 1

2𝜛𝜇

k + k∗

2
|E|2.

(61)

Then, the Poynting vector that crosses the interface is

∫ p𝑑S = ∫ 1

2𝜇𝜔

k + k∗

2
|E|2𝑑S

=
1

2𝜇𝜔
∫
k + k∗

2
|E|2𝑑S = 1

2𝜇𝜔

𝑘𝑧 + 𝑘
∗
𝑧

2
|A|2.

(62)

The amplitudes A𝑗−1 and A󸀠𝑗−1 of the electric fields E𝑗−1,
E󸀠𝑗−1 at the 𝑗th layer and amplitudes A𝑗 and A󸀠𝑗 of the electric
fields E𝑗, E󸀠𝑗 at the (𝑗 + 1)th layer are related by the following
equations:

(
Φ𝑗−1,𝑗 0

0 Φ𝑗−1,𝑗
)(

A𝑗−1

A󸀠𝑗−1
)

= (
exp (−𝑖𝑘𝑗−1,𝑧ℎ𝑗−1) 0

0 exp (𝑖𝑘𝑗−1,𝑧ℎ𝑗−1)
)

× (
1 −Ψ𝑗,𝑗−1

Ψ𝑗−1,𝑗 (Φ𝑗−1,𝑗Φ𝑗,𝑗−1 −Ψ𝑗−1,𝑗Ψ𝑗,𝑗−1)
)(

A𝑗

A󸀠𝑗
) .

(63)

When
Φ𝑗−1,𝑗Φ𝑗,𝑗−1 −Ψ𝑗−1,𝑗Ψ𝑗,𝑗−1 = 1,

Ψ𝑗−1,𝑗 = −Ψ𝑗,𝑗−1,
(64)

we can describe the previous equation as

(
Φ𝑗−1,𝑗 0

0 Φ𝑗−1,𝑗
)(

A𝑗−1 A󸀠∗𝑗−1

A󸀠𝑗−1 A∗𝑗−1
)

= (
exp (−𝑖𝑘𝑗−1,𝑧ℎ𝑗−1) 0

0 exp (𝑖𝑘𝑗−1,𝑧ℎ𝑗−1)
)

× (
1 Ψ𝑗−1,𝑗

Ψ𝑗−1,𝑗 1
)(

A𝑗 A󸀠∗𝑗
A󸀠𝑗 A∗𝑗

) .

(65)

From the determinant of the refraction matrix,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Φ𝑗−1,𝑗 0

0 Φ𝑗−1,𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
󵄨󵄨󵄨󵄨󵄨
A𝑗−1

󵄨󵄨󵄨󵄨󵄨

2
−
󵄨󵄨󵄨󵄨󵄨
A󸀠𝑗−1

󵄨󵄨󵄨󵄨󵄨

2
)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

exp (−𝑖𝑘𝑗−1,𝑧ℎ𝑗−1) 0

0 exp (𝑖𝑘𝑗−1,𝑧ℎ𝑗−1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 Ψ𝑗−1,𝑗
Ψ𝑗−1,𝑗 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(
󵄨󵄨󵄨󵄨󵄨
A𝑗
󵄨󵄨󵄨󵄨󵄨

2
−
󵄨󵄨󵄨󵄨󵄨
A󸀠𝑗
󵄨󵄨󵄨󵄨󵄨

2
) .

(66)

Then

Φ
2
𝑗−1,𝑗 (

󵄨󵄨󵄨󵄨󵄨
A𝑗−1

󵄨󵄨󵄨󵄨󵄨

2
−
󵄨󵄨󵄨󵄨󵄨
A󸀠𝑗−1

󵄨󵄨󵄨󵄨󵄨

2
)

= (1 −Ψ
2
𝑗−1,𝑗) (

󵄨󵄨󵄨󵄨󵄨
A𝑗
󵄨󵄨󵄨󵄨󵄨

2
−
󵄨󵄨󵄨󵄨󵄨
A󸀠𝑗
󵄨󵄨󵄨󵄨󵄨

2
) ,

Φ𝑗−1,𝑗 (
󵄨󵄨󵄨󵄨󵄨
A𝑗−1

󵄨󵄨󵄨󵄨󵄨

2
−
󵄨󵄨󵄨󵄨󵄨
A󸀠𝑗−1

󵄨󵄨󵄨󵄨󵄨

2
) = Φ𝑗,𝑗−1 (

󵄨󵄨󵄨󵄨󵄨
A𝑗
󵄨󵄨󵄨󵄨󵄨

2
−
󵄨󵄨󵄨󵄨󵄨
A󸀠𝑗
󵄨󵄨󵄨󵄨󵄨

2
) ,

2𝑘𝑗−1,𝑧

𝑘𝑗−1,𝑧 + 𝑘𝑗,𝑧
(
󵄨󵄨󵄨󵄨󵄨
A𝑗−1

󵄨󵄨󵄨󵄨󵄨

2
−
󵄨󵄨󵄨󵄨󵄨
A󸀠𝑗−1

󵄨󵄨󵄨󵄨󵄨

2
)

=
2𝑘𝑗,𝑧

𝑘𝑗−1,𝑧 + 𝑘𝑗,𝑧
(
󵄨󵄨󵄨󵄨󵄨
A𝑗
󵄨󵄨󵄨󵄨󵄨

2
−
󵄨󵄨󵄨󵄨󵄨
A󸀠𝑗
󵄨󵄨󵄨󵄨󵄨

2
) ,

𝑘𝑗−1,𝑧
󵄨󵄨󵄨󵄨󵄨
A𝑗−1

󵄨󵄨󵄨󵄨󵄨

2
− 𝑘𝑗−1,𝑧

󵄨󵄨󵄨󵄨󵄨
A󸀠𝑗−1

󵄨󵄨󵄨󵄨󵄨

2
= 𝑘𝑗,𝑧

󵄨󵄨󵄨󵄨󵄨
A𝑗
󵄨󵄨󵄨󵄨󵄨

2
− 𝑘𝑗,𝑧

󵄨󵄨󵄨󵄨󵄨
A󸀠𝑗
󵄨󵄨󵄨󵄨󵄨

2
.

(67)

That is, the X-ray energy flow is conserved at the interface.
When the Fresnel coefficients at the rough interface obeys the
following equations,

Φ
󸀠
𝑗−1,𝑗Φ

󸀠
𝑗,𝑗−1 −Ψ

󸀠
𝑗−1,𝑗Ψ

󸀠
𝑗,𝑗−1 = 1,

Ψ
󸀠
𝑗−1,𝑗 = −Ψ

󸀠
𝑗,𝑗−1,

(68)

these coefficients fulfil X-ray energy flow conservation at the
interface, and so diffuse scattering was not considered at the
rough interface.

This conservation expression should not apply any longer
when the Fresnel reflection coefficient is replaced by the
reduced coefficient Ψ󸀠 when there is roughening at the
interface. Therefore, calculating the reflectivity using this
reduced Fresnel reflection coefficient Ψ󸀠 in (50) will incor-
rectly increase the Fresnel transmission coefficient Φ󸀠; that
is, Φ < Φ󸀠.

The penetration of X-rays should decrease at a rough
interface because of diffuse scattering.Therefore, the identity
equation for the Fresnel coefficients become

Φ
󸀠
𝑗−1,𝑗Φ

󸀠
𝑗,𝑗−1 − Ψ

󸀠
𝑗−1,𝑗Ψ

󸀠
𝑗,𝑗−1

= Φ
󸀠
𝑗−1,𝑗Φ

󸀠
𝑗,𝑗−1 + Ψ

󸀠2
𝑗−1,𝑗

= 1 − 𝐷
2
< 1,

(69)

where 𝐷2 is a decrease due to diffuse scattering. Then, in
the calculation of X-ray reflectivity when there is roughening
at the surface or the interface, the Fresnel transmission
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coefficient Φ󸀠 should be used for the reduced coefficient.
Several theories exist to describe the influence of roughness
on X-ray scattering [8–19]. When the surface and interface
are both rough, the Fresnel coefficient for refraction has been
derived in several theories [14–19].

3.4.TheRefractive Fresnel Coefficient of a Rough InterfaceUsed
in Previous Reflectivity Calculations. Initially, we consider the
reduced Fresnel coefficient, which is known as the Croce-
Nevot factor. When the 𝑧-position of the interface of 0th
layer and 1th layer 𝑧0,1 fluctuates vertically as a function of
the lateral position because of the interface roughness, the
relations between theamplitudes 𝐴0, 𝐴

󸀠
0, 𝐴1, and 𝐴

󸀠
1 are

derived by the use of the Fresnel coefficient tensor Φ for
refraction and the Fresnel coefficient tensor Ψ for reflection
as follows:

A1 exp (𝑖𝑘1,𝑧𝑧0,1)

= Φ0,1A0 exp (𝑖𝑘0,𝑧𝑧0,1) +Ψ1,0A
󸀠
1 exp (−𝑖𝑘1,𝑧𝑧0,1) ,

A󸀠0 exp (−𝑖𝑘0,𝑧𝑧0,1)

= Ψ0,1A0 exp (𝑖𝑘0,𝑧𝑧0,1) +Φ1,0A
󸀠
1 exp (−𝑖𝑘1,𝑧𝑧0,1) .

(70)

Then,

(
Φ0,1 exp (𝑖𝑘0,𝑧𝑧0,1) 0

Ψ0,1 exp (𝑖𝑘0,𝑧𝑧0,1) − exp (−𝑖𝑘0,𝑧𝑧0,1)
)(

𝐴0

𝐴
󸀠
0

) = (

exp (𝑖𝑘1,𝑧𝑧0,1) −Ψ1,0 exp (−𝑖𝑘1,𝑧𝑧0,1)

0 −Φ1,0 exp (−𝑖𝑘1,𝑧𝑧0,1)
)(

𝐴1

𝐴
󸀠
1

) ,

(
𝐴0

𝐴
󸀠
0

) =
1

Φ0,1

(
exp (−𝑖𝑘0,𝑧𝑧0,1) 0

Ψ0,1 exp (𝑖𝑘0,𝑧𝑧0,1) −Φ0,1 exp (𝑖𝑘0,𝑧𝑧0,1)
)(

exp (𝑖𝑘1,𝑧𝑧0,1) −Ψ1,0 exp (−𝑖𝑘1,𝑧𝑧0,1)

0 −Φ1,0 exp (−𝑖𝑘1,𝑧𝑧0,1)
)(

𝐴1

𝐴
󸀠
1

) ,

(
𝐴0

𝐴
󸀠
0

) =
1

Φ0,1

(

exp (−𝑖 (𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1) −Ψ1,0 exp (−𝑖 (𝑘0,𝑧 + 𝑘1,𝑧) 𝑧0,1)

Ψ0,1 exp (𝑖 (𝑘0,𝑧 + 𝑘1,𝑧) 𝑧0,1) (Φ0,1Φ1,0 −Ψ0,1Ψ1,0) exp (𝑖 (𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)
)(

𝐴1

𝐴
󸀠
1

) ,

(71)

where

Ψ0,1,𝑦𝑦 =
𝑘0,𝑧 − 𝑘1,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
, Ψ1,0𝑦𝑦 =

𝑘1,𝑧 − 𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
,

Φ0,1,𝑦𝑦 =
2𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
, Φ1,0,𝑦𝑦 =

2𝑘1,𝑧

𝑘1,𝑧 + 𝑘0,𝑧
.

(72)

Then

(

𝐴0

𝐴
󸀠
0

) =(

𝑘0,𝑧 + 𝑘1,𝑧

2𝑘0,𝑧
exp (−𝑖 (𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)

𝑘0,𝑧 − 𝑘1,𝑧

2𝑘0,𝑧
exp (−𝑖 (𝑘0,𝑧 + 𝑘1,𝑧) 𝑧0,1)

𝑘0,𝑧 − 𝑘1,𝑧

2𝑘0,𝑧
exp (𝑖 (𝑘0,𝑧 + 𝑘1,𝑧) 𝑧0,1)

𝑘0,𝑧 + 𝑘1,𝑧

2𝑘0,𝑧
exp (𝑖 (𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)

)(

𝐴1

𝐴
󸀠
1

) . (73)

We take the average value of the matrix over the whole area
coherently illuminated by the incident X-ray beam.This leads
to

(

𝐴0

𝐴
󸀠
0

) =(

𝑘0,𝑧 + 𝑘1,𝑧

2𝑘0,𝑧
⟨exp (−𝑖 (𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)⟩

𝑘0,𝑧 − 𝑘1,𝑧

2𝑘0,𝑧
⟨exp (−𝑖 (𝑘0,𝑧 + 𝑘1,𝑧) 𝑧0,1)⟩

𝑘0,𝑧 − 𝑘1,𝑧

2𝑘0,𝑧
⟨exp (𝑖 (𝑘0,𝑧 + 𝑘1,𝑧) 𝑧0,1)⟩

𝑘0,𝑧 + 𝑘1,𝑧

2𝑘0,𝑧
⟨exp (𝑖 (𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)⟩

)(

𝐴1

𝐴
󸀠
1

) . (74)
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For Gaussian statistics of standard deviation value 𝜎,

𝑔 (𝑧) =
1

√2𝜋𝜎
exp(− 𝑧

2

2𝜎2
) ,

⟨𝑓 (𝑧)⟩ = ∫
∞

−∞

𝑔 (𝑧) 𝑓 (𝑧) 𝑑𝑧 = ∫
∞

−∞

1

√2𝜋𝜎
exp(− 𝑧

2

2𝜎2
)𝑓 (𝑧) 𝑑𝑧,

⟨exp (𝑖𝑘𝑧0,1)⟩ = ∫
∞

−∞

𝑔 (𝑧0,1) exp (𝑖𝑘𝑧0,1) 𝑑𝑧0,1

= ∫
∞

−∞

1

√2𝜋𝜎0,1
exp(−

𝑧
2
0,1

2𝜎20,1
) exp (𝑖𝑘𝑧0,1) 𝑑𝑧0,1

= exp (−1
2
𝑘
2
𝜎
2
0,1) ,

(

𝐴0

𝐴
󸀠
0

) =(

𝑘0,𝑧 + 𝑘1,𝑧

2𝑘0,𝑧
exp(−1

2
(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1)

𝑘0,𝑧 − 𝑘1,𝑧

2𝑘0,𝑧
exp(−1

2
(𝑘0,𝑧 + 𝑘1,𝑧)

2
𝜎
2
0,1)

𝑘0,𝑧 − 𝑘1,𝑧

2𝑘0,𝑧
exp(−1

2
(𝑘0,𝑧 + 𝑘1,𝑧)

2
𝜎
2
0,1)

𝑘0,𝑧 + 𝑘1,𝑧

2𝑘0,𝑧
exp (−1

2
(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1)

)(

𝐴1

𝐴
󸀠
1

) .

(75)

Therefore

(
𝐴
󸀠
0

𝐴1
)

= (

𝑘0,𝑧 − 𝑘1,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp (−2𝑘0,𝑧𝑘1,𝑧𝜎

2
0,1) Φ

󸀠
1,0

2𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp(1

2
(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1)

𝑘1,𝑧 − 𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp (−2𝑘0,𝑧𝑘1,𝑧𝜎

2
0,1)

)

× (
𝐴0
𝐴
󸀠
1

)

(
𝐴
󸀠
0

𝐴1

) = (

Ψ
󸀠
0,1 Φ

󸀠
1,0

Φ
󸀠
0,1 Ψ

󸀠
1,0

)(
𝐴0

𝐴
󸀠
1

) ,

(76)

where Φ󸀠1,0 = 2𝑘1,𝑧/(𝑘0,𝑧 + 𝑘1,𝑧) exp(1/2(𝑘0,𝑧 − 𝑘1,𝑧)
2
𝜎
2
0,1)

((𝑘0,𝑧 + 𝑘1,𝑧)
2
/(4𝑘0,𝑧𝑘1,𝑧) exp(−(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1) − (𝑘0,𝑧 −

𝑘1,𝑧)
2
/(4𝑘0,𝑧𝑘1,𝑧) exp(−(𝑘0,𝑧 + 𝑘1,𝑧)

2
𝜎
2
0,1)). Then the Fresnel

reflection coefficients Ψ󸀠 are reduced as follows:

Ψ
󸀠
0,1 = Ψ0,1 exp (−2𝑘0,𝑧𝑘1,𝑧𝜎

2
0,1) ,

Ψ
󸀠
1,0 = −Ψ0,1.

(77)

However, the Fresnel refraction coefficients Φ󸀠 increase as
follows:

Φ
󸀠
0,1 = Φ0,1 exp(

1

2
(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1) , (78)

Φ
󸀠
1,0 = Φ1,0 exp(

1

2
(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1)

× (
(𝑘0,𝑧 + 𝑘1,𝑧)

2

4𝑘0,𝑧𝑘1,𝑧
exp (−(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1)

−
(𝑘0,𝑧 − 𝑘1,𝑧)

2

4𝑘0,𝑧𝑘1,𝑧
exp (−(𝑘0,𝑧 + 𝑘1,𝑧)

2
𝜎
2
0,1)) .

(79)

The modified Fresnel refraction coefficients Φ󸀠0,1 cor-
responds to equation (10.29) in p.200 of Holy et al. [14],
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equation (8.24) in p.242 of Daillant and Gibaud [15], and
equation (1.117) in p.29 of Sakurai [20]. However, no one
obtained the expression corresponding to Φ󸀠1,0. It is peculiar
that Φ󸀠1,0 and Φ

󸀠
0,1 are asymmetrical. It comes to cause a

different result if 1th layer and 0th layers are replaced and
calculated. Therefore this derived Φ󸀠 should not be used to
calculate the reflectivity from rough surfaces and interfaces.

The derived Fresnel refraction coefficients Φ󸀠 increase.
This increase in the transmission coefficient completely over-
powers any decrease in the value of the reflection coefficient
as the following:

Φ
󸀠
0,1Φ
󸀠
1,0 −Ψ

󸀠
0,1Ψ
󸀠
1,0 = 1, (80)

Φ
󸀠
𝑗−1,𝑗Φ

󸀠
𝑗,𝑗−1 −Φ𝑗−1,𝑗Φ𝑗,𝑗−1

= Ψ
2
𝑗,𝑗−1 (1 − exp (−2𝑘𝑗,𝑧𝑘𝑗−1,𝑧𝜎

2
𝑗,𝑗−1)) > 0.

(81)

Moreover, if the deformation modulus ofΦ󸀠1,0 is assumed
to be Φ󸀠0,1, the left side of (80) exceeds unity and therefore
(78) is obviously wrong.

In Nevot and Croce’s treatment of the Parratt formalism
for the reflectivity calculation including surface and inter-
face roughness [2], the relations of the Fresnel coefficients
between reflection and transmission as (52), (68), and (80)
were not shown. Furthermore, themodification of the Fresnel
coefficients according to Nevot and Croce has been used for
only surface and interface reflection. However, the modifi-
cation of the transmission coefficients has an important role
when the roughness of the surface or interface is high, and
the effect of diffuse scattering due to that roughness should
not be ignored, as shown in (69). The error in Nevot and
Croce’s treatment [2] originates in the fact that the modified
Fresnel coefficients was calculated based on the Parratt
formalismwhich contains the X-ray energy conservation rule
at the surface and interface. In the discussion on pp.767-
768 of Nevot and Croce’s [2], their Fresnel coefficients at
the rough interface fulfil X-ray energy flow conservation
at the interface, and so diffuse scattering was ignored at
the rough interface. In their discussion, the transmission
coefficients 𝑡𝑅 and 𝑡𝐼 were replaced approximately by the
reflection coefficients 𝑟𝑅 and 𝑟𝐼 by the ignoring diffuse scat-
tering term, and according to the principle of conservation
energy. The reflection coefficient 𝑟𝑅 at the rough interface
should be expressed as a function of the reflection coefficient
𝑟𝐼 and transmission coefficient 𝑡𝐼. However, the reflection
coefficient 𝑟𝑅 at the rough interface was expressed only by
the reflection coefficient 𝑟𝐼, while the transmission coefficient
𝑡𝐼 had already been replaced by the reflection coefficient 𝑟𝐼
by the ignoring diffuse scattering term in the relationship
based on the principle of the conservation of energy. Thus,
the reflection coefficient 𝑟𝑅 at the rough interface as equation
(11) of p.771 in Nevot and Croce [2] had been expressed
with the reflection coefficient 𝑟𝐼 only, and this results in
the equation was also sure to include the conservation of
energy.

The resulting increase in the transmission coefficient
completely overpowers any decrease in the value of the

reflection coefficient at the rough interface. Thus, because
Nevot and Croce’s treatment of the Parratt formalism con-
tains a fundamental mistake regardless of the size of the
roughness, results using this approach cannot be correct.The
size of the modification of the transmission coefficient is
one-order smaller than that of reflection coefficient, but the
size of transmission coefficient is one-order larger than the
reflection coefficient at angles larger than critical angle.Thus,
the errors of transmittance without the modification cannot
be ignored.

Of course, there are cases where that Nevot and Croce’s
treatment can be applied. However, their method can be
applied only to the case where there is no density distribution
change at all in the direction parallel to the surface on the
surface field side, and only when the scattering vector is
normal to the surface. A typical example of surface medium
to which this model can be applied is one where only
the density distribution change in the vertical direction to
the surface exists, as caused by diffusion, and so forth. In
such a special case, Nevot and Croce’s treatment can be
applied without any problem. However, because a general
multilayer film always has structure in a direction parallel
to the surface field side, Nevot and Croce’s expression fails
even when the roughness is extremely small. The use of
only Fresnel reflection coefficients by Nevot and Croce is a
fundamental mistake that does not depend on the size of the
roughness.

3.5.TheRefractive Fresnel Coefficient of a Rough InterfaceUsed
in New Reflectivity Calculations. To proceed, we therefore
reconsider the derivation of the average value of the matrix
as the same derivation of (70) when we consider the reduced
Fresnel coefficient, which is known as theCroce-Nevot factor.

When the 𝑧-position of the interface of the 0th layer and
1th layer 𝑧0,1 fluctuates vertically as a function of the lateral
position because of the interface roughness, the relations
between the electric fields are derived by the use of the
Fresnel coefficient tensor Φ for refraction and the Fresnel
coefficient tensorΨ for reflection as follows:

E1 (𝑧0,1) = Φ0,1E0 (𝑧0,1) +Ψ1,0E
󸀠
1 (𝑧0,1) ,

E󸀠0 (𝑧0,1) = Ψ0,1E0 (𝑧0,1) +Φ1,0E
󸀠
1 (𝑧0,1) ,

(82)

where

E0 (𝑧0,1) = E0 (0) exp [𝑖𝑘0,𝑧𝑧0,1] ,

E󸀠0 (0) = E󸀠0 (𝑧0,1) exp [𝑖𝑘0,𝑧𝑧0,1] ,

E1 (𝑧0,1) = E1 (0) exp [𝑖𝑘1,𝑧𝑧0,1] ,

E󸀠1 (0) = E󸀠1 (𝑧0,1) exp [𝑖𝑘1,𝑧𝑧0,1] .
(83)
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Then

E1 (0) exp [𝑖𝑘1,𝑧𝑧0,1]

= Φ0,1E0 (0) exp [𝑖𝑘0,𝑧𝑧0,1]

+Ψ1,0E
󸀠
1 (0) exp [−𝑖𝑘1,𝑧𝑧0,1] ,

E󸀠0 (0) exp [−𝑖𝑘0,𝑧𝑧0,1]

= Ψ0,1E0 (0) exp [𝑖𝑘0,𝑧𝑧0,1]

+Φ1,0E
󸀠
1 (0) exp [− 𝑖𝑘1,𝑧𝑧0,1] .

(84)

Then the amplitudes 𝐴0, 𝐴
󸀠
0, 𝐴1, and 𝐴

󸀠
1 are derived as

follows:

A1 exp (𝑖𝑘1,𝑧𝑧0,1)

= Φ0,1A0 exp (𝑖𝑘0,𝑧𝑧0,1) +Ψ1,0A
󸀠
1 exp (−𝑖𝑘1,𝑧𝑧0,1) ,

A󸀠0 exp (−𝑖𝑘0,𝑧𝑧0,1)

= Ψ0,1A0 exp (𝑖𝑘0,𝑧𝑧0,1) +Φ1,0A
󸀠
1 exp (−𝑖𝑘1,𝑧𝑧0,1) .

(85)

Matrix description of the relations is as follows:

(

exp (−𝑖𝑘0,𝑧𝑧0,1) 0

0 exp (𝑖𝑘1,𝑧𝑧0,1)
)(

𝐴
󸀠
0

𝐴1

) = (

Ψ0,1 Φ1,0

Φ0,1 Ψ1,0

)(

exp (𝑖𝑘0,𝑧𝑧0,1) 0

0 exp (−𝑖𝑘1,𝑧𝑧0,1)
)(

𝐴0

𝐴
󸀠
1

) ,

(
𝐴
󸀠
0

𝐴1

) = (

Ψ0,1 exp (2𝑖𝑘0,𝑧𝑧0,1) Φ1,0 exp (−𝑖 (𝑘1,𝑧 − 𝑘0,𝑧) 𝑧0,1)

Φ0,1 exp (𝑖 (𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1) Ψ1,0 exp (−2𝑖𝑘1,𝑧𝑧0,1)
)(

𝐴0

𝐴
󸀠
1

) .

(86)

Then

(
𝐴
󸀠
0

𝐴1

) =(

𝑘0,𝑧 − 𝑘1,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp (2𝑖𝑘0,𝑧𝑧0,1)

2𝑘1,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp (−𝑖 (𝑘1,𝑧 − 𝑘0,𝑧) 𝑧0,1)

2𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp (𝑖 (𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)

𝑘1,𝑧 − 𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp (−2𝑖𝑘1,𝑧𝑧0,1)

)(

𝐴0

𝐴
󸀠
1

) . (87)

We take the average value of this matrix:

(

𝐴
󸀠
0

𝐴1

) =(

𝑘0,𝑧 − 𝑘1,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
⟨exp (2𝑖𝑘0,𝑧𝑧0,1)⟩

2𝑘1,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
⟨exp (−𝑖 (𝑘1,𝑧 − 𝑘0,𝑧) 𝑧0,1)⟩

2𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
⟨exp (𝑖 (𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)⟩

𝑘1,𝑧 − 𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
⟨exp (−2𝑖𝑘1,𝑧𝑧0,1)⟩

)(

𝐴0

𝐴
󸀠
1

) . (88)

For Gaussian statistics of standard deviation value 𝜎,

(
𝐴
󸀠
0

𝐴1

) =(

𝑘0,𝑧 − 𝑘1,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp (−2𝑘20,𝑧𝜎

2
0,1)

2𝑘1,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp(−1

2
(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1)

2𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp(−1

2
(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1)

𝑘1,𝑧 − 𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp (−2𝑘21,𝑧𝜎

2
0,1)

)(

𝐴0

𝐴
󸀠
1

) . (89)
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Then the Fresnel reflection coefficients Ψ󸀠 are found as
follows

Ψ
󸀠
0,1 = Ψ0,1 exp (−2𝑘

2
0,𝑧𝜎
2
0,1) ,

Ψ
󸀠
1,0 = Ψ1,0 exp (−2𝑘

2
1,𝑧𝜎
2
0,1) ,

(90)

and the Fresnel refraction coefficients Φ󸀠 are also produced
similarly

Φ
󸀠
0,1 = Φ0,1 exp(−

1

2
(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1) ,

Φ
󸀠
1,0 = Φ1,0 exp(−

1

2
(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1) ,

(91)

Φ
󸀠
0,1Φ
󸀠
1,0 −Ψ

󸀠
0,1Ψ
󸀠
1,0

=
4𝑘0,𝑧𝑘1,𝑧

(𝑘0,𝑧 + 𝑘1,𝑧)
2
exp (−(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1)

+ (
𝑘1,𝑧 − 𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
)

2

exp (−2 (𝑘20,𝑧 + 𝑘
2
1,𝑧) 𝜎
2
0,1) < 1.

(92)

Themodified Fresnel refraction coefficientsΦ󸀠0,1 andΦ
󸀠
1,0

of (91) correspond to equation (1.115) on p.29 of Sakurai

[20]. The Fresnel refraction coefficients Φ󸀠 derived by this
method are reduced and could be used to calculate the
reflectivity from rough surface and interfaces. Accordingly,
we calculated the reflectivity using these derived Fresnel
refraction coefficients. However, the numerical results of
this calculation did not agree with the experimental results
when the angle of incidence smaller than the total reflection
critical angle. In trying to account for the reason for this
disagreement, it should be noticed that our present approach
to constructing the reduced reflection coefficient Ψ󸀠0,1 term
does not include any reference to the refractive index of the
medium. Further, X-rays that penetrate an interface reflect
from the interface below, and penetrate the former interface
again without fail. Therefore, the refraction coefficient Φ󸀠0,1
and Φ󸀠1,0 should not be separately treated.

3.6. A New Formula for the Reflectivity for Rough Multilayer
Surface. Once again we consider process by which we derive
the average value of the matrix. When the 𝑧 position of the
interface of 0th layer and 1th layer 𝑧0,1 fluctuates vertically
as a function of the lateral position because of the interface
roughness, the relations between the amplitudes 𝐴0, 𝐴

󸀠
0, 𝐴1,

and 𝐴󸀠1 are shown by the use of the Fresnel coefficient tensor
Φ for refraction and the Fresnel coefficient tensor Ψ for
reflection as follows:

(
exp (−𝑖𝑘0,𝑧𝑧0,1) 0

0 exp (𝑖𝑘1,𝑧𝑧0,1)
)(

𝐴
󸀠
0

𝐴1

) = (
Ψ0,1 Φ1,0

Φ0,1 Ψ1,0

)(
exp (𝑖𝑘0,𝑧𝑧0,1) 0

0 exp (−𝑖𝑘1,𝑧𝑧0,1)
)(

𝐴0

𝐴
󸀠
1

) , (93)

(
𝐴
󸀠
0

𝐴1

) =
1

exp (−𝑖𝑘0,𝑧𝑧0,1) exp (𝑖𝑘1,𝑧𝑧0,1)
(
exp (𝑖𝑘1,𝑧𝑧0,1) 0

0 exp (−𝑖𝑘0,𝑧𝑧0,1)
)(
Ψ0,1 Φ1,0

Φ0,1 Ψ1,0

)

×(
exp (𝑖𝑘0,𝑧𝑧0,1) 0

0 exp (−𝑖𝑘1,𝑧𝑧0,1)
)(

𝐴0

𝐴
󸀠
1

) ,

(94)

(
𝐴
󸀠
0

𝐴1
) =

1

exp (−𝑖𝑘0,𝑧𝑧0,1) exp (𝑖𝑘1,𝑧𝑧0,1)

× (
exp (𝑖𝑘1,𝑧𝑧0,1)Ψ0,1 exp (𝑖𝑘0,𝑧𝑧0,1) exp (𝑖𝑘1,𝑧𝑧0,1)Φ1,0 exp (−𝑖𝑘1,𝑧𝑧0,1)

exp (−𝑖𝑘0,𝑧𝑧0,1)Φ0,1 exp (𝑖𝑘0,𝑧𝑧0,1) exp (−𝑖𝑘0,𝑧𝑧0,1)Ψ1,0 exp (−𝑖𝑘1,𝑧𝑧0,1)
)(

𝐴0
𝐴
󸀠
1

) ,

(95)

(
𝐴
󸀠
0

𝐴1
) =

1

exp (−𝑖𝑘0,𝑧𝑧0,1) exp (𝑖𝑘1,𝑧𝑧0,1)

× (
Ψ0,1 exp (𝑖 (𝑘1,𝑧 + 𝑘0,𝑧) 𝑧0,1) Φ1,0 exp (𝑖 (𝑘1,𝑧 − 𝑘1,𝑧) 𝑧0,1)

Φ0,1 exp (𝑖 (−𝑘0,𝑧 + 𝑘0,𝑧) 𝑧0,1) Ψ1,0 exp (𝑖 (−𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)
)(

𝐴0
𝐴
󸀠
1

) ,

(96)

(
𝐴
󸀠
0

𝐴1
) =(

Ψ0,1

exp (𝑖 (𝑘1,𝑧 + 𝑘0,𝑧) 𝑧0,1)
exp (𝑖 (−𝑘0,𝑧 + 𝑘1,𝑧) 𝑧0,1)

Φ1,0 exp (𝑖 (𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)

Φ0,1 exp (𝑖 (−𝑘1,𝑧 + 𝑘0,𝑧) 𝑧0,1) Ψ1,0
exp (𝑖 (−𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)
exp (𝑖 (−𝑘0,𝑧 + 𝑘1,𝑧) 𝑧0,1)

)(
𝐴0
𝐴
󸀠
1

) . (97)
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Again, we take the average value of this matrix:

(
𝐴
󸀠
0

𝐴1

) =(

Ψ0,1

⟨exp (𝑖 (𝑘1,𝑧 + 𝑘0,𝑧) 𝑧0,1)⟩
⟨exp (𝑖 (−𝑘0,𝑧 + 𝑘1,𝑧) 𝑧0,1)⟩

Φ1,0 ⟨exp (𝑖 (𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)⟩

Φ0,1 ⟨exp (𝑖 (−𝑘1,𝑧 + 𝑘0,𝑧) 𝑧0,1)⟩ Ψ1,0
⟨exp (𝑖 (−𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)⟩
⟨exp (𝑖 (−𝑘0,𝑧 + 𝑘1,𝑧) 𝑧0,1)⟩

)(

𝐴0

𝐴
󸀠
1

) . (98)

For Gaussian statistics of standard deviation value 𝜎, the
Fresnel reflection coefficient Ψ󸀠 are as follows:

Ψ
󸀠
0,1 = Ψ0,1

⟨exp (𝑖 (𝑘1,𝑧 + 𝑘0,𝑧) 𝑧0,1)⟩
⟨exp (𝑖 (−𝑘0,𝑧 + 𝑘1,𝑧) 𝑧0,1)⟩

= Ψ0,1

exp (− (1/2) (𝑘0,𝑧 + 𝑘1,𝑧)
2
𝜎
2
0,1)

exp (− (1/2) (𝑘0,𝑧 − 𝑘1,𝑧)
2
𝜎20,1)

= Ψ0,1 exp (−2𝑘0,𝑧𝑘1,𝑧𝜎
2
0,1) ,

(99)

Ψ
󸀠
1,0 = Ψ1,0

⟨exp (𝑖 (−𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)⟩
⟨exp (𝑖 (−𝑘0,𝑧 + 𝑘1,𝑧) 𝑧0,1)⟩

= Ψ1,0

exp (− (1/2) (−𝑘0,𝑧 − 𝑘1,𝑧)
2
𝜎
2
0,1)

exp (− (1/2) (𝑘1,𝑧 − 𝑘0,𝑧)
2
𝜎20,1)

= Ψ1,0 exp (−2𝑘0,𝑧𝑘1,𝑧𝜎
2
0,1) .

(100)

BecauseX-rays that penetrate an interface reflect from the
interface below and penetrate former interface again without
fail, it is necessary to treat the refraction coefficientsΦ󸀠0,1 and
Φ
󸀠
1,0 collectively:

Φ
󸀠
0,1Φ
󸀠
1,0 = ⟨Φ0,1 exp (𝑖 (−𝑘1,𝑧 + 𝑘0,𝑧) 𝑧0,1)

×Φ1,0 exp (𝑖 (𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)⟩

= Φ0,1Φ1,0 ⟨exp (𝑖 (−𝑘1,𝑧 + 𝑘0,𝑧) 𝑧0,1)

× exp (𝑖 (𝑘0,𝑧 − 𝑘1,𝑧) 𝑧0,1)⟩

= Φ0,1Φ1,0 ⟨exp (𝑖 (2𝑘0,𝑧 − 2𝑘1,𝑧) 𝑧0,1)⟩

= Φ0,1Φ1,0 exp (−2(𝑘0,𝑧 − 𝑘1,𝑧)
2
𝜎
2
0,1) .

(101)

Then the Fresnel coefficientsΨ󸀠 andΦ󸀠 are reduced as follows:

Ψ
󸀠
0,1 = Ψ0,1 exp (−2𝑘0,𝑧𝑘1,𝑧𝜎

2
0,1) ,

Ψ
󸀠
1,0 = Ψ1,0 exp (−2𝑘0,𝑧𝑘1,𝑧𝜎

2
0,1) ,

Φ
󸀠
0,1 = Φ0,1 exp (− (𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1) ,

Φ
󸀠
1,0 = Φ1,0 exp (−(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1) ,

(
𝐴
󸀠
0

𝐴1
) = (
Ψ
󸀠
0,1 Φ

󸀠
1,0

Φ
󸀠
0,1 Ψ

󸀠
1,0

)(
𝐴0
𝐴
󸀠
1

) .

(102)

Then

(

𝐴
󸀠
0

𝐴1

) = (

Ψ0,1 exp (−2𝑘0,𝑧𝑘1,𝑧𝜎
2
0,1) Φ1,0 exp (−(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1)

Φ0,1 exp (−(𝑘0,𝑧 − 𝑘1,𝑧)
2
𝜎
2
0,1) Ψ1,0 exp (−2𝑘0,𝑧𝑘1,𝑧𝜎

2
0,1)

)(

𝐴0

𝐴
󸀠
1

) ,

(

𝐴
󸀠
0

𝐴1

) =(

𝑘0,𝑧 − 𝑘1,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp (−2𝑘0,𝑧𝑘1,𝑧𝜎

2
0,1)

2𝑘1,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp (−(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1)

2𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp (−(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1)

𝑘1,𝑧 − 𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
exp (−2𝑘0,𝑧𝑘1,𝑧𝜎

2
0,1)

)(

𝐴0

𝐴
󸀠
1

) ,

Φ
󸀠
0,1Φ
󸀠
1,0 −Ψ

󸀠
0,1Ψ
󸀠
1,0 =

4𝑘0,𝑧𝑘1,𝑧

(𝑘0,𝑧 + 𝑘1,𝑧)
2
exp (−2(𝑘0,𝑧 − 𝑘1,𝑧)

2
𝜎
2
0,1) + (

𝑘1,𝑧 − 𝑘0,𝑧

𝑘0,𝑧 + 𝑘1,𝑧
)

2

exp (−4𝑘0,𝑧𝑘1,𝑧𝜎
2
0,1) < 1.

(103)
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Figure 10: New calculated reflectivities from a GaAs layer with a
thickness of 48 nm on a Si substrate.The line is for a flat surface and
a flat interface. The dashed curve is for a surface roughness 𝜎1 of
4 nm and with a flat interface, while the dotted curve is for a surface
roughness 𝜎1 of 4 nm and interface roughness 𝜎2 of 4 nm.

The Fresnel refraction coefficients Φ󸀠 derived by this
method are reduced and can be used to calculate the reflectiv-
ity from rough surface and interface. Therefore, we calculate
the reflectivity using these newly derived Fresnel coefficients
in an accurate reflectivity equation of 𝑅𝑗−1,𝑗 and 𝑅𝑗,𝑗+1 as
follows:

R𝑗−1,𝑗

=
Ψ
󸀠
𝑗−1,𝑗 + (Φ

󸀠
𝑗−1,𝑗Φ

󸀠
𝑗,𝑗−1 −Ψ

󸀠
𝑗−1,𝑗Ψ

󸀠
𝑗,𝑗−1) 𝑅𝑗,𝑗+1

1 −Ψ󸀠𝑗,𝑗−1R𝑗,𝑗+1

× exp (2𝑖𝑘𝑗−1,𝑧ℎ𝑗−1) .

(104)

Based on the previous considerations, we again calculated the
X-ray reflectivity for the GaAs/Si system but now considered
the effect of attenuation in the refracted X-rays by diffuse
scattering resulting from surface roughness. The results are
shown as the dashed line in Figure 10 for a surface roughness
of 4 nm and flat interface, and the dotted line shows the
calculated result in the case that the surface and interface both
have an rms roughness of 4 nm.

The ratio of the oscillation amplitude to the size of
the reflectivity in the reflectivity curve (dot) in Figure 10 is
smaller than that of the reflectivity curve Figure 7. In the
reflectivity curve (dashed line), the very large amplitude of
the oscillation near an angle of incidence of 0.36∘ in Figure 7
has disappeared in Figure 10.These results are now physically
reasonable. All the strange results seen in Figure 7 have
disappeared in Figure 10. It seems natural that the effect of
interference does decrease at a rough surface and interface,
because the amount of coherent X-rays should reduce due to
diffuse scattering.

Figure 11 shows the new calculated reflectivity for sur-
face roughnesses of 3.5 nm, 4 nm, and 4.5 nm and with a
flat interface. At all angles of incidence, the reflectivity of
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Figure 11: New calculated reflectivity from a GaAs layer with a
thickness of 48 nm on a Si substrate. In the calculation, the interface
roughness 𝜎2 is 0 nm. Three calculated results for a GaAs surface
with roughness 𝜎1 of 3.5 nm, 4 nm, and 4.5 nm are shown.

the surface roughness of 4 nm is near the mean value of
the reflectivity of the surface roughness of 3.5 nm and the
reflectivity of the surface roughness of 4.5 nm. This result is
physically reasonable, because the value of the roughness is
the standard deviation value of various amplitudes of rough
surface. However, it was difficult to match the numerical
result of X-ray reflectivity to the results of TEM observation.

Next, we again calculated the X-ray reflectivity for the
W/Si system but now considered the effect of attenuation in
the refracted X rays by diffuse scattering resulting from sur-
face roughness.However, the reduced refraction coefficient in
prior work varies [13–19]. Then about the reduced refraction
coefficient, reduction as same as reflection coefficient was
applied now. Figure 12 shows the calculated results with the
use of improved X-ray reflectivity formalism. In the reflec-
tivity curve from a surface with an rms surface roughness
of 0.3 nm (dashed line), the amplitude of the oscillation in
Figure 9 has reduced in Figure 12. These results are now
physically reasonable. The strange results seen in Figure 9
have disappeared in Figure 12. It seems natural that the effect
of interference does decrease at a rough surface and interface,
because the amount of coherent X rays should reduce due to
diffuse scattering.

4. Summary

In this review, we investigated the fact that the calculated
result of the X-ray reflectivity based on Parratt formalism
[1] with the effect of the roughness incorporated by the
theory of Nevot-Croce [2] shows a strange phenomenon in
which the amplitude of the oscillation due to the interference
effects increases in the case of the rougher surface. The X-ray
reflectivity calculation based on Parratt formalism [1] with
the effect of the roughness incorporated by the theory of
Nevot-Croce [2] shows as in (48), with the reduced Fresnel
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Figure 12: X-ray reflectivity from a silicon wafer covered with a
thin (10 nm) tungsten film calculated by the new calculation that
considered diffuse scattering. Solid line shows the case of a flat
surface. Dashed line shows the case of a surface with an rms surface
roughness of 0.3 nm.

reflection coefficient Ψ󸀠 being as shown in (47). However,
the relationship between the reflection coefficients 𝑅𝑗−1,𝑗 and
𝑅𝑗,𝑗+1 was originally derived as in (51). Here, the following
conditional relations between the Fresnel coefficient for
reflection and refraction are relevant to (51); see (52) and (53).
In these condition, the Fresnel coefficients for refraction at
the rough interface are derived using the Fresnel reflection
coefficient Ψ as shown in (57).

Therefore, the Fresnel coefficients for refraction at the
rough interface are necessarily larger than the Fresnel coef-
ficient for refraction at the flat interface. The resulting
increase in the transmission coefficient completely overpow-
ers any decrease in the value of the reflection coefficient.
These coefficients for refraction obviously contain a mistake
because the penetration of X-rays should decrease at a rough
interface because of diffuse scattering. We propose that the
unnatural results in the previous calculation of the X-ray
reflectivity originate from the fact that diffuse scattering was
not considered. We found that the strange result originates
in the currently used equation due to a serious mistake
where the Fresnel refraction coefficient in the reflectivity
equation is increased at a rough interface.The increase in the
transmission coefficient completely overpowers any decrease
in the value of the reflection coefficient because of a lack of
consideration of diffuse scattering. The mistake in Nevot and
Croce’s treatment originates in the fact that themodified Fres-
nel coefficients were calculated based on the theory, which
contains theX-ray energy conservation rule at the surface and
interface. In their discussion, the transmission coefficient was
replaced by the reflection coefficient so as to conserve energy,
and so diffuse scattering was ignored at the rough interface.
It is meaningless to try to precisely match the numerical
result based on a wrong calculating formula even to details
of the reflectivity profile of the experimental result. Thus,
because Nevot and Croce’s treatment of the Parratt formalism

contains a fundamental mistake regardless of the size of
roughness, results based on this approach are not correct.

We have developed a new formalism that corrects this
mistake, producing more accurate estimates of the X-ray
reflectivity for systems having surface and interfacial rough-
ness, taking into account the effect of roughness-induced
diffuse scattering.

The new, accurate formalism is completely described in
detail. The X-ray reflectivity 𝑅 of a multilayer thin film
material consisting of 𝑁 layers is derived by the use of
accurate reflectivity equations for 𝑅𝑗−1,𝑗 and 𝑅𝑗,𝑗+1 as the
following:

𝑅 =
󵄨󵄨󵄨󵄨𝑅0,1

󵄨󵄨󵄨󵄨
2
,

𝑅𝑗−1,𝑗 =
Ψ𝑗−1,𝑗 + (Φ𝑗−1,𝑗Φ𝑗,𝑗−1 − Ψ𝑗−1,𝑗Ψ𝑗,𝑗−1) 𝑅𝑗,𝑗+1

1 − Ψ𝑗,𝑗−1𝑅𝑗,𝑗+1

× exp (2𝑖𝑘𝑗−1,𝑧ℎ𝑗−1) ,

𝑅𝑁,𝑁+1 = 0.

(105)

Here, the refractive index of the 𝑗th layer 𝑛𝑗 = 1 − 𝛿𝑗 −

𝑖𝛽𝑗, 𝑛0 = 1, the 𝑧-direction component of the wave vector
of the 𝑗th layer 𝑘𝑗,𝑧 = 𝑘√𝑛2𝑗 − cos2𝜃, 𝑘 = 2𝜋/𝜆, 𝜆; wave
length, 𝜃; glancing angle of incidence, a 𝑁-layer multilayer
system with a 𝑗th layer of thickness of ℎ𝑗 and 𝑗 − 1, 𝑗th
interface roughness of 𝜎𝑗−1,𝑗, 𝑘𝑗,𝑧 is the 𝑧 component of the
wave vector in the 𝑗th layer, and Ψ𝑗−1,𝑗 and Φ𝑗−1,𝑗 are the
Fresnel coefficients for reflection and refraction, respectively,
at the interface between the (𝑗 − 1)th layer and the 𝑗th layer.
Although formula for Ψ𝑗−1,𝑗 is well known

Ψ𝑗−1,𝑗 =
𝑘𝑗−1,𝑧 − 𝑘𝑗,𝑧

𝑘𝑗−1,𝑧 + 𝑘𝑗,𝑧
exp (−2𝑘𝑗−1,𝑧𝑘𝑗,𝑧𝜎

2
𝑗−1,𝑗) ,

Ψ𝑗,𝑗−1 = −Ψ𝑗−1,𝑗,

(106)

where 𝜎𝑗−1,𝑗 is the interface roughness between (𝑗 − 1)th and
𝑗th layers, an accurate analytical formula forΦ𝑗−1,𝑗 including
the effect of the interface roughness is not available.There are
several approximations proposed so far and all these results
can be written as

Φ𝑗−1,𝑗 =
2𝑘𝑗−1,𝑧

𝑘𝑗−1,𝑧 + 𝑘𝑗,𝑧

× exp {− [𝐶1(𝑘𝑗−1,𝑧 − 𝑘𝑗,𝑧)
2
+ 𝐶2𝑘𝑗−1,𝑧𝑘𝑗,𝑧] 𝜎

2
0,1} ,

Φ𝑗,𝑗−1 = Φ𝑗−1,𝑗

𝑘𝑗,𝑧

𝑘𝑗−1,𝑧
,

(107)

where parameters 𝐶1, 𝐶2 depend on the proposed approxi-
mation. 𝐶1 = 2 and 𝐶2 = 0 is the most appropriate approxi-
mation [23].



Journal of Materials 19

     Si
W 10nm

0.0 0.5 1.0 2.01.5
𝜃 (∘)

𝜎2 = 0nm
𝜎1 = 0.3nm

Re
fle

ct
iv

ity

1.0E−4

1.0E−5

1.0E−6

1.0E−3

1.0E−2

1.0E−1

1.0E+0

Figure 13: X-ray reflectivity from a silicon wafer covered with a
thin (10 nm) tungsten film with an rms surface roughness of 0.3 nm.
Dashed line shows the calculated result by the theory in use prior
to this work. Solid line shows the calculated result by the new
calculation that considered the reduction in the sum intensity of
reflective X-ray and refractive X-ray by diffuse scattering.

The penetration of X-rays should decrease at a rough
interface because of diffuse scattering.Therefore, the identity
equation for the Fresnel coefficients become

Φ
󸀠
𝑗−1,𝑗Φ

󸀠
𝑗,𝑗−1 − Ψ

󸀠
𝑗−1,𝑗Ψ

󸀠
𝑗,𝑗−1

= Φ
󸀠
𝑗−1,𝑗Φ

󸀠
𝑗,𝑗−1 + Ψ

󸀠2
𝑗−1,𝑗

= 1 − 𝐷
2
< 1,

(108)

where 𝐷2 is a decrease due to diffuse scattering. Then, in
the calculation of X-ray reflectivity when there is roughening
at the surface or the interface, the Fresnel transmission
coefficient Φ󸀠 should be used for the reduced coefficient.

Figure 13 shows the reflectivity from a tungsten-covered
silicon wafer with an rms surface roughness of 0.3 nm.
Dashed line shows the calculated result by (48) based on Par-
ratt formalism with the effect of the roughness incorporated
by the theory of Nevot-Croce in use prior to this work. The
ratio of the oscillation amplitude to the value of the reflectivity
from a surface with an rms surface roughness of 0.3 nm does
not decrease near an angle of incidence of 1.8∘ but increases
than the reflectivity from a flat surface in Figure 9.This result
is strange andnot reasonable.Next, we again calculated theX-
ray reflectivity for the W/Si system, but now considered the
effect of attenuation in the refracted X rays and the reduction
in the sum intensity of reflective X-ray and refractive X-
ray by diffuse scattering. Solid line shows the calculated
results with the use of improved X-ray reflectivity formalism.
In the reflectivity curve, the amplitude of the oscillation
is smaller‘than that of the reflectivity from a flat surface
in Figure 12. These results are now physically reasonable.
The strange results seen in the previous calculation have
disappeared. It seems natural that the effect of interference
does decrease at a rough surface and interface, because the

amount of coherent X rays should reduce due to diffuse
scattering.

The reflectivity calculated with this new, accurate formal-
ism (105) gives a physically reasonable result. The use of this
equation resolves the strange numerical results that occurred
in the previous calculations that neglected diffuse scattering
and is expected that buried interface structure can now be
analyzed more accurately.
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