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Themodified simple equation (MSE)method is executed to find the travelingwave solutions for the coupledKonno-Oono equations
and the variant Boussinesq equations. The efficiency of this method for finding exact solutions and traveling wave solutions has
been demonstrated. It has been shown that the proposed method is direct, effective, and can be used for many other nonlinear
evolution equations (NLEEs) in mathematical physics. Moreover, this procedure reduces the large volume of calculations.

1. Introduction

Nowadays NLEEs have been the subject of all-embracing
studies in various branches of nonlinear sciences. A special
class of analytical solutions named traveling wave solutions
for NLEEs has a lot of importance, because most of the
phenomena that arise in mathematical physics and engi-
neering fields can be described by NLEEs. NLEEs are fre-
quently used to describemany problems of protein chemistry,
chemically reactive materials, in ecology most population
models, in physics the heat flow and the wave propagation
phenomena, quantum mechanics, fluid mechanics, plasma
physics, propagation of shallow water waves, optical fibers,
biology, solid state physics, chemical kinematics, geochem-
istry, meteorology, electricity, and so forth. Therefore, inves-
tigation, traveling wave solutions is becomingmore andmore
attractive in nonlinear sciences day by day. However, not all
equations posed of these models are solvable. As a result,
many new techniques have been successfully developed by
diverse groups of mathematicians and physicists, such as the
modified simple equation method [1–4], the extended tanh
method [5, 6], the Exp-function method [7–11], the Ado-
mian decomposition method [12], the F-expansion method
[13], the auxiliary equation method [14], the Jacobi elliptic
function method [15], modified Exp-function method [16],
the (𝐺/𝐺)-expansion method [17–26], Weierstrass elliptic

function method [27], the homotopy perturbation method
[28–30], the homogeneous balance method [31, 32], the
Hirota’s bilinear transformation method [33, 34], the tanh-
function method [35, 36] and so on.

The objective of this paper is to apply the MSEmethod to
construct the exact and travelingwave solutions for nonlinear
evolution equations in mathematical physics via coupled
Konno-Oono equations and variant Boussinesq equations.

The paper is prepared as follows. In Section 2, the MSE
method is discussed. In Section 3, we apply this method
to the nonlinear evolution equations pointed out above, in
Section 4, physical explanations, and in Section 5 conclusions
are given.

2. The MSE Method

In this section, we describe the MSE method for finding
traveling wave solutions of nonlinear evolution equations.
Suppose that a nonlinear equation, say in two independent
variables 𝑥 and 𝑡, is given by

R (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑡𝑡
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑡
, . . .) = 0, (1)

where 𝑢(𝜉) = 𝑢(𝑥, 𝑡) is an unknown function, R is a
polynomial of 𝑢(𝑥, 𝑡) and its partial derivatives in which the
highest order derivatives and nonlinear terms are involved. In
the following, we give the main steps of this method [1–4].
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Step 1. Combining the independent variables 𝑥 and 𝑡 into one
variable 𝜉 = 𝑥 ± 𝜔𝑡, we suppose that

𝑢 (𝜉) = 𝑢 (𝑥, 𝑡) , 𝜉 = 𝑥 ± 𝜔𝑡. (2)

The traveling wave transformation equation (2) permits us to
reduce (1) to the following ODE:

R (𝑢, 𝑢

, 𝑢

, . . .) = 0, (3)

where R is a polynomial in 𝑢(𝜉) and its derivatives, while
𝑢(𝜉) = 𝑑𝑢/𝑑𝜉, 𝑢(𝜉) = 𝑑2𝑢/𝑑𝜉2, and so on.

Step 2. We suppose that (3) has the formal solution

𝑢 (𝜉) = 𝐶
0
+

𝑛

∑
𝑘=1

𝐶
𝑘
(
𝜙(𝜉)

𝜙(𝜉)
)

𝑘

, (4)

where 𝐶
𝑘
are constants to be determined, such that 𝐶

𝑛
̸= 0,

and 𝜙(𝜉) is an unknown function to be determined later.

Step 3. The positive integer 𝑛 can be determined by consid-
ering the homogeneous balance between the highest order
derivatives and the nonlinear terms appearing in (1) or (3).
Moreover precisely, we define the degree of 𝑢(𝜉) as𝐷(𝑢(𝜉)) =
𝑛which gives rise to the degree of other expression as follows:

𝐷(
𝑑
𝑞𝑢

𝑑𝜉𝑞
) = 𝑛 + 𝑞,

𝐷(𝑢
𝑝
(
𝑑𝑞𝑢

𝑑𝜉𝑞
)

𝑠

) = 𝑛𝑝 + 𝑠 (𝑛 + 𝑞) .

(5)

Therefore, we can find the value of 𝑛 in (4), using (5).

Step 4. We substitute (4) into (3), and then we account
the function 𝜙(𝜉). As a result of this substitution, we get
a polynomial of (𝜙(𝜉)/𝜙(𝜉)) and its derivatives. In this
polynomial, we equate the coefficients of same power of
𝜙−𝑖(𝜉) to zero, where 𝑖 ≥ 0. This procedure yields a system
of equations which can be solved to find 𝛼

𝑘
, 𝜙(𝜉) and 𝜙(𝜉).

Then the substitution of the values of 𝛼
𝑘
, 𝜙(𝜉) and 𝜙(𝜉) into

(4) completes the determination of exact solutions of (1).

3. Applications

3.1. The New Coupled Konno-Oono Equations. Now we will
bring to bear the MSE method to find exact solutions, and
then the solitary wave solutions of coupled Konno-Oono
equations in the form [37],

𝑢
𝑥𝑡
− 2𝑢V = 0, V

𝑡
+ 2𝑢𝑢

𝑥
= 0. (6)

Now let us suppose that the traveling wave transformation
equation be

𝑢 (𝜉) = 𝑢 (𝑥, 𝑡) , V (𝜉) = V (𝑥, 𝑡) , 𝜉 = 𝑥 − 𝜔𝑡. (7)

Equation (7) reduces (6) into the following ODEs:

−𝜔𝑢

− 2𝑢V = 0, (8)

−𝜔V

+ 2𝑢𝑢


= 0. (9)

By integrating (9) with respect to 𝜉, we obtain

V =
1

𝜔
(𝑢
2
+ 𝑑) , (10)

where 𝑑 is a constant of integration.
Substituting (10) into (8), we get

𝜔
2
𝑢

+ 2𝑢𝑑 + 2𝑢

3
= 0. (11)

Balancing the highest order derivative 𝑢 and nonlinear term
𝑢3 from (11), we obtain 3𝑛 = 𝑛 + 2, which gives 𝑛 = 1.

Now for 𝑛 = 1, using (4) we can write

𝑢 (𝜉) = 𝐶
0
+ 𝐶
1
(
𝜙 (𝜉)

𝜙 (𝜉)
) , (12)

where 𝐶
0
and 𝐶

1
are constants to be determined such that

𝐶
1
̸= 0, while 𝜙(𝜉) is an unknown function to be determined.

It is trouble free to find that

𝑢

= 𝐶
1
(
𝜙


𝜙
− (

𝜙


𝜙
)

2

) ,

𝑢

= 𝐶
1
(
𝜙


𝜙
) − 3𝐶

1
(
𝜙𝜙

𝜙2
) + 2𝐶

1
(
𝜙

𝜙
)

3

,

𝑢
3
= 𝐶
3

1
(
𝜙

𝜙
)

3

+ 3𝐶
2

1
𝐶
0
(
𝜙

𝜙
)

2

+ 3𝐶
1
𝐶
2

0
(
𝜙

𝜙
) + 𝐶

3

0
.

(13)

Now substituting the values of 𝑢, 𝑢3, 𝑢 into (11) and then
equating the coefficients of 𝜙0, 𝜙−1, 𝜙−2, 𝜙−3 to zero, we,
respectively, obtain

2𝐶
3

0
+ 2𝐴𝐶

0
= 0, (14)

𝜔
2
𝐶
1
𝜙

+ 6𝐶
2

0
𝐶
1
𝜙

+ 2𝐴𝐶

1
𝜙


= 0, (15)

−3𝜔
2
𝐶
1
𝜙

𝜙

+ 6𝐶
0
𝐶
2

1
(𝜙

)
2

= 0, (16)

2𝜔
2
𝐶
1
(𝜙

)
3

+ 2𝐶
3

1
(𝜙

)
3

= 0. (17)

Solving (14), we get

𝐶
0
= 0, ±√−𝑑. (18)

Solving (17), we get

𝐶
1
= ±𝐼𝜔, 𝐶

1
̸= 0, where 𝐼2 = −1. (19)

Solving (15) and (16) we get,

𝜙


(𝜉) = 𝑀𝐴 exp (𝐿𝑀𝜉) . (20)

Integrating (20) with respect to 𝜉, we obtain

𝜙 (𝜉) =
1

𝐿
(𝐿𝐵 − 𝐴 exp (𝐿𝑀𝜉)) , (21)
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where 𝐿 = (6𝐶2
0
+ 2𝑑)/𝜔2, 𝑀 = 𝜔2/2𝐶

1
𝐶
0
, and 𝐴, 𝐵 are

constants of integration.
Substituting the values of 𝜙 and 𝜙 into (12), we obtain the

following exact solution:

𝑢 (𝑥, 𝑡) = 𝐶
0
+ 𝐶
1

𝐿𝑀𝐴 exp (−𝐿𝑀 (𝑥 − 𝜔𝑡))

𝐿𝐵 − 𝐴 exp (−𝐿𝑀 (𝑥 − 𝜔𝑡))
. (22)

Case 1. When 𝐶
0
= 0, (22) yields trivial solution. So this case

is discarded.

Case 2. When 𝐶
0
= ±√−𝑑 and 𝐶

1
= ±𝐼𝜔, substituting the

values of 𝐶
0
, 𝐶
1
, 𝐿,𝑀 into (22), we obtain

𝑢 (𝑥, 𝑡) = ± 𝐼√𝑑

× (1 + (2𝐴 cosh(
√𝑑

𝜔
(𝑥 − 𝜔𝑡))

− sinh(
√𝑑

𝜔
(𝑥 − 𝜔𝑡)))

× ((𝐿𝐵 − 𝐴) cosh(
√𝑑

𝜔
(𝑥 − 𝜔𝑡))

+ (𝐿𝐵 + 𝐴) sinh(
√𝑑

𝜔
(𝑥 − 𝜔𝑡)))

−1

) .

(23)

We can freely choose the constants𝐴 and𝐵.Therefore, setting
𝐴 = 𝐿𝐵, (23) reduces to

𝑢
1,2
(𝑥, 𝑡) = ±𝐼√𝑑 coth(

√𝑑

𝜔
(𝑥 − 𝜔𝑡)) , for 𝑑 > 0. (24)

Again, if we set 𝐴 = −𝐿𝐵, (23) reduces to

𝑢
3,4
(𝑥, 𝑡) = ±𝐼√𝑑 tanh(

√𝑑

𝜔
(𝑥 − 𝜔𝑡)) , for 𝑑 > 0. (25)

Substituting (24) and (25) into (10), we get

V
1
(𝑥, 𝑡) = −

𝑑

𝜔
cosech2 (

√𝑑

𝜔
(𝑥 − 𝜔𝑡)) , for 𝑑 > 0, (26)

V
2
(𝑥, 𝑡) =

𝑑

𝜔
sech2 (

√𝑑

𝜔
(𝑥 − 𝜔𝑡)) , for 𝑑 > 0, (27)

respectively.

If 𝑑 < 0, using hyperbolic function identities, from (24)–
(27), we get the following periodic travelling wave solutions:

𝑢
5,6
(𝑥, 𝑡) = ±√𝑑 cot(

√−𝑑

𝜔
(𝑥 − 𝜔𝑡)) , (28)

𝑢
7,8
(𝑥, 𝑡) = ±√𝑑 tan(

√−𝑑

𝜔
(𝑥 − 𝜔𝑡)) , (29)

V
3
(𝑥, 𝑡) =

𝑑

𝜔
cosec2 (

√−𝑑

𝜔
(𝑥 − 𝜔𝑡)) , (30)

V
4
(𝑥, 𝑡) =

𝑑

𝜔
sec2 (

√−𝑑

𝜔
(𝑥 − 𝜔𝑡)) . (31)

3.2.TheVariant Boussinesq Equations. In this section, wewill
apply the modified simple equation method to find the exact
solutions and then the solitary wave solutions of the variant
Boussinesq equation [24] in the form

𝑢
𝑡
+ 𝐻
𝑥
+ 𝑢𝑢
𝑥
= 0, 𝐻

𝑡
+ (𝑢𝐻)

𝑥
+ 𝑢
𝑥𝑥𝑥
= 0, (32)

The traveling wave transformation is

𝑢 (𝜉) = 𝑢 (𝑥, 𝑡) , 𝐻 (𝜉) = 𝐻 (𝑥, 𝑡) , 𝜉 = 𝑥 − 𝜔𝑡. (33)

Using traveling wave equation (33), (32) reduces into the
following ODEs:

−𝜔𝑢

+ 𝐻

+ 𝑢𝑢

= 0.

−𝜔𝐻

+ (𝑢𝐻)


+ 𝑢

= 0.

(34)

Integrating (34) with respect to 𝜉, choosing constant of
integration as zero, we obtain the following ODEs:

−𝜔𝑢 + 𝐻 +
1

2
𝑢
2
= 0, (35)

−𝜔𝐻 + 𝑢𝐻 +
1

3
𝑢

= 0. (36)

From (35), we get

𝐻 = 𝜔𝑢 −
1

2
𝑢
2
. (37)

Substituting (37) into (36) yields

𝑢

− 𝜔
2
𝑢 +

3

2
𝜔𝑢
2
−
1

2
𝑢
3
= 0. (38)

Now balancing the highest order derivative 𝑢 and nonlinear
term 𝑢3, we get 𝑛 = 1.

Now for 𝑛 = 1,𝑢(𝜉) = 𝐶
0
+∑
𝑛

𝑘=1
𝐶
𝑘
(𝜙(𝜉)/𝜙(𝜉))

𝑘 becomes

𝑢 (𝜉) = 𝐶
0
+ 𝐶
1
(
𝜙 (𝜉)

𝜙 (𝜉)
) , (39)
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where 𝐶
0
and 𝐶

1
are constants to be determined such that

𝐶
1
̸= 0, while 𝜙(𝜉) is an unknown function to be determined.

It is easy to see that

𝑢

= 𝐶
1
(
𝜙

𝜙
− (

𝜙

𝜙
)

2

) ,

𝑢

= 𝐶
1
(
𝜙


𝜙
) − 3𝐶

1
(
𝜙𝜙

𝜙2
) + 2𝐶

1
(
𝜙

𝜙
)

3

,

𝑢
2
= 𝐶
2

0
+ 2𝐶
0
𝐶
1
(
𝜙


𝜙
) + 𝐶

2

1
(
𝜙


𝜙
)

2

,

𝑢
3
= 𝐶
3

1
(
𝜙

𝜙
)

3

+ 3𝐶
2

1
𝐶
0
(
𝜙

𝜙
)

2

+ 3𝐶
1
𝐶
2

0
(
𝜙

𝜙
) + 𝐶

3

0
.

(40)

Now substituting the values of 𝑢, 𝑢2, 𝑢3, 𝑢 into (38) and
then equating the coefficients of 𝜙0, 𝜙−1, 𝜙−2, 𝜙−3 to zero, we,
respectively, obtain

−
1

2
𝐶
3

0
+
3

2
𝜔𝐶
2

0
− 𝜔
2
𝐶
0
= 0, (41)

𝐶
1
𝜙

− 𝜔
2
𝐶
1
𝜙

−
3

2
𝐶
2

0
𝐶
1
𝜙

+ 3𝜔𝐶

0
𝐶
1
𝜙


= 0, (42)

−3𝐶
1
𝜙

𝜙

−
3

2
𝐶
0
𝐶
2

1
(𝜙

)
2

+
3

2
𝜔𝐶
2

1
(𝜙

)
2

= 0, (43)

2𝐶
1
(𝜙

)
3

−
1

2
𝐶
3

1
(𝜙

)
3

= 0. (44)

Solving (41), we get

𝐶
0
= 0, 𝜔, 2𝜔. (45)

Solving (44), we get

𝐶
1
= ±2, 𝐶

1
̸= 0. (46)

From (42) and (43), we get

𝜙


(𝜉) = −𝑀𝐸 exp (−𝐿𝑀𝜉) . (47)

Integrating (47), we obtain

𝜙 (𝜉) =
𝐸 exp (𝐿𝑀𝜉) + 𝐿𝐹

𝐿
, (48)

where 𝐿 = (𝜔2 + (3/2)𝐶2
0
− 3𝜔𝐶

0
),𝑀 = 2/(𝜔 −𝐶

0
)𝐶
1
, and 𝐸,

𝐹 are constants of integration.
Substituting 𝜉,𝜙(𝜉) and𝜙(𝜉) from (47) and (48) into (39),

we obtain

𝑢 (𝑥, 𝑡) = 𝐶
0
− 𝐶
1
(
𝐿𝑀𝐸 exp (−𝐿𝑀 (𝑥 − 𝜔𝑡))

𝐸 exp (−𝐿𝑀 (𝑥 − 𝜔𝑡)) + 𝐿𝐹
) . (49)

Case 1. When𝐶
0
= 𝜔, (49) yields trivial solution. So, this case

is rejected.

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3

30

25

20

15

10

5

0

𝑥𝑡

𝑢

Figure 1: Singular soliton profile of (24) with wave speed 𝜔 = 1,
𝑑 = 1, and −3 ≤ 𝑥, 𝑡 ≤ 3.

Case 2. When 𝐶
0
= 0 and 𝐶

1
= ±2, executing the parallel

course of action described in Section 3.1 (Case 2), putting the
values of 𝐿 and𝑀 (49) yields,

𝑢
1,2
(𝑥, 𝑡) = 𝜔 (1 ± tanh(𝜔

2
(𝑥 − 𝜔𝑡))) , (50)

𝑢
3,4
(𝑥, 𝑡) = 𝜔 (1 ± coth(𝜔

2
(𝑥 − 𝜔𝑡))) . (51)

Substituting (49) and (50) into (36), we obtain

𝐻
1
(𝑥, 𝑡) =

𝜔
2

2
sech2 (𝜔

2
(𝑥 − 𝜔𝑡)) , (52)

𝐻
2
(𝑥, 𝑡) = −

𝜔
2

2
cosech2 (𝜔

2
(𝑥 − 𝜔𝑡)) . (53)

Case 3. When 𝐶
0
= 2𝜔 and 𝐶

1
= ±2, we get the same results

like (50)–(53).

4. Physical Explanation

In this section, we will put forth the physical explanation
and the graphical representation of determined traveling
wave solutions of nonlinear evolution equations through
coupled Konno-Oono equations and the variant Boussinesq
equations.

4.1. Explanations

(i) The equations (24) and (25) are complex soliton
solutions. The shape of (24) is known as singular
soliton, and the shape of (25) is known as kink soliton.
Figures 1 and 2 represent the modulus shape of (24)
and (25) with wave speed 𝜔 = 1, 𝑑 = 1 and wave
speed 𝜔 = 1, 𝑑 = 2, respectively, within the interval
−3 ≤ 𝑥, 𝑡 ≤ 3. The disturbance of (24) and (25) is
in the positive 𝑥-direction for positive values of wave
speed 𝜔. If we take negative values of wave speed 𝜔,
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Figure 2: Kink wave profile of (25) with wave speed 𝜔 = 1, 𝑑 = 2,
and −3 ≤ 𝑥, 𝑡 ≤ 3.
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Figure 3: Soliton wave of (26) with wave speed 𝜔 = −2, 𝑑 = 4, and
−3 ≤ 𝑥, 𝑡 ≤ 3.

−3
−2

−1
0

1
2

3

−3
−2

−1
0

123

2.5

2

1.5

1

0.5

0

𝑥𝑡

𝑢

Figure 4: Bell-shaped wave profile of (27) with wave speed 𝜔 = 1,
𝑑 = 2, and −3 ≤ 𝑥, 𝑡 ≤ 3.
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Figure 5: Modulus plot of periodic wave, shape of (28) with wave
speed 𝜔 = 1, 𝑑 = −3, and −3 ≤ 𝑥, 𝑡 ≤ 3.
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Figure 6: Modulus plot of periodic wave, profile of (29) with wave
speed 𝜔 = 1, 𝑑 = −3, and −3 ≤ 𝑥, 𝑡 ≤ 3.
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Figure 7: 3d plot of periodic wave solution, shape of (30) with wave
speed 𝜔 = −1, 𝑑 = −4, and −3 ≤ 𝑥, 𝑡 ≤ 3.
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Figure 8: 3d plot of periodic wave solution, profile of (31) with wave
speed 𝜔 = −1, 𝑑 = −2, and −3 ≤ 𝑥, 𝑡 ≤ 3.
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Figure 9: Kink wave, profile of (50) with wave speed 𝜔 = 1 and
−3 ≤ 𝑥, 𝑡 ≤ 3.

then the disturbance of (24) and (25) will be in the
negative 𝑥-direction.

(ii) Equations (26) and (27) are soliton solutions. Figure 3
shows the shape of singular soliton of (26) with wave
speed 𝜔 = −2, 𝑑 = 4, and −3 ≤ 𝑥, 𝑡 ≤ 3, and Figure 4
shows bell-shaped soliton of (27) with wave speed
𝜔 = 1, 𝑑 = 2, and −3 ≤ 𝑥, 𝑡 ≤ 3. The propagation
or disturbance of (26), represented in Figure 3, is
in the negative 𝑥-direction. And the propagation or
disturbance of (27), represented in Figure 4, is in the
positive 𝑥-direction.

(iii) Figures 5, 6, 7, and 8 corresponding to the shape
of (28)–(31) are traveling wave solutions, which are
periodic.

(iv) Figure 9 represents the profile of (50) that is kink
solution with wave speed 𝜔 = 1 and −3 ≤ 𝑥, 𝑡 ≤ 3.

(v) Figure 10 represents the silhouette of (51) that is
singular kink solution with wave speed 𝜔 = 9 and
−3 ≤ 𝑥, 𝑡 ≤ 3.
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Figure 10: Singular kink soliton, shape of (51)withwave speed𝜔 = 9
and −3 ≤ 𝑥, 𝑡 ≤ 3.
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Figure 11: Bell-shaped soliton, profile of (52) with wave speed𝜔 = 1
and −3 ≤ 𝑥, 𝑡 ≤ 3.

(vi) Figure 11 represents the shadow of (52) that is bell-
shaped solution with wave speed 𝜔 = 1 and −3 ≤ 𝑥,
𝑡 ≤ 3.

(vii) Figure 12 represents the profile of (53) that is soliton
solution with wave speed 𝜔 = 1 and −3 ≤ 𝑥, 𝑡 ≤ 3.

The disturbances represented in Figures 9–12 are in the
positive 𝑥-direction.

4.2. Graphical Representation. Some of our obtained travel-
ing wave solutions are represented in the following figures
with the aid of commercial software Maple.

5. Conclusions

In this paper, theMSEmethodhas been employed for analytic
treatment of two nonlinear coupled partial differential equa-
tions.TheMSEmethod requires wave transformation formu-
lae. ViaMSEmethod travelingwave solutions, kink solutions,
bell-shaped solutions of coupled Konno-Oono equations,
and the variant Boussinesq equations were derived. The
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Figure 12: Singular soliton, shape of (53) with wave speed 𝜔 = 1
and −3 ≤ 𝑥, 𝑡 ≤ 3.

procedure is simple, direct, and constructive. Without the
help of a computer algebra system all examples in this paper
show the efficiency of MSE method.

References

[1] A. J. M. Jawad, M. D. Petković, and A. Biswas, “Modified simple
equation method for nonlinear evolution equations,” Applied
Mathematics and Computation, vol. 217, no. 2, pp. 869–877, 2010.

[2] K. Khan andM.A. Akbar, “Exact and solitary wave solutions for
theTzitzeica-Dodd-Bullough and themodifiedKdV-Zakharov-
Kuznetsov equations using the modified simple equation
method,” Ain Shams Engineering Journal. In press.

[3] K. Khan, M. A. Akbar, and N. H. M. Ali, “The modified simple
equation method for exact and solitary wave solutions of
nonlinear evolution equation: the GZK-BBM equation and
right-handed noncommutative burgers equations,” ISRNMath-
ematical Physics, vol. 2013, Article ID 146704, 5 pages, 2013.

[4] E. M. E. Zayed and S. A. H. Ibrahim, “Exact solutions of
nonlinear evolution equations in mathematical physics using
the modified simple equation method,” Chinese Physics Letters,
vol. 29, no. 6, Article ID 060201, 2012.

[5] E. G. Fan, “Extended tanh-functionmethod and its applications
to nonlinear equations,” Physics Letters A, vol. 277, no. 4-5, pp.
212–218, 2000.

[6] M. A. Abdou, “The extended tanh method and its applications
for solving nonlinear physical models,” Applied Mathematics
and Computation, vol. 190, no. 1, pp. 988–996, 2007.

[7] J.-H. He and X.-H. Wu, “Exp-function method for nonlinear
wave equations,” Chaos, Solitons & Fractals, vol. 30, no. 3, pp.
700–708, 2006.

[8] M. A. Akbar and N. H. M. Ali, “Exp-function method for Duff-
ing Equation and new solutions of (2+1) dimensional dispersive
long wave equations,” Program in Applied Mathematics, vol. 1,
no. 2, pp. 30–42, 2011.

[9] H. Naher, A. F. Abdullah, and M. A. Akbar, “The Exp-function
method for new exact solutions of the nonlinear partial differ-
ential equations,” International Journal of Physical Sciences, vol.
6, no. 29, pp. 6706–6716, 2011.

[10] H. Naher, F. A. Abdullah, and M. Ali Akbar, “New traveling
wave solutions of the higher dimensional nonlinear partial

differential equation by the exp-function method,” Journal of
AppliedMathematics, vol. 2012,Article ID 575387, 14 pages, 2012.

[11] A. Bekir and A. Boz, “Exact solutions for nonlinear evolution
equations using Exp-function method,” Physics Letters A, vol.
372, no. 10, pp. 1619–1625, 2008.

[12] G. Adomian, Solving Frontier Problems of Physics:TheDecompo-
sition Method, Kluwer Academic, Dodrecht, The Netherlands,
1994.

[13] Y. Zhou, M. Wang, and Y. Wang, “Periodic wave solutions to
a coupled KdV equations with variable coefficients,” Physics
Letters A, vol. 308, no. 1, pp. 31–36, 2003.

[14] Sirendaoreji, “New exact travelling wave solutions for the
Kawahara and modified Kawahara equations,” Chaos, Solitons
and Fractals, vol. 19, no. 1, pp. 147–150, 2004.

[15] A. T. Ali, “New generalized Jacobi elliptic function rational
expansion method,” Journal of Computational and Applied
Mathematics, vol. 235, no. 14, pp. 4117–4127, 2011.

[16] Y. He, S. Li, and Y. Long, “Exact solutions of the Klein-Gordon
equation by modified exp-function method,” International
Mathematical Forum, vol. 7, no. 1–4, pp. 175–182, 2012.

[17] M. A. Akbar, N. H. M. Ali, and E. M. E. Zayed, “Abundant exact
traveling wave solutions of the generalized Bretherton equation
via (𝐺



/𝐺)-expansion method,” ommunications in Theoretical
Physics, vol. 57, no. 2, pp. 173–178, 2012.

[18] M. A. Akbar, N. H. M. Ali, and E. M. E. Zayed, “A gener-
alized and improved (𝐺



/𝐺-expansion method for nonlinear
evolution equations,” Mathematical Problems in Engineering,
vol. 2012, Article ID 459879, 22 pages, 2012.

[19] M. A. Akbar, N. H. M. Ali, and S. T. Mohyud-Din, “The
alternative (𝐺



/𝐺)-expansion method with generalized Riccati
equation: application to fifth order (1+1)-dimensional Caudrey-
Dodd-Gibbon equation,” International Journal of Physical Sci-
ences, vol. 7, no. 5, pp. 743–752, 2012.

[20] M. A. Akbar, N. H. M. Ali, and S. T. Mohyud-Din, “Some
new exact traveling wave solutions to the (3+1)-dimensional
Kadomtsev-Petviashvili equation,”World Applied Sciences Jour-
nal, vol. 16, no. 11, pp. 1551–1558, 2012.

[21] E. M. E. Zayed and S. Al-Joudi, “Applications of an extended
(𝐺


/𝐺)-expansion method to find exact solutions of nonlinear
PDEs in mathematical physics,” Mathematical Problems in
Engineering, vol. 2010, Article ID 768573, 19 pages, 2010.

[22] E. M. E. Zayed, “Traveling wave solutions for higher di-
mensional nonlinear evolution equations using the (𝐺



/𝐺)-
expansionmethod,” Journal of AppliedMathematics& Informat-
ics, vol. 28, pp. 383–395, 2010.

[23] E. M. E. Zayed and K. A. Gepreel, “The (𝐺


/𝐺)-expansion
method for finding traveling wave solutions of nonlinear
partial differential equations in mathematical physics,” Journal
of Mathematical Physics, vol. 50, no. 1, pp. 013502–013514, 2009.

[24] M. Wang, X. Li, and J. Zhang, “The (𝐺


/𝐺)-expansion method
and travelling wave solutions of nonlinear evolution equations
in mathematical physics,” Physics Letters A, vol. 372, no. 4, pp.
417–423, 2008.

[25] M. A. Akbar and N. H. M. Ali, “The alternative (𝐺


/𝐺)-
expansion method and its applications to nonlinear partial
differential equations,” International Journal of Physical Sciences,
vol. 6, no. 35, pp. 7910–7920, 2011.

[26] A. R. Shehata, “The traveling wave solutions of the perturbed
nonlinear Schrödinger equation and the cubic-quintic



8 ISRNMathematical Physics

Ginzburg Landau equation using the modified (𝐺


/𝐺)-
expansion method,” Applied Mathematics and Computation,
vol. 217, no. 1, pp. 1–10, 2010.

[27] L.-M. Shi, L.-F. Zhang, H. Meng, H.-W. Zhao, and S.-P. Zhou,
“Amethod to constructWeierstrass elliptic function solution for
nonlinear equations,” International Journal ofModern Physics B,
vol. 25, no. 14, pp. 1931–1939, 2011.

[28] S. T. Mohyud-Din and M. A. Noor, “Homotopy perturbation
method for solving fourth-order boundary value problems,”
Mathematical Problems in Engineering, vol. 2007, Article ID
98602, 15 pages, 2007.

[29] S. T. Mohyud-Din and M. A. Noor, “Homotopy perturbation
method for solving partial differential equations,” Zeitschrift fur
Naturforschung A, vol. 64, no. 3-4, pp. 157–170, 2009.

[30] S. T.Mohyud-Din, A. Yıldırım, and S. A. Sezer, “Numerical soli-
ton solutions of improved Boussinesq equation,” International
Journal of Numerical Methods for Heat & Fluid Flow, vol. 21, no.
6-7, pp. 822–827, 2011.

[31] M. L. Wang, “Solitary wave solutions for variant Boussinesq
equations,” Physics Letters A, vol. 199, no. 3-4, pp. 169–172, 1995.

[32] E.M. E. Zayed, H. A. Zedan, and K. A. Gepreel, “On the solitary
wave solutions for nonlinear Hirota-Satsuma coupled KdV of
equations,” Chaos, Solitons and Fractals, vol. 22, no. 2, pp. 285–
303, 2004.

[33] R.Hirota, “Exact envelope-soliton solutions of a nonlinear wave
equation,” Journal of Mathematical Physics, vol. 14, pp. 805–809,
1973.

[34] R. Hirota and J. Satsuma, “Soliton solutions of a coupled
Korteweg-de Vries equation,” Physics Letters A, vol. 85, no. 8-9,
pp. 404–408, 1981.

[35] W. Malfliet, “Solitary wave solutions of nonlinear wave equa-
tions,” American Journal of Physics, vol. 60, no. 7, pp. 650–654,
1992.

[36] N. H. Abdel-All, M. A.-A. Abdel-Razek, and A.-A. K. Seddeek,
“Expanding the tanh-function method for solving nonlinear
equations,” Applied Mathematics, vol. 2, no. 9, pp. 1096–1104,
2011.

[37] K. Konno andH. Oono, “New coupled integrable dispersionless
equations,” Journal of the Physical Society of Japan, vol. 63, pp.
377–378, 1994.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


