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This investigation deals with the Falkner-Skan flow of a Maxwell fluid in the presence of nonuniform applied magnetic field with
heat transfer. Governing problems of flow and heat transfer are solved analytically by employing the homotopy analysis method
(HAM). Effects of the involved parameters, namely, the Deborah number, Hartman number, and the Prandtl number, are examined
carefully. A comparative study is made with the known numerical solution in a limiting sense and an excellent agreement is noted.

1. Introduction

The Falkner-Skan problem under various aspects has
attracted the attention of several researchers [1]. This problem
under various aspects has been discussed extensively for
viscous fluid. The interested readers may consult the studies
in [2-11] for detailed information in viscous fluids. There
are several materials which do not obey the Newton’s law
of viscosity, for example, biological products like blood and
vaccines, foodstuffs like honey, ketchup, butter, and may-
onnaise, certain paints, cosmetic products, pharmaceutical
chemicals and so forth. These fluids are characterized as the
non-Newtonian fluids. Investigation of such fluids is very
useful in industrial, engineering, and biological applications.
However, such fluids cannot be studied by employing a single
constitutive relationship. This is due to diverse properties
of non-Newtonian fluids in nature. These non-Newtonian
fluid models are discussed in view of three main categories,
namely, the differential, the rate, and the integral types. The
simplest subclass of rate type fluids is called Maxwell. The
Maxwell fluid allows for the relaxation effects which cannot
be predicted in differential type fluids, namely, second, third,
and fourth grades. Recently, there has been an increasing
interest in the theory of rate type fluids and, in particular,
a Maxwell fluid model has been accorded much attention.

The Falkner-Skan wedge flow of a non-Newtonian fluid was
firstly investigated by Rajagopal et al. [12]. Massoudi and
Ramezan [13] discussed the effect of injection or suction
on the Falkner-Skan flows of second grade fluids. The
Falkner-Skan wedge flow of power-law fluids embedded in
a porous medium is investigated by Kim [14]. Olagunju [15]
studied this flow problem for viscoelastic fluid. In [10-15], the
attention has been given to the differential type fluids. To the
best of our knowledge, no one investigated the Falkner-Skan
flow problem for rate type fluids.

In [10], Yao has examined the Falkner-Skan wedge flow.
He established series solution for the velocity and tempera-
ture by using homotopy analysis method [16-25]. The pur-
pose of the present contribution is to extend the flow analysis
of study [10] in two directions. The first generalization is con-
cerned with the consideration of electrically conducting fluid.
Such analysis has inserted in power generators the cooling
of reactors, MHD accelerators, the design of heat exchanges
and electrostatic filters. Secondly, we consider the Maxwell
fluid instead of viscous fluid. The rest of the paper is arranged
as follows. The description of the problem is presented in
Section 2. Section 3 develops the homotopy solutions for
velocity and temperature. Convergence of the derived solu-
tion is examined in Section 4. Further, the variations of
embedded parameters have been discussed in this section.



2. Problem Development

We study the steady two-dimensional flow of a Maxwell
fluid in the presence of a magnetic field. The magnetic
Reynolds number is small so that induced magnetic field is
neglected. The stream velocity U(x) varies according to x".
The constant temperature of surface and free stream is T},

and T, respectively. The boundary layer equations for the
considered problem are
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where u and v are the velocity components in the x- and
y-directions, respectively, v is kinematic viscosity, o is the
electrical conductivity, k is the thermal conductivity, p is the
fluid density, T is the fluid temperature, A is relaxation time,
B is the magnetic field, and c, is specific heat.

The relevant boundary conditions are prescribed as fol-
lows:

u=0, v=0, T=T, aty=0,
(4)
u—U(x), T—T, asy— oo,
with [1]
U (x) = ax", (5)
and [7, 8]
B(x) = Byx" V2, (6)
Putting
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(1) is satisfied identically and (2)-(4) give
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Here v is the stream function, prime denotes the differ-
entiation with respect to #, y is the local Deborah number, n
is the constant parameter, M is Hartmann number, and Pr is
the Prandtl number. The values of 3, M, and Pr are
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The local Nusselt number Nu, and heat transfer from the
plate g,, are given by
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Invoking (7) one obtains
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in which the local Reynolds number Re, = Ux/v. For M =
0 = 3, from (9), we have

fIII + ffll + )/(1

where y = 2n/(n+ 1).

Nu, = -6' (0) (14)

- %) =0, (15)

3. Homotopy Analysis Solutions

For an interest in homotopy solutions, we express f(x) and
0(n) by a set of base functions

{n" exp (-2nn), m,n >0},

(16)
{n" exp (-nn), m,n >0},
as follows:
f) =Y Y ann"exp(-2ny),
m=0 n=0
(17)

= > Y by exp(-2mn),
m=0

n=0
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where a,,,, and b, , are the coefficients. The initial approxi-
mations of f(#) and 6(#) and the auxiliary linear operators
Zyand Z are

1- -2
ol =~ R )< esp (),
(18)
B &f  df B a*0  do
3f(f)_d_;13_4d_;1’ 39(9)_d_112+51 19)
Zy [Ci +Cyexp (2n) + Cyexp (-27)] = 0, (20)
Zy[Coep )+ Coop(] =0 (2)

in which C; (i = 1 - 5) are the arbitrary constants. If p €
[0, 1] is the embedding parameter and #if, fg and h, are the
nonzero auxiliary parameters, then the problems at zeroth
order give

(1=-p)Z; [fsp) - fo)] = phpt ¢ [F(mp)], (22)
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For p =0and p = 1, we have

fp=fm, @8
Om1)=6(n). (29

F:0) = fo (n),
0 (1:0) = 6, ().
When p increases from 0 to 1,  (; p) and 0 (1; p) vary from

fo(n) and 6,(n) to the exact solutions f(#) and 8(#). In view
of Taylors theorem and (20) and (21), one arrives at

fmp)=foln)+ Z_fm (n) p", (30)
6 (5 p) =6, (n) + Z_Gm (n) p", (31)
" f (n:
fulo) = LD
p=0
i (32)
1 0”0 (15 p)
O () = 2 200R)
m!  Op 0

The auxiliary parameters are so properly chosen that the
series (28) and (29) converge at p = 1, and hence

£ = foli)+ 3. fu ). o)

M8

0(n) =6,(n)+ ) 0, (n). (34)
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The problems at mth-order deformation satisfy the following
equations and boundary conditions:

L o (1) = Konfond ()] = s R0, (), (35)

Zo 10 (1) = XonBs ()] = B R0 (), (36)
F (0) = £1,(0) = f1 (c0) = fl (c0) =0,  (37)
8,,(0) =6, (c0) =0, (38)
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FIGURE 1: /1 curves for 15th-order approximations.
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4. Convergence of the Homotopy Solutions

Obviously the auxiliary parameters /i, and Fy in the series
solutions (31) and (32) have a definite role in adjusting and
controlling the convergence. For the admissible values of
hy and hy, the hy and fy curves are portrayed for 15th-
order of approximations. It is noticed that the ranges for the
admissible values of /1 and fy are -1.5 < hy < 0.2 and
-1.2 < hy < —0.6 (Figure 1). Moreover, the series given by (31)
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FIGURE 3: Influence of M on f'.

and (32) converge in the whole region of # when /1, = -0.5
and Ay = —0.8.

5. Results and Discussion

The purpose of this section is to investigate the variations
of parameters including Deborah number y, the constant
n, Hartman number M, and the Prandtl number Pr on
the velocity f' and the temperature 6. The variation of the
Deborah number 3, Hartman number M, and the parameter
n on the velocity f' can be seen in Figures 2-5. It is found
from Figure 2 that the boundary layer thickness decreases
with an increase in y. Figure 3 is plotted for the effects of
Hartman number M on the velocity profile f'. The effects
of M on f' are qualitatively similar to those of y. Figure 4
depicts the velocity field for different values of parameter #.
Clearly f' is an increasing function of # while the bound-
ary layer thickness decreases. Figure 5 shows the effects of
Prandtl number Pr on the temperature profile 6. The thermal
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TaBLE 1: Comparison of the results 0'(17) when =0 = M.
. fn) f') [ ()
HAM [26] HAM [26] HAM [26]
0.0 0.000000 0.00000 0.000000 0.000000 0.469600 0.46960
0.5 0.058643 0.05864 0.234228 0.23423 0.465038 0.46503
1.0 0.232990 0.23299 0.460633 0.46063 0.434379 0.43438
2.0 0.886821 0.86680 0.816695 0.81669 0.255669 0.25567
3.0 1.795568 1.79557 0.969092 0.96905 0.067713 0.06771
4.0 2.783886 2.78388 0.997770 0.99777 0.006875 0.00687
5.0 3.783235 3.78323 0.999937 0.99994 0.000258 0.00026
TaBLE 2: Comparison of the results when M = 0 = 3.
Pr y=0.0 y=10 y=20
HAM [26] HAM [26] HAM [26]
0.001 0.024492 0.02449 0.024831 0.02483 0.024922 0.02492
0.003 0.041546 0.04154 0.042523 0.04252 0.042780 0.04278
0.100 0.198031 0.19803 0.219502 0.21950 0.226096 0.22600
0.300 0.303712 0.30371 0.351471 0.35147 0.366813 0.36681
1.000 0.469601 0.46960 0.570475 0.57047 0.605204 0.60520
2.000 0.597234 0.59723 0.743721 0.74372 0.795991 0.79599
3.000 0.685967 0.68596 0.865224 0.86522 0.930362 0.93036
———— ]
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FIGURE 4: Influence of n on f’.

boundary layer thickness decreases when Pr increases. The
variation of Hartman number M on the temperature profile
is shown in Figure 6. It is noticed that the temperature profile
increases when M is increased. The effects of parameter n are
shown in Figure 7. It is observed that an increase in the value
of ndecreases the thermal boundary layer thickness. Figures 8
and 9 are displayed to analyze the comparison of the present
analytical results with the existing numerical solutions. An

FIGURE 5: Influence of Pr on 6.

excellent agreement is found between the two solutions for
different values of y. In Table 1, we have computed the numer-
ical values of f(n), f'(n), and f"(y) for the comparison
of the present analytical results with the numerical solution
[26]. Table 2 is also a comparison between homotopy solution
and numerical solution [26] in a special case. An excellent
agreement is found between the two solutions.
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FIGURE 9: Influence of y on 6'(0) when B = 0. Solid lines: HAM
solution [10]; filled circles: numerical solution [26].
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