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Piezoelectric materials have wide band gap and no inversion symmetry. Only the orthorhombic phase of lead metaniobate
(PbNb

2
O
6
) can be ferroelectric and piezoelectric below Curie temperature, but not the rhombohedral phase. High temperature

piezoelectric applications in current decades have revived international interest in orthorhombic PbNb
2
O
6
, synthesis of which

in pure form is difficult and not well documented. Second problem is that its impedance spectroscopy (IS) data analysis is still
incomplete. Present work attempts to fill up these two gaps. Presently found synthesis parameters yield purely orthorhombic
PbNb

2
O
6
, as checked by X-ray Rietveld analysis and TEM. Present 20Hz to 5.5MHz IS from room temperature to 700∘C shows

its ferroelectric Curie temperature to be one of the highest reported, >574∘C for 0.5 kHz and >580∘C for 5.5MHz. Dielectric
characteristics and electrical properties (like capacitance, resistance and relaxation time of the equivalent CR circuit, AC and DC
conductivities, and related activation energies), as derived here from a complete analysis of the IS data, are more extensive than
what has yet been reported in the literature. All the properties show sharp changes across the Curie temperature. The temperature
dependence of activation energies corresponding to AC and DC conductivities has been reexamined.

1. Introduction

A generator of pressure or movement or ultrasonic wave
and their sensor/detector can be fabricated utilizing inverse
and direct piezoelectric effect, respectively.These possibilities
opened up a huge array [1] of medical, industrial, and
other applications of piezoelectric materials with significant
commercial implications. Commercial piezoelectric materi-
als have mostly been barium titanate (BT), lead zirconate
titanate (PZT), or materials based on BT or PZT. But Curie
temperature (𝑇

𝑐
), the upper limit for piezoelectricity, is at best

130∘C [2] for BT and 365∘C for a modified PZT. So, higher
𝑇
𝑐
materials are being developed worldwide for high tem-

perature (HT) applications. Lead metaniobate (PbNb
2
O
6
),

shortened here as PNO, with a higher Curie temperature
(517 to 570∘C in different papers), is one of the present
candidate materials [2–14]. It was discovered [3] in 1953.
However, synthesis of its piezoelectric phase, the metastable
orthorhombic structure, in a pure state is difficult [4]. During
the preparation of the orthorhombic PNO by quenching

from a temperature above 1250∘C, a few competing com-
pounds and phases (like the rhombohedral PNO phase) tend
to form. The rhombohedral PNO is not piezoelectric. In
fact, the difficulty [4] of forming single-phase and high-
density orthorhombic PNO, together with the success of BT,
PZT, and related piezomaterials for near room temperature
applications, somewhat halted R & D on PNO after the
initial years of pioneering work and publications [5–9]. In
the meantime, a need has developed for high temperature
(HT) piezoelectric materials (i) for HT ultrasonic imaging of
nuclear fuel rods through molten metal coolants [15] in Fast
Breeder Reactors and (ii) for HT applications like sensors in
car exhaust systems. So, since the late nineties, work on PNO
has been revived by a few groups (Table 1) in search of higher
Curie temperature materials. The stable forms of PbNb

2
O
6

are rhombohedral (at low temperature) and tetragonal (at
high temperature). Quenching from the tetragonal form, as
mentioned earlier, leads to metastable orthorhombic form
at room temperature. Roth showed by X-ray diffraction
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[5, 6] that the orthorhombic PNO (ferroelectric) changes to a
tetragonal structure (paraelectric) above ∼570∘C.

Goodman [3] had earlier concluded the 𝑇
(Curie) of

quenched PNO to be 570∘C, from their dilatometric and
dielectric characterizations. Although this temperature is
regarded even in recent papers [10] as the Curie temperature
of PbNb

2
O
6
, almost all the recent electrical measurements

have obtained much lower values of its Curie temperature
(Table 1). Reference [10] quoted 𝑇

(Curie) of 500
∘C for Ferro-

perm (Denmark) PNO samples (1995) and 495∘C forMorgan
Matroc (UK) PNO samples (1997). Lower 𝑇

(Curie) in these
commercial samples may or may not be due to efforts to
optimize other piezoelectric parameters. Table 1 has been
compiled from recent publications. It shows 𝑇

(Curie) to be in
the range 517∘C to 540∘C only, except in present samples.
So, there is a need to optimize preparation conditions of
quenched PbNb

2
O
6
to get highest possible Curie tempera-

ture, high purity and high density. A pointer in this direction
is our observation on quenched PNO [11] of an endothermic
signal at 570.6∘C in Differential Scanning Calorimetry [12].

Here, our preparation of high quality orthorhombic PNO
and results of our impedance spectroscopy up to 700∘C and
over a wide frequency range from 20Hz to 5.5MHz, with
a detailed analysis, have been presented. Intrinsic cationic
defects in niobates like LiNbO

3
and their role are well known

[16]. Likely lattice defects in a quench-prepared PbNb
2
O
6

sample should similarly be regarded as an intrinsic part of
the sample. The structure of the samples has, therefore, been
characterized fully before other studies. Although some work
on PNO (Table 1) and a few on various targeted chemical
substitutions in PNOhave been reported in the literature, not
all possible dielectric and electrical parameters for PNO itself
have yet been derived from IS data. This has been attempted
here. The dielectric response in such an electroceramic is
known to be complex with many contributions that need to
be known and understood. So, desirable observations like
the highest 𝑇

(Curie) as well as all uncommon observations of
the present work are reproduced. All possible data analysis
has been carried out, yielding important parameters like bulk
resistance, relaxation times, activation energies, AC and DC
conductivity, and phase angle.

2. Materials and Methods

Aldrich lead(II) oxide (PbO, 99.999%, yellowish orange and
Melting Point = 886∘C) and niobium pentoxide (99.9% GR)
of Loba Chemie, weighed in proper proportion to give
Pb : Nb = 1 : 2, plus 2% of excess PbO, have been well ground
under isopropyl alcohol, dried, and pelletized. Additions of
excess PbO were introduced by some earlier workers to
compensate possible evaporative loss of PbO. To get best
PbNb

2
O
6
, present firings have been done in stages at 1050∘C,

1290∘C and 1270∘C in a box furnace with PID temperature
controller. Extra PbO (3%) has been added before the 3rd
firing. All our firings have been done in palletized form to
provide intimate contact and reduce Pb loss. But grinding
and repalletizing at each step have also been undertaken,
to improve mixing and the sample quality. After the last

Table 1: Comparison of recently reported Curie temperatures of
orthorhombic PbNb2O6 samples.

Sample Sintering
Curie temperature 𝑇

(Curie) in
∘CTemp.

(∘C)
Time
(h)

Present 1270 4.5 𝑇
(Curie) > 576 for 4.0MHz, and

>574 for 0.5 kHz.
[17] 1270 4.5 517
[18] 1270 — 534 and 540 (both at 10 kHz)
[19] — — 540 (presumably at 80 kHz)
[20] 1240–1260 4 530 (at 10 kHz)

[13] 1270 4.5 531 (at 1 kHz), 528 (at 1MHz) and
533 (at 10MHz)

firing, the samples have been quenched. The samples have
been characterized by XRD with Rietveld analysis [11] and
Transmission Electron Microscopy (TEM).

The impedance spectroscopy has been carried out using
Solatron “SI 1260 Impedance Gain Phase Analyzer” with a
high temperature attachment. Our PNO pellets (diameter∼
12mm and 2.2 to 2.4mm thick) have not been poled before
measurement. Silver paint coat on the flat faces of the pellet
under study served as the electrodes for IS measurements.
This measurement of 𝜀

 and 𝜀

 (the real and imaginary
components, respectively, of the relative dielectric constant
i.e., permittivity) has been done for different measuring
frequencies at different values the sample temperature (𝑇)
while heating from room temperature to 700∘C.

3. Results and Discussion

XRD pattern and Rietveld analysis [11], Figure 1(a), con-
firmed the orthorhombic structure and absence of any other
phase. The smallness of the difference of the fitted graph
and raw data proved our Rietveld fit to be good. It yields
𝑎 = 17.6468(7) Å, 𝑏 = 17.9512(7) Å, and 𝑐 = 3.8704(1) Å.
The samples showed about 80% of the theoretical density
on average. TEM diffractograms [6] with the electron beam
on individual grains of the ceramic sample always gave
diffraction patterns that matched these lattice parameters
from XRD result. One TEM diffraction pattern is shown in
Figure 1(b). This way, all of the nearly forty grains examined
have been found to be in orthorhombic phase.

Figures 2–4 show 𝜀

 versus frequency, 𝜀

 versus fre-
quency, and tan 𝛿 = 𝜀


/𝜀

 versus frequency results (over
20Hz to 5.5MHz range) for 12 temperatures from 50∘C
to 700∘C. In Figure 2, real part (𝜀) of dielectric constant
decreases with increase of measuring frequency up to about
ln𝑓 = 12 to 14 region, implying ∼162 kHz to ∼1203 kHz
region, and then increases sharply with increase of fre-
quency as reported earlier [13] for all temperatures except
at low temperatures like 200∘C. Moreover, 𝜀 is low and less
dependent on frequency at low temperatures up to 300∘C,
leading to overlap of several graphs. It increases with increase
of temperature, up to 573∘C. Graph of 𝜀

 shows signifi-
cantly increased values in the 573∘C graphs with respect to
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Figure 1: (a) Rietveld fit (red graph) to XRD data points (black circles) for orthorhombic PbNb
2
O
6
with their difference shown by the

continuous curve in the smaller-sized graph. The vertical blue bars below the main graph are the calculated peak positions. (b) Electron
diffraction pattern for HR Transmission Electron Microscopy on a selected grain (microcrystal) of quenched lead metaniobate (PNO).
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Figure 2: Frequency dependence of the real part of dielectric
constant (𝜀) in the frequency range 20Hz (ln𝑓 = 2.995) to 5.5MHz
(ln𝑓 = 15.52), compiled fromheating runs at different temperatures
for quenched PNO sample, the orthorhombic phase of PbNb

2
O
6
.

The inset is an enlarged view of the variation of 𝜀

 in the higher
frequency range.

the 570∘C graph. This temperature is the region of ferroelec-
tric to paraelectric phase transition, as is clearer in graph on
temperature variation (Figure 5). One must note the interest-
ing decrease of 𝜀 with further increase of temperature above
573∘C.This, in fact, shows up in 𝜀

 versus 𝑇 plot as peaking at
around 573∘C. Here, it was studied up to 700∘C.The values at
different temperatures of dielectric dispersion with respect to

frequency, which will be proportional to d𝜀/d(ln𝑓), will be
discussed from the low frequency, specifically ln𝑓 (Hz) < 7,
part of Figure 2. At a low temperature of 100∘C, d𝜀/d(ln𝑓) =

2.483 ± 0.739 only, increasing to 41.158 ± 7.805 at 300∘C,
whereas at the high temperature of 573∘C, d𝜀/d(ln𝑓) =

−4121.578 ± 226.784, a high value.
In Figure 3, frequency dependence of 𝜀 or the imaginary

part of relative permittivity is more at low frequencies and
higher temperatures, the 𝜀 versus frequency graph for 700∘C
being at top in the lower frequency region. Here, 𝜀 decreases
steeply as frequency increases from 20Hz to about ln𝑓 = 8

implying 𝑓 = 2.98 kHz. A weak peaking of 𝜀

 at ln𝑓 =

13.8, implying 𝑓 = 984.6 kHz, is visible for graphs for
low temperatures like 50∘C, 300∘C, 500∘C, and 550∘C in the
enlarged view. Our higher temperature graphs show no peak
in this temperature region but only a slow increase of 𝜀 to
allow peaking at higher frequencies. This fall and peaking
of 𝜀

 has been shown and discussed by earlier workers
[13], although the details differ. Dielectric loss (tan 𝛿) in
Figure 4 approximately follows 𝜀 with respect to frequency
and temperature dependence.

Figures 5 and 6 are plots with respect to temperature, of 𝜀
and tan 𝛿 = 𝜀


/𝜀

, respectively.Thepeak value of 𝜀 is denoted
by 𝜀



max and its position on the temperature axis by 𝑇
𝑚
. Data

for eight frequencies, selected out of 20Hz to 5.5MHz data
in Figures 2–4, have been plotted in Figures 5 and 6 to avoid
overlaps and provide a clearer view of the graphs.

Fall of 𝜀 and, hence, of the dielectric susceptibility, 𝜒=
(𝜀 − 1), with increasing 𝑇, a characteristic of the paraelectric
phase and exhibited here for 𝑇 > 𝑇

𝑚
region, is due to

opposition of the increasing thermal agitation, to dipole
alignment. The rise of 𝜀

 with 𝑇 in the 𝑇 < 𝑇
𝑚
region is

believed to be achieved by the increase in the number of
dipoles available for alignment [21]. Sharpness of the peak
at 𝑇
𝑚
indicates near absence of diffused scattering in present

samples, as discussed elaborately later. Let aminor peculiarity
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heating runs at different temperatures, for quenched PNO sample, the orthorhombic phase of PbNb
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be discussed first. A wide minimum (Figure 5), appearing
at 300∘C, for frequencies 0.5 kHz, 1 kHz, and 5 kHz in 𝜀



versus 𝑇, as well as in tan 𝛿 versus 𝑇 graph (Figure 6), cannot
be readily explained. However, the more important feature
of this work is the large permittivity peak at 𝑇

𝑚
with 𝑇

𝑚

ranging from 574∘C to 576∘C as the measurement frequency
is increased from 0.5 kHz to 4MHz, as mentioned earlier.
In Figure 7, the peak value, 𝜀max, of 𝜀

 shows a sharp fall
initially and then a slow rise with increase of measuring

frequency. The value of 𝜀max decreases from 11623 to 1450 as
the frequency (𝑓) increases from 20Hz to 1MHz. Then, for
𝑓 > 1MHz, the value of 𝜀max increases slowly, being about
5465 at 5.5MHz. The prominent peak of the imaginary part
𝜀

 in the 𝜀

 versus 𝑇 graph can be seen to be around 𝑇
𝑚
as

expected. The dielectric loss (tan 𝛿) also peaks at around 𝑇
𝑚
.

Above𝑇
𝑚
, 𝜀 decreases with increase of𝑇, and, hence, the

material is obviously paraelectric above 𝑇
𝑚
. It is ferroelectric

below 𝑇
𝑚
. This transition temperature gives [22] the Curie
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temperature. So, present impedance spectroscopy measure-
ments indicate a high Curie temperature that depends on
frequency, 576∘C for 4.0MHz and 580∘C for 5.5MHz, for
example.

The plot of 𝑍 (imaginary part of the impedance) versus
𝑍

 (real part of the impedance), called Nyquist diagram [23],
is based on the well-known Cole-Cole plot of 𝜀 versus 𝜀

.
The 𝑍

 versus 𝑍

 plot for our orthorhombic PNO is shown
in Figures 8(a) and 8(b). The straight line segments joining
of the data points in Figures 8(a) and 8(b) are drawn only as

a guide to the eye. Single semicircular nature of the plots is
clearer in the higher temperature plots, as the lower tempera-
ture plots, like that for 200∘C in the insert of Figure 8(a), show
a near linear rise, possible for a large semicircle. An important
observation is that the Nyquist diagram here shows only one
semicircular arc [23] over the studied frequency range 20Hz
to 5.5MHz. One semicircle implies only one contribution,
here from the sample grains and not from any second source
(e.g., grain boundaries or electrode effect). A sample with one
semicircle Nyquist diagram or Cole-Cole plot is equivalent
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[23] to a bulk resistance 𝑅 and a capacitance 𝐶 in parallel.
These elements give rise to a time constant 𝜏 = 𝐶𝑅, the
dielectric relaxation time of the basic material.The frequency
𝜔
𝑚
of the peak of the Nyquist diagram can find the relaxation

time 𝜏 as (𝜔
𝑚
)(𝜏) = 1 for this peak point [23]. At this point,

𝑍

 has its maximum value. So, many authors [24, 25] use the
frequency of peak (i.e., maximum) of 𝑍 versus frequency
plot to find the relaxation time 𝜏.

Present work additionally suggests an alternative method
(based [23] on 𝑍


= 𝑅/2 = 𝑍

 criterion) of determining
relaxation time (𝜏). We later compare the two methods, with
the finding that they match (Figure 14) fairly well, match
being better at higher temperatures. Often the centre of the
semicircular arc of the Nyquist diagram is not on the𝑍-axis,
so that the semicircle is seen to be depressed by an angle (𝜃)
below the 𝑍

-axis. This is the case, if there is a distribution
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of relaxation times. This 𝜃 is determined by the width of the
distribution of relaxation time.

If the semicircle starts near the origin at 𝑍 = 𝑅
∞

and
intercepts the 𝑍

-axis again at 𝑅
0
, 𝑅 = (𝑅

0
− 𝑅
∞
) gives [23]

the bulk resistance. Fitting the impedance spectroscopy (𝑍
versus 𝑍

) data, usually forming an arch, to the equation of
a circle, its radius 𝑟 and 𝜃 and, hence, 𝑅

0
can be determined.

Bulk resistance 𝑅 = (𝑅
0
− 𝑅
∞
) = 2𝑟 ⋅ cos 𝜃 has thus been

calculated from our data in Figure 8 and plotted in Figure 9.
It is found that the semicircle of data points for a particular
temperature in Figures 8(a) and 8(b) reduces in size with
increase of temperature, implying smaller bulk resistance
of the sample at higher temperatures as documented in
Figure 9. Real part 𝜀

 of permittivity in present samples in
the paraelectric region has been fitted to the modified Curie-
Weiss law [26], (1/𝜀 − 1/𝜀



max) = (𝑇 − 𝑇
𝑚
)𝛾/𝐶
𝑤
, where 𝐶

𝑤
is

Curie-Weiss constant and 𝛾 is the diffusivity parameter with
1 < 𝛾 < 2. For a ferroelectric relaxor, 𝛾 is at its highest value
of 2.

The previous equation reduces to Curie-Weiss law for 𝛾 =

1. The full equation can be rewritten as ln(1/𝜀 − 1/𝜀



max) =

𝛾 ln(𝑇 − 𝑇
𝑚
) − ln𝐶

𝑤
. So, plotting of ln(1/𝜀 − 1/𝜀



max) versus
ln(𝑇−𝑇

𝑚
) for different frequencies, as shown in Figures 10(a)

and 10(b), gives the fit parameters (Table 2). Present finding
that 𝛾 is nearly 1 in all cases proves that the relaxor property is
minimum for these samples. This 𝛾 = 1 leads to the observed
sharpness of the peak at 𝑇

𝑚
. Relaxor piezoelectric materials,

on the other hand, show a broadened peak.
Next, AC conductivity (𝜎ac) has been calculated from

the dielectric loss (tan 𝛿) data using the empirical formula,
𝜎ac = 𝜔𝜀

0
𝜀

 tan 𝛿 = 2𝜋𝑓𝜀
0
𝜀

, where 𝜀
0
= 10

7
/4𝜋𝑐

2
= 8.845 ×

10

−12 F⋅m−1 = vacuum permittivity and 𝑐 = speed of light in
vacuum. Figure 11 presents this result on AC conductivity as
a function of 1000/𝑇. Now the maxima in different graphs
of Figure 11 (prominent only in high frequency graphs) are at
1000/𝑇 ∼ 1.18K−1, that is, at 𝑇 ∼ 573

∘C that corresponds

Table 2: Result of fitting 𝜀 versus𝑇 data to themodified Curie-Weiss
equation, as detailed in the text.

Frequency (Hz) 𝑇
𝑚
(∘C) 𝐶

𝑤
× 10

5 (∘C) 𝛾 𝜀



max
5.5M 579.5 ± 4 2.187 1.141 5472.6
3.0M 575.2 ± 2 1.739 1.136 1876.1
2.0M 574.8 ± 1 1.471 1.110 1574.2
50 k 574.9 ± 1 1.236 1.035 1752.2
1.0 k 573.8 ± 1 5.237 1.283 3613.9
0.5 k 573.0 ± 1 2.635 1.117 3632.5
0.1 k 572.5 ± 1 0.877 0.744 7103.5

to the ferroelectric-to-paraelectric transition. AC activation
energy (𝐸ac) was calculated using the empirical Arrhenius
relation 𝜎ac = 𝜎

0
exp (−𝐸ac/𝑘𝑇).

The aforementioned maximum, known to occur in
the AC conductivity graph at around the ferroelectric-
paraelectric phase transition temperature (𝑇

𝑐
), is due to

domain reorientation, domain wall motion, and the dipolar
behavior [27]. In our data in Figure 11, there are three distinct
temperature regions of Arrhenius type conduction, (a) ∼50
to ∼300∘C section, corresponding to [28] electron or hole
hopping, (b)∼400 to∼550∘Cpart, due to conduction by small
polarons and oxygen vacancies, and (c) ∼580 to ∼700∘C high
temperature region due to intrinsic ionic conduction [29].
Data in these three regions have been separately fitted to the
Arrhenius relation as shown in Figure 12.The slope of ln(𝜎ac)
versus 1/𝑇 plot gives AC activation energy 𝐸ac.

The previous fitting avoided the region between 300 and
400∘C, as it showed an unexplained peak. However, the rise
in some graphs at ∼300∘C to ∼322∘C region of Figure 11
reminds one of the anomaly at ∼300∘C in 𝜀

 versus 𝑇 as
well as in tan 𝛿 versus 𝑇 graphs in Figures 5 and 6. It is
noteworthy that temperature dependence of 𝜎ac is radically
different below and above this temperature zone, indicating
differentAC activation energies forAC conduction.However,
somewhat wavy nature of the data at low frequencies and low
temperatures, in this and other work [30], and suggestion of
the rise by only one point in high frequency graphs prevent
definite conclusions on the rise.These data at low frequencies
(here 0.5, 1, and 10 kHz in Figure 11) and low temperature
(𝑇 < 401

∘C) have not been considered for present AC
activation energy calculation in next paragraph. In the high
temperature graph in Figure 12,𝐸ac falls rapidly with increase
of measuring frequency up to 500 kHz and then becomes
weakly dependent on frequency at higher frequencies. The
low temperature graph of 𝐸ac is practically independent of
frequency over the range (500 kHz to 5MHz) studied here.
As seen in the graphs, the AC activation energy is higher at
lower frequencies, 0.5 kHz data giving 0.954 eV (with 𝜎

0
=

57.56Ω⋅m−1) for 400 to 550∘C, and 1.17 eV (with 𝜎
0
= 1.508×

10

3
Ω⋅m−1) for 580 to 700∘C. These values fall to 0.523 eV

(with 𝜎
0

= 24.62Ω⋅m−1) for 400 to 550∘C and −1.994 eV
(with 𝜎

0
= 6.253 × 10

−13
Ω⋅m−1) for 580 to 700∘C, that is, in

paraelectric region, respectively. Figure 13 gives the variation
of 𝑍real = 𝑍

 and 𝑍imaginary = 𝑍

 against the measuring
frequency. Here, 𝑍

 and 𝑍

 graphs are seen to merge in
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Figure 10: (a) Plot of ln(1/𝜀−1/𝜀max) versus ln(𝑇−𝑇
𝑚
) for quenchedPNOsample, the orthorhombic phase of PbNb

2
O
6
, at various frequencies

(3MHz, 2MHz, 1MHz, 50 kHz, and 1 kHz). It examines the relationship, expected for the paraelectric phase of a normal ferroelectric. (b)
A specific example of finding the parameters (𝛾 = 1.0346 and 𝐶 = 123569.04

∘C) of the modified Curie-Weiss law from the 50 kHz plot of
ln(1/𝜀 − 1/𝜀



max) versus ln(𝑇 − 𝑇
𝑚
) for the paraelectric phase of quenched PbNb

2
O
6
, which is orthorhombic.
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Figure 11: Frequency dependence of AC conductivity in the temperature range 50∘C to 700∘C, at different frequencies, for quenched PNO
sample, the orthorhombic phase of PbNb

2
O
6
.

the high frequency region approaching zero value.The single
semicircular Cole-Cole plot suggests an equivalent circuit
[23] of resistance 𝑅 and capacitance 𝐶 in parallel giving the
well-known complex impedance 𝑍

∗
= 𝑅/(1 + 𝑗𝜔𝑅𝐶) = 𝑍


−

𝑗𝑍

. Applying the relation 𝜏 = 𝐶𝑅 and the earlier-mentioned

condition: 𝜔
𝑚
𝜏 = 1, one gets 𝑍


= 𝑅/2 and 𝑍


= 𝑅/2. So,

relaxation time related frequency is the frequency at which
𝑍

 versus frequency and 𝑍

 versus frequency graphs cross
each other making 𝑍


= 𝑍

. We calculate this relaxation
time and present it as the relaxation time 𝜏cross in Figure 14.
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with measuring frequency.

We determine relaxation time also from the frequency at
the 𝑍

 peak of 𝑍

 versus frequency graphs (Figure 13) as
done by others [30], calling it 𝜏peak to compare it in Figure 14
with 𝜏cross. Figure 14 shows that 𝜏cross and 𝜏peak behave
similarly proving correctness of each approach. But these two
graphs show different values with more relative scatter in the
𝜏peak graph. This point shows up again in DC conductivity
discussion in next paragraphs.

The decrease of relaxation time with temperature has
been adequately discussed in the literature [31]. Relaxation
time for this material is seen to fall with increasing temper-
ature, except for a prominent peaking at the ferroelectric to
paraelectric transition temperature. 𝑅 = (𝑅

0
− 𝑅
∞
) ∼ 𝑅

0
,

since 𝑅
∞

≪ 𝑅
0
. This 𝑅 has already been calculated from

Figure 8. So, presently determined 𝐶𝑅 = 𝜏 value gives us 𝐶.
These two equivalent circuit parameters 𝐶 and 𝑅 have been
presented in Figure 9. Here, there is an impressive peaking
of capacitance 𝐶 at the Curie temperature. Another related
parameter, the angle (𝜃), has been plotted against temperature
in Figure 15. Clearly, itmay be positive or negative, depending
on the position of the centre of the semicircular arc. Variation
of the impedance phase angle, 𝛿 = tan−1 − (𝑍


/𝑍


), with

frequency, plotted on a logarithmic scale, is called Bode
plot [23, 26]. Bode plots at different temperatures have been
shown in Figures 16(a) and 16(b), graphs for 570∘C, 573∘C,
and 600∘Cbeing given in Figure 16(b) to avoid overlap. At low
frequencies and high temperatures (e.g., the 700∘C graph),
the constant phase part of the phase angle can be seen to
be predominating. For a pure capacitor, 𝛿 = −90

∘, while
for a resistor it is zero. For a capacitor, the voltage, 𝑉

𝑐
, lags

behind the response current by 90∘. In the phase angle plot,
an approach to pure capacitive behavior at low frequency
values can usually be identified by 𝛿 → −90

∘. For an 𝑅𝐶

circuit, it will have an intermediate value and depends on

𝜔 as seen in the graph. Figure 16(b) contains data sets at
𝑇
𝑚
region temperatures and shows a prominent increase of

the phase angle between 1MHz and 5.5MHz. The frequency
ranges for near constancy of the phase angle (e.g., over 20Hz
to ∼1 kHz for 700∘C) can be observed from the figures. This
constant phase region appears at low frequencies for the high
temperature runs and at high frequencies for low temperature
runs.

DC conductivity has been calculated using the relation
[32], 𝜎dc = (𝜀

0
𝜀
∞
)/𝜏 from experimentally found 𝜏 and

𝜀
∞
(= 𝜀

 value as 𝑓 → ∞). Using 𝜏cross and 𝜏peak data, as
found in Figure 14, temperature dependence of𝜎dc(cross) and
𝜎dc(peak), and, hence, that of two sets ofDCactivation energy
have been calculated for the present PNO samples. Result
from each technique shows expected increase of 𝜎dc with
temperature (𝑇), as shown in Figure 17. DC activation energy
(𝐸dc) due to DC conductivity [14] was calculated using the
empirical Arrhenius relation 𝜎dc = 𝜎

0
exp(−𝐸dc/𝑘𝑇), where

𝑘 is Boltzmann constant, 𝜎
0
is preexponential factor and 𝐸dc

is the DC activation energy for the conduction process [33–
36], by plotting ln(𝜎dc) versus 1/𝑇. Figure 19 gives this DC
activation energy for different temperature ranges, indicated
by the horizontal bars, as found independently from 𝜏cross
and 𝜏peak data, for two- and three-region fits. Almost all
earlier authors determined DC activation energy, 𝐸dc, from
relaxation time via DC conductivity. The 2-segment fit has
been utilized in the literature for the usual 𝜏peak-based
evaluation of 𝐸dc below and above 𝑇

(Curie).
Gonzalez et al [36] calculated relaxation times (𝜏 =

𝜏CC, 𝜏𝑇, 𝜏
∗
) and other parameters for PNO sample from their

450∘C to 590∘Cmeasurement of the temperature dependence
of the imaginary dielectric modulus, separately by frequency
domain analysis and by time domain analysis. Their 𝜏

∗,
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relaxation time due to thermal effect, was calculated in
time domain using the Kohlrausch-Williams-Watts function,
𝑓(𝑡) = 𝑒

−(𝑡/𝜏
∗

)
𝛽. Finally ⟨𝜏

𝑇
⟩, the average relaxation time, was

calculated using the relation, ⟨𝜏
𝑇
⟩ = (Γ(1/𝛽)/𝛽)𝜏

∗, where
Γ is the Euler gamma function. Next, 𝜎dc was calculated
using the relation 𝜎dc = 𝜀

∞
/⟨𝜏
𝑇
⟩. They made separate

liner fits to their ln(𝜎dc) versus 1/𝑇 data for data below
𝑇
(Curie) and for data above 𝑇

(Curie), finding, however, similar
values 𝐸dc = 1.08 eV below 𝑇

(Curie) and 𝐸dc = 1.11 eV
above 𝑇

(Curie). Finding practically same values apparently
implies a single conduction mechanism [36]. However, the

fact that more than one conduction mechanism is expected
[36] from the observed (Figure 2) “departure of the real
permittivity data froma low frequency plateau-like behaviour
towards the lowest frequencies and high temperature” has
also been pointed out by these authors, with the comment
that “further measurements and data treatment to better
elucidate this additional low-frequency effect are in progress.”
This motivated us (i) to use 𝜏cross to find 𝜎dc and 𝐸dc, and also
(ii) to try three segment fitting (Figure 18) as needed for the
data resulting from the 𝜏cross-based analysis.The data actually
demands a middle segment (here 570∘C to 600∘C) fit.
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Here, one notes in Figure 17 that 𝜎dc(cross) versus 𝑇 data
clearly fall into three linear segments:

400∘C to 565∘C giving (Figure 18) 𝐸
𝑎

= 1.0724 ±

0.043 eV,
570∘C to 600∘C giving (Figure 18) 𝐸

𝑎
= 1.595 ±

0.120 eV,
610∘C to 700∘C giving (Figure 18) 𝐸

𝑎
= 1.263 ±

0.156 eV,
which implies a peaking of the activation energy 𝐸

𝑎
= 𝐸dc

(cross) in the Curie temperature (𝑇
𝑐
) region and practically

the same value for low and high temperature regions (“C3”
data points in Figure 19). This discovers the expected [36]
existence of different 𝐸dc and, hence, different conduction
mechanisms, retaining same or similar values of 𝐸dc below
and above the 𝑇

𝑐
region.

A 2-segment fit to 𝜎dc(cross) versus 𝑇 data of Figure 17
yields (“C2” points in Figure 19)

𝐸
𝑎
= 1.072 ± 0.043 eV over 400∘C to 565∘C,

𝐸
𝑎
= 1.026 ± 0.086 eV over 570∘C to 700∘C,
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missing the significant rise and fall within a narrow 𝑇
𝑐
region

(570 to 600∘C) to wrongly conclude no significant change
across 𝑇

𝑐
(the Curie temperature). This is in line with the

limited knowledge, currently available in the literature as
already discussed.

𝜎dc(peak) versus 𝑇 data of Figure 17 can be seen to have
more scatter than 𝜎dc(cross) versus 𝑇 data with the former
not falling well either on a set of straight lines or even on a
smooth graph, as should be the case from already discussed
higher scatter of 𝜏peak data. We feel that 𝜏cross should be used
as relaxation time if there is a choice to choose from 𝜏peak and
𝜏cross data. Still we tried linear fits to 𝜎dc(peak) versus 𝑇 data.
The 3-segment fit could tackle this scattered data set relatively
better as follows:

400∘C to 480∘C 𝐸
𝑎
= 1.028 ± 0.101 eV,

500∘C to 590∘C 𝐸
𝑎
= 1.523 ± 0.130 eV,

600∘C to 700∘C 𝐸
𝑎
= 1.387 ± 0.168 eV,

as shown in Figure 19 as “P3” data points.
So, the three-region fits of 𝜏cross and 𝜏peak suggest a

peaking in 𝐸dc versus 𝑇 variation, at or below (resp.) the
Curie temperature.This better match of the𝐸dc peak with the
Curie temperature for 𝜏cross data further supports the better
reliability of 𝜏cross data. Near the transition temperature,
DC activation energy is highest (1.595 ± 0.120 eV), a new
observation that needs further verification and explanation.

4. Conclusion
Presently prepared PbNb

2
O
6
samples revealed pure ortho-

rhombic phase by X-ray Rietveld analysis, with confirmation
down to granular level, by High Resolution Transmission
Electron Microscopy. These structural characterizations as
well as impedance spectroscopy over 20Hz to 5.5MHz and
up to 700∘C established the high quality of these samples.

Present evaluations of DC and AC conductivities, capac-
itance (𝐶) and resistance (𝑅) of the equivalent 𝐶𝑅 circuit,
relaxation times and related activation energies from the
analysis of ourwide-ranging impedance spectroscopy data on
orthorhombic PNO, and discussions have been either more
extensive than in the literature or done for the first time.This
is the first reporting of the Nyquist diagram, the plot of 𝑍
versus𝑍, for orthorhombic leadmetaniobate. An impressive
peak (∼760 nF) of the equivalent 𝐶𝑅 circuit capacitance (𝐶)
in the𝐶 versus𝑇 graph has been obtained at𝑇

𝑚
as shown. AC

conductivity (𝜎ac) is seen to peak at 𝑇
𝑚
, more prominently in

the higher frequency plots. Relaxation time registers a clear
peak at 𝑇

𝑚
, while falling slowly with increasing temperature

in other temperature regions.
Measured DC electrical conductivity appears to show

three regions of temperature dependence (Figure 17) rather
than the usually tried ferroelectric and paraelectric regions.
A suitably chosen transition region in the plot of ln(𝜎dc)
versus 1/𝑇 in Figure 18 forms the third region, interestingly
giving the highest activation energy (Figure 19). A 3-region fit
should be carefully examined for different systems, since the
third region may be missed due to data points, inadequate
with respect to either the temperature range or the density
of data points or both. Moreover, a forced two-region fit
(C2 points in Figure 19) to data needing a three-region
fit will mask the large up and down (C3 points) of the
activation energy value in the Curie temperature region and
indicate a small change of activation energy across the Curie
temperature, similar to the result of 2-segment fit to time
domain analysis [35] result. It appears that the DC activation
energy can be estimated better from 𝜏cross and 3-segment
fit (Figure 19), unless the result in a particular experiment
is against 3-segment fit. Presently observed peaking of the
activation energy 𝐸dc(cross) in the Curie temperature (𝑇

𝑐
)

region is a new result.
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The peak at𝑇
𝑚
in the 𝜀 versus𝑇 graph is sharp, leading to

a value of ∼1 for the diffusivity parameter and implying near
absence of any relaxor property. Impedance spectroscopy
showed (Table 1) highest record of ferroelectric-paraelectric
transition temperature (𝑇

𝑚
), 𝑇
𝑚

> 580

∘C for 5.5MHz, and
𝑇
𝑚

> 574

∘C for 0.5 kHz. This implies potential use of
this material for piezoelectric sensors and actuators up to
temperatures much higher than the limits of BT and PZT
based piezomaterials.
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