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Abstract. 
We introduce a certain new subclass of meromorphic close-to-convex functions. Such results as inclusion relationship, coefficient inequalities, distortion, and growth theorems for this class of functions are derived.


1. Introduction
Let 
	
		
			

				Σ
			

		
	
 denote the class of functions of the form 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				1
				𝑓
				(
				𝑧
				)
				=
			

			
				
			
			
				𝑧
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑎
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			

				,
			

		
	

					which are analytic in the punctured open unit disk:
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝕌
			

			

				∗
			

			
				∶
				=
				{
				𝑧
				∶
				𝑧
				∈
				ℂ
				a
				n
				d
				0
				<
				|
				𝑧
				|
				<
				1
				}
				∶
				=
				𝕌
				⧵
				{
				0
				}
				.
			

		
	

Let 
	
		
			

				𝒫
			

		
	
 denote the class of functions 
	
		
			

				𝑝
			

		
	
 given by 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝑝
				(
				𝑧
				)
				=
				1
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑝
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

					which are analytic and convex in 
	
		
			

				𝕌
			

		
	
 and satisfy the following condition: 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				ℜ
				(
				𝑝
				(
				𝑧
				)
				)
				>
				0
				(
				𝑧
				∈
				𝕌
				)
				.
			

		
	

A function 
	
		
			
				𝑓
				∈
				Σ
			

		
	
 is said to be in the class 
	
		
			
				ℳ
				𝒮
			

			

				∗
			

			
				(
				𝛼
				)
			

		
	
 of meromorphic starlike functions of order 
	
		
			

				𝛼
			

		
	
 if it satisfies the following inequality: 
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				ℜ
				
				−
				𝑧
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				𝑓
				(
				𝑧
				)
				>
				𝛼
				(
				0
				≦
				𝛼
				<
				1
				;
				𝑧
				∈
				𝕌
				)
				.
			

		
	

					Moreover, a function 
	
		
			
				𝑓
				∈
				Σ
			

		
	
 is said to be in the class 
	
		
			
				ℳ
				𝒞
			

		
	
 of meromorphic close-to-convex functions if it satisfies the following condition: 
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				ℜ
				
				−
				𝑧
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				
				𝑔
				(
				𝑧
				)
				>
				0
				𝑧
				∈
				𝕌
				;
				𝑔
				∈
				ℳ
				𝒮
			

			

				∗
			

			
				(
				0
				)
				=
				∶
				ℳ
				𝒮
			

			

				∗
			

			
				
				.
			

		
	

For two functions 
	
		
			

				𝑓
			

		
	
 and 
	
		
			

				𝑔
			

		
	
 analytic in 
	
		
			

				𝕌
			

		
	
, we say that the function 
	
		
			
				𝑓
				(
				𝑧
				)
			

		
	
 is subordinate to 
	
		
			
				𝑔
				(
				𝑧
				)
			

		
	
 in 
	
		
			

				𝕌
			

		
	
 and write 
	
		
			
				𝑓
				(
				𝑧
				)
				≺
				𝑔
				(
				𝑧
				)
				(
				𝑧
				∈
				𝕌
				)
			

		
	
, if there exists a Schwarz function 
	
		
			
				𝜔
				(
				𝑧
				)
			

		
	
, analytic in 
	
		
			

				𝕌
			

		
	
 with 
	
		
			
				𝜔
				(
				0
				)
				=
				0
			

		
	
 and 
	
		
			
				|
				𝜔
				(
				𝑧
				)
				|
				<
				1
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑔
				(
				𝜔
				(
				𝑧
				)
				)
			

		
	
. Indeed, it is well known that 
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
				≺
				𝑔
				(
				𝑧
				)
				(
				𝑧
				∈
				𝕌
				)
				⟹
				𝑓
				(
				0
				)
				=
				𝑔
				(
				0
				)
				,
				𝑓
				(
				𝕌
				)
				⊂
				𝑔
				(
				𝕌
				)
				.
			

		
	

					Furthermore, if the function 
	
		
			

				𝑔
			

		
	
 is univalent in 
	
		
			

				𝕌
			

		
	
, then we have the following equivalence: 
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
				≺
				𝑔
				(
				𝑧
				)
				(
				𝑧
				∈
				𝕌
				)
				⟺
				𝑓
				(
				0
				)
				=
				𝑔
				(
				0
				)
				,
				𝑓
				(
				𝕌
				)
				⊂
				𝑔
				(
				𝕌
				)
				.
			

		
	

Recently, Wang et al. [1] introduced and investigated the class 
	
		
			
				ℳ
				𝒦
			

		
	
 of meromorphic close-to-convex functions which satisfy the inequality 
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				ℜ
				
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				𝑔
				(
				𝑧
				)
				𝑔
				(
				−
				𝑧
				)
				>
				0
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

					where 
	
		
			
				𝑔
				∈
				ℳ
				𝒮
			

			

				∗
			

			
				(
				1
				/
				2
				)
			

		
	
. Kowalczyk and Leś-Bomba [2] discussed the class 
	
		
			

				𝒦
			

			

				𝑠
			

			
				(
				𝛾
				)
			

		
	
 of analytic functions related to the starlike functions; a function 
	
		
			
				∑
				𝑓
				(
				𝑧
				)
				=
				𝑧
				+
			

			
				∞
				𝑛
				=
				2
			

			

				𝑎
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

		
	
 which is analytic in 
	
		
			

				𝕌
			

		
	
 is said to be in the class 
	
		
			

				𝒦
			

			

				𝑠
			

			
				(
				𝛾
				)
				(
				0
				≦
				𝛾
				<
				1
				)
			

		
	
, if it is satisfies the following inequality: 
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				ℜ
				
				𝑧
			

			

				2
			

			

				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				𝑔
				(
				𝑧
				)
				𝑔
				(
				−
				𝑧
				)
				>
				𝛾
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

					where 
	
		
			
				𝑔
				∈
				𝒮
			

			

				∗
			

			
				(
				1
				/
				2
				)
			

		
	
. Şeker [3] discussed the class 
	
		
			

				𝒦
			

			
				𝑠
				(
				𝑘
				)
			

			
				(
				𝛾
				)
			

		
	
 of analytic functions which satisfy the following condition:
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				ℜ
				
				𝑧
			

			

				𝑘
			

			

				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝑔
			

			

				𝑘
			

			
				
				(
				𝑧
				)
				>
				𝛾
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

					where 
	
		
			
				0
				≦
				𝛾
				<
				1
				,
				𝑔
			

			

				𝑘
			

			
				∏
				(
				𝑧
				)
				=
			

			
				𝑘
				−
				1
				𝑣
				=
				0
			

			

				𝜀
			

			
				−
				𝑣
			

			
				𝑔
				(
				𝜀
			

			

				𝑣
			

			
				𝑧
				)
				(
				𝜀
			

			

				𝑘
			

			
				=
				1
				;
				𝑘
				≧
				1
				)
			

		
	
, and 
	
		
			
				𝑔
				∈
				𝒮
			

			

				∗
			

			
				(
				(
				𝑘
				−
				1
				)
				/
				𝑘
				)
			

		
	
.
Motivated essentially by the classes 
	
		
			
				ℳ
				𝒦
				,
				𝒦
			

			

				𝑠
			

			
				(
				𝛾
				)
			

		
	
, and 
	
		
			

				𝒦
			

			
				𝑠
				(
				𝑘
				)
			

			
				(
				𝛾
				)
			

		
	
, we introduce and study the following more generalized class 
	
		
			
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
				)
			

		
	
 of meromorphic functions.
Definition 1. A function 
	
		
			
				𝑓
				∈
				Σ
			

		
	
 is said to be in the class 
	
		
			
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
				)
			

		
	
 if it satisfies the following inequality: 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				ℜ
				
				−
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			
				𝑘
				−
				2
			

			

				𝑔
			

			

				𝑘
			

			
				(
				
				𝑧
				)
				>
				𝛾
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						where 
	
		
			
				0
				≦
				𝛾
				<
				1
				,
				𝑘
				≧
				1
			

		
	
 is a fixed positive integer, and 
	
		
			

				𝑔
			

			

				𝑘
			

			
				(
				𝑧
				)
			

		
	
 is given by 
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝑔
			

			

				𝑘
			

			
				(
				𝑧
				)
				=
			

			
				𝑘
				−
				1
			

			

				
			

			
				𝑣
				=
				0
			

			

				𝜀
			

			

				𝑣
			

			
				𝑔
				(
				𝜀
			

			

				𝑣
			

			
				
				𝑧
				)
				𝜀
				=
				𝑒
			

			
				(
				2
				𝜋
				𝑖
				)
				/
				𝑘
			

			
				;
				𝑔
				∈
				ℳ
				𝒮
			

			

				∗
			

			
				
				𝑘
				−
				1
			

			
				
			
			
				𝑘
				.
				
				
			

		
	

We observe that the inequality (12) is equivalent to 
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			
				𝑘
				−
				2
			

			

				𝑔
			

			

				𝑘
			

			
				|
				|
				|
				|
				<
				|
				|
				|
				|
				𝑓
				(
				𝑧
				)
				+
				1
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			
				𝑘
				−
				2
			

			

				𝑔
			

			

				𝑘
			

			
				|
				|
				|
				|
				(
				(
				𝑧
				)
				+
				2
				𝛾
				−
				1
				𝑧
				∈
				𝕌
				)
				.
			

		
	

Since 
	
		
			
				ℳ
				𝒦
			

			
				(
				2
				)
			

			
				(
				0
				)
				=
				ℳ
				𝒦
			

		
	
, the class 
	
		
			
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
				)
			

		
	
 is a generalization of the class 
	
		
			
				ℳ
				𝒦
			

		
	
.
For some recent investigations on the class of close-to-convex functions, one can find them in [4–7] and the references cited therein. In the present paper, we aim at proving that the class 
	
		
			
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
				)
			

		
	
 is a subclass of meromorphic close-to-convex functions. Furthermore, some interesting results of the class 
	
		
			
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
				)
			

		
	
 are derived.
2. Preliminary Results
To prove our main results, we need the following lemmas.
Lemma 2.  Let 
	
		
			

				𝜑
			

			

				𝑗
			

			
				∈
				ℳ
				𝒮
			

			

				∗
			

			
				(
				𝛼
			

			

				𝑗
			

			

				)
			

		
	
, where 
	
		
			
				0
				≦
				𝛼
			

			

				𝑗
			

			
				<
				1
				(
				𝑗
				=
				0
				,
				1
				,
				…
				,
				𝑘
				−
				1
				)
			

		
	
. Then for 
	
		
			
				∑
				𝑘
				−
				1
				≦
			

			
				𝑘
				−
				1
				𝑗
				=
				0
			

			

				𝛼
			

			

				𝑗
			

			
				<
				𝑘
			

		
	
, one has 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑧
			

			
				𝑘
				−
				1
				𝑘
				−
				1
			

			

				
			

			
				𝑗
				=
				0
			

			

				𝜑
			

			

				𝑗
			

			
				(
				𝑧
				)
				∈
				ℳ
				𝒮
			

			

				∗
			

			

				
			

			
				𝑘
				−
				1
			

			

				
			

			
				𝑗
				=
				0
			

			

				𝛼
			

			

				𝑗
			

			
				
				.
				−
				(
				𝑘
				−
				1
				)
			

		
	

Proof.  Since 
	
		
			

				𝜑
			

			

				𝑗
			

			
				∈
				ℳ
				𝒮
			

			

				∗
			

			
				(
				𝛼
			

			

				𝑗
			

			
				)
				(
				𝑗
				=
				0
				,
				1
				,
				…
				,
				𝑘
				−
				1
				)
			

		
	
, we have
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				ℜ
				
				−
				𝑧
				𝜑
			

			
				
				0
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝜑
			

			

				0
			

			
				
				(
				𝑧
				)
				>
				𝛼
			

			

				0
			

			
				,
				ℜ
				
				−
				𝑧
				𝜑
			

			
				
				1
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝜑
			

			

				1
			

			
				
				(
				𝑧
				)
				>
				𝛼
			

			

				1
			

			
				
				−
				,
				…
				,
				ℜ
				𝑧
				𝜑
			

			
				
				𝑘
				−
				1
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝜑
			

			
				𝑘
				−
				1
			

			
				
				(
				𝑧
				)
				>
				𝛼
			

			
				𝑘
				−
				1
			

			

				.
			

		
	

						We now let 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑧
				)
				=
				𝑧
			

			
				𝑘
				−
				1
			

			

				𝜑
			

			

				0
			

			
				(
				𝑧
				)
				𝜑
			

			

				1
			

			
				(
				𝑧
				)
				⋯
				𝜑
			

			
				𝑘
				−
				1
			

			
				(
				𝑧
				)
				.
			

		
	

						Differentiating (17) logarithmically, we obtain
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				−
				𝑧
				𝐹
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				𝐹
				(
				𝑧
				)
				=
				−
				𝑧
				𝜑
			

			
				
				0
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝜑
			

			

				0
			

			
				−
				(
				𝑧
				)
				𝑧
				𝜑
			

			
				
				1
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝜑
			

			

				1
			

			
				(
				𝑧
				)
				−
				⋯
				−
				𝑧
				𝜑
			

			
				
				𝑘
				−
				1
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝜑
			

			
				𝑘
				−
				1
			

			
				(
				𝑧
				)
				−
				(
				𝑘
				−
				1
				)
				.
			

		
	

						From (18) together with (16), we can get
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				ℜ
				
				−
				𝑧
				𝐹
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				
				−
				𝐹
				(
				𝑧
				)
				=
				ℜ
				𝑧
				𝜑
			

			
				
				0
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝜑
			

			

				0
			

			
				
				
				−
				(
				𝑧
				)
				+
				ℜ
				𝑧
				𝜑
			

			
				
				1
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝜑
			

			

				1
			

			
				
				
				−
				(
				𝑧
				)
				+
				⋯
				+
				ℜ
				𝑧
				𝜑
			

			
				
				𝑘
				−
				1
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝜑
			

			
				𝑘
				−
				1
			

			
				
				−
				>
				(
				𝑧
				)
				(
				𝑘
				−
				1
				)
			

			
				𝑘
				−
				1
			

			

				
			

			
				𝑗
				=
				0
			

			

				𝛼
			

			

				𝑗
			

			
				−
				(
				𝑘
				−
				1
				)
				.
			

		
	

						Thus, if 
	
		
			
				∑
				0
				≦
			

			
				𝑘
				−
				1
				𝑗
				=
				0
			

			

				𝛼
			

			

				𝑗
			

			
				−
				(
				𝑘
				−
				1
				)
				<
				1
			

		
	
, we know that 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑧
				)
				=
				𝑧
			

			
				𝑘
				−
				1
				𝑘
				−
				1
			

			

				
			

			
				𝑗
				=
				0
			

			

				𝜑
			

			

				𝑗
			

			
				(
				𝑧
				)
				∈
				ℳ
				𝒮
			

			

				∗
			

			

				
			

			
				𝑘
				−
				1
			

			

				
			

			
				𝑗
				=
				0
			

			

				𝛼
			

			

				𝑗
			

			
				
				.
				−
				(
				𝑘
				−
				1
				)
			

		
	

Lemma 3 (see [8]).  Let 
	
		
			
				−
				1
				≦
				𝐵
			

			

				2
			

			
				≦
				𝐵
			

			

				1
			

			
				<
				𝐴
			

			

				1
			

			
				≦
				𝐴
			

			

				2
			

			
				≦
				1
			

		
	
. Then 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				1
				+
				𝐴
			

			

				1
			

			

				𝑧
			

			
				
			
			
				1
				+
				𝐵
			

			

				1
			

			
				𝑧
				≺
				1
				+
				𝐴
			

			

				2
			

			

				𝑧
			

			
				
			
			
				1
				+
				𝐵
			

			

				2
			

			
				𝑧
				.
			

		
	

Lemma 4 (see [9]).  Suppose that 
	
		
			
				𝑔
				∈
				ℳ
				𝒮
			

			

				∗
			

		
	
. Then 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				(
				1
				−
				𝑟
				)
			

			

				2
			

			
				
			
			
				𝑟
				≦
				|
				|
				|
				|
				≦
				𝑔
				(
				𝑧
				)
				(
				1
				+
				𝑟
				)
			

			

				2
			

			
				
			
			
				𝑟
				(
				|
				𝑧
				|
				=
				𝑟
				;
				0
				<
				𝑟
				<
				1
				)
				.
			

		
	

Lemma 5 (see [10, page 105]).  If the function 
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				𝑝
				(
				𝑧
				)
				=
				1
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑝
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				(
				𝑧
				∈
				𝕌
				)
			

		
	

						analytic and convex in 
	
		
			

				𝕌
			

		
	
 and satisfies the condition 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				ℜ
				(
				𝑝
				(
				𝑧
				)
				)
				>
				𝛾
				(
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						then 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				1
				−
				(
				1
				−
				2
				𝛾
				)
				𝑟
			

			
				
			
			
				≦
				|
				|
				|
				|
				≦
				1
				+
				𝑟
				𝑝
				(
				𝑧
				)
				1
				+
				(
				1
				−
				2
				𝛾
				)
				𝑟
			

			
				
			
			
				1
				−
				𝑟
				(
				|
				𝑧
				|
				=
				𝑟
				<
				1
				)
				.
			

		
	

Lemma 6 (see [10]).  If the function 
	
		
			
				𝑝
				∈
				𝒫
			

		
	
 is given by (3), then 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				|
				|
				𝑝
			

			

				𝑛
			

			
				|
				|
				≦
				2
				(
				𝑛
				∈
				ℕ
				)
				,
				1
				−
				𝑟
			

			
				
			
			
				≦
				|
				|
				|
				|
				≦
				1
				+
				𝑟
				𝑝
				(
				𝑧
				)
				1
				+
				𝑟
			

			
				
			
			
				1
				−
				𝑟
				(
				|
				𝑧
				|
				=
				𝑟
				;
				0
				<
				𝑟
				<
				1
				)
				.
			

		
	

Lemma 7 (see [11]).  Suppose that 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				1
				𝑔
				(
				𝑧
				)
				=
			

			
				
			
			
				𝑧
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑐
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				∈
				ℳ
				𝒮
			

			

				∗
			

			

				.
			

		
	

						Then 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				|
				|
				𝑐
			

			

				𝑛
			

			
				|
				|
				≦
				2
			

			
				
			
			
				𝑛
				+
				1
				(
				𝑛
				∈
				ℕ
				∶
				=
				{
				1
				,
				2
				,
				…
				}
				)
				.
			

		
	

						Each of these inequalities is sharp, with the extremal function given by 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				𝑔
				(
				𝑧
				)
				=
				𝑧
			

			
				−
				1
			

			
				
				1
				+
				𝑧
			

			
				𝑛
				+
				1
			

			

				
			

			
				2
				/
				(
				𝑛
				+
				1
				)
			

			

				.
			

		
	

Lemma 8 (see [12]).  Let 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
				=
				1
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑐
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

		
	

						be analytic in 
	
		
			

				𝕌
			

		
	
 and let
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				𝑔
				(
				𝑧
				)
				=
				1
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑑
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

		
	

						be analytic and convex in 
	
		
			

				𝕌
			

		
	
. If 
	
		
			
				𝑓
				≺
				𝑔
			

		
	
, then 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				|
				|
				𝑐
			

			

				𝑛
			

			
				|
				|
				≦
				|
				|
				𝑑
			

			

				1
			

			
				|
				|
				(
				𝑛
				∈
				ℕ
				∶
				=
				{
				1
				,
				2
				,
				…
				}
				)
				.
			

		
	

Lemma 9.  If 
	
		
			
				𝑝
				(
				𝑧
				)
				≺
				(
				1
				+
				(
				1
				−
				2
				𝛾
				)
				𝑧
				)
				/
				(
				1
				−
				𝑧
				)
			

		
	
, where 
	
		
			
				𝑝
				(
				𝑧
				)
			

		
	
 is given by (3), then 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑝
			

			

				𝑛
			

			
				|
				|
				≦
				2
				(
				1
				−
				𝛾
				)
				.
			

		
	

Proof. By Lemma 8, we easily get the assertion of Lemma 9. 
3. Main Results
We first give the following result.
Theorem 10.  Let 
	
		
			
				∑
				𝑔
				(
				𝑧
				)
				=
				1
				/
				𝑧
				+
			

			
				∞
				𝑛
				=
				1
			

			

				𝑏
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				∈
				ℳ
				𝒮
			

			

				∗
			

			
				(
				(
				𝑘
				−
				1
				)
				/
				𝑘
				)
			

		
	
, Then 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				𝐺
			

			

				𝑘
			

			
				(
				𝑧
				)
				=
				𝑧
			

			
				𝑘
				−
				1
			

			

				𝑔
			

			

				𝑘
			

			
				1
				(
				𝑧
				)
				=
			

			
				
			
			
				𝑧
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝐵
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				∈
				ℳ
				𝒮
			

			

				∗
			

			

				,
			

		
	

						where 
	
		
			

				𝑔
			

			

				𝑘
			

			
				(
				𝑧
				)
			

		
	
 is given by (13). 
Proof. From (13), we know that
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				𝑧
			

			
				𝑘
				−
				1
			

			

				𝑔
			

			

				𝑘
			

			
				(
				𝑧
				)
				=
				𝑧
			

			
				𝑘
				−
				1
				𝑘
				−
				1
			

			

				
			

			
				𝑣
				=
				0
			

			

				𝜀
			

			

				𝑣
			

			
				𝑔
				(
				𝜀
			

			

				𝑣
			

			
				𝑧
				)
				=
				𝑧
			

			
				𝑘
				−
				1
				𝑘
				−
				1
			

			

				
			

			
				𝑣
				=
				0
			

			

				𝜀
			

			

				𝑣
			

			
				
				1
			

			
				
			
			

				𝜀
			

			

				𝑣
			

			
				𝑧
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑏
			

			

				𝑛
			

			
				(
				𝜀
			

			

				𝑣
			

			
				𝑧
				)
			

			

				𝑛
			

			
				
				=
				𝑧
			

			
				𝑘
				−
				1
				𝑘
				−
				1
			

			

				
			

			
				𝑣
				=
				0
			

			
				
				1
			

			
				
			
			
				𝑧
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑏
			

			

				𝑛
			

			

				𝜀
			

			
				(
				𝑛
				+
				1
				)
				𝑣
			

			

				𝑧
			

			

				𝑛
			

			
				
				.
			

		
	

						Now, suppose that 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				1
				𝑔
				(
				𝑧
				)
				=
			

			
				
			
			
				𝑧
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑏
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				∈
				ℳ
				𝒮
			

			

				∗
			

			
				
				𝑘
				−
				1
			

			
				
			
			
				𝑘
				
				.
			

		
	

						Then, by Lemma 2 and (35), we get the assertion of Theorem 10 easily. 
Remark 11. From Theorem 10 and Definition 1, we know that if 
	
		
			
				𝑓
				∈
				ℳ
				𝒦
			

			

				𝑘
			

			
				(
				𝛾
				)
			

		
	
, then 
	
		
			

				𝑓
			

		
	
 is a meromorphic close-to-convex function. So the class 
	
		
			
				ℳ
				𝒦
			

			

				𝑘
			

			
				(
				𝛾
				)
			

		
	
 is a subclass of meromorphic close-to-convex functions.
Now, we prove a sufficient condition for functions to belong to the class 
	
		
			
				ℳ
				𝒦
			

			

				𝑘
			

			
				(
				𝛾
				)
			

		
	
.
Theorem 12.  Let 
	
		
			
				𝑓
				∈
				Σ
				,
				𝑔
				∈
				ℳ
				𝒮
			

			

				∗
			

			
				(
				(
				𝑘
				−
				1
				)
				/
				𝑘
				)
			

		
	
. If for 
	
		
			
				0
				≦
				𝛾
				<
				1
			

		
	
, one has 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				2
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				𝑛
				|
				|
				𝑎
			

			

				𝑛
			

			
				|
				|
				+
				
				|
				|
				|
				|
				
				1
				−
				2
				𝛾
				+
				1
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				|
				|
				𝐵
			

			

				𝑛
			

			
				|
				|
				≦
				2
				(
				1
				−
				𝛾
				)
				,
			

		
	

						where the coefficients 
	
		
			

				𝐵
			

			

				𝑛
			

		
	
 (
	
		
			
				𝑛
				=
				1
				,
				2
				,
				…
			

		
	
) are given by (34), then 
	
		
			
				𝑓
				∈
				ℳ
				𝒦
			

			

				𝑘
			

			
				(
				𝛾
				)
			

		
	
. 
Proof. We set for 
	
		
			

				𝑓
			

		
	
 given by (1) and 
	
		
			

				𝑔
			

			

				𝑘
			

		
	
 defined by (13)
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				|
				|
				Δ
				=
				−
				𝑧
				𝑓
			

			

				
			

			
				(
				𝑧
				)
				−
				𝑧
			

			
				𝑘
				−
				1
			

			

				𝑔
			

			

				𝑘
			

			
				|
				|
				−
				|
				|
				(
				𝑧
				)
				−
				𝑧
				𝑓
			

			

				
			

			
				(
				𝑧
				)
				+
				(
				1
				−
				2
				𝛾
				)
				𝑧
			

			
				𝑘
				−
				1
			

			

				𝑔
			

			

				𝑘
			

			
				|
				|
				=
				|
				|
				|
				|
				|
				−
				(
				𝑧
				)
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				𝑛
				𝑎
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			

				−
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝐵
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				|
				|
				|
				|
				|
				−
				|
				|
				|
				|
				|
				2
				−
				2
				𝛾
			

			
				
			
			
				𝑧
				−
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				𝑛
				𝑎
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				+
				(
				1
				−
				2
				𝛾
				)
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝐵
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				|
				|
				|
				|
				|
				.
			

		
	

						For 
	
		
			
				|
				𝑧
				|
				=
				𝑟
				(
				0
				<
				𝑟
				<
				1
				)
			

		
	
, from inequality (37), we have
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				Δ
				≦
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				𝑛
				|
				|
				𝑎
			

			

				𝑛
			

			
				|
				|
				|
				𝑧
				|
			

			

				𝑛
			

			

				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				|
				|
				𝐵
			

			

				𝑛
			

			
				|
				|
				|
				𝑧
				|
			

			

				𝑛
			

			
				−
				
				1
				(
				2
				−
				2
				𝛾
				)
			

			
				
			
			
				−
				|
				𝑧
				|
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				𝑛
				|
				|
				𝑎
			

			

				𝑛
			

			
				|
				|
				|
				𝑧
				|
			

			

				𝑛
			

			
				−
				|
				|
				|
				|
				1
				−
				2
				𝛾
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				|
				|
				𝐵
			

			

				𝑛
			

			
				|
				|
				|
				𝑧
				|
			

			

				𝑛
			

			
				
				1
				=
				−
				(
				2
				−
				2
				𝛾
				)
			

			
				
			
			
				|
				𝑧
				|
				+
				2
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				𝑛
				|
				|
				𝑎
			

			

				𝑛
			

			
				|
				|
				|
				𝑧
				|
			

			

				𝑛
			

			
				+
				
				|
				|
				|
				|
				
				×
				1
				−
				2
				𝛾
				+
				1
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				|
				|
				𝐵
			

			

				𝑛
			

			
				|
				|
				|
				𝑧
				|
			

			

				𝑛
			

			
				<
				
				−
				(
				2
				−
				2
				𝛾
				)
				+
				2
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				𝑛
				|
				|
				𝑎
			

			

				𝑛
			

			
				|
				|
				+
				
				|
				|
				|
				|
				
				1
				−
				2
				𝛾
				+
				1
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				|
				|
				𝐵
			

			

				𝑛
			

			
				|
				|
				
				1
			

			
				
			
			
				|
				𝑧
				|
				≦
				0
				.
			

		
	

						Thus, we have 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				−
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			
				𝑘
				−
				2
			

			

				𝑔
			

			

				𝑘
			

			
				|
				|
				|
				|
				<
				|
				|
				|
				|
				−
				𝑓
				(
				𝑧
				)
				−
				1
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			
				𝑘
				−
				2
			

			

				𝑔
			

			

				𝑘
			

			
				|
				|
				|
				|
				(
				(
				𝑧
				)
				+
				1
				−
				2
				𝛾
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						that is, 
	
		
			
				𝑓
				∈
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
				)
			

		
	
. This completes the proof of Theorem 12. 
Next, we give the inclusion relationship for class 
	
		
			
				𝑓
				∈
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
				)
			

		
	
.
Theorem 13.  Let 
	
		
			
				0
				≦
				𝛾
			

			

				1
			

			
				≦
				𝛾
			

			

				2
			

			
				<
				1
			

		
	
. Then one has 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				
				𝛾
			

			

				2
			

			
				
				⊂
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				
				𝛾
			

			

				1
			

			
				
				.
			

		
	

Proof. Suppose that 
	
		
			
				𝑓
				∈
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
			

			

				2
			

			

				)
			

		
	
. By Definition 1, we have 
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				−
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			
				𝑘
				−
				2
			

			

				𝑔
			

			

				𝑘
			

			
				≺
				
				(
				𝑧
				)
				1
				+
				1
				−
				2
				𝛾
			

			

				2
			

			
				
				𝑧
			

			
				
			
			
				.
				1
				−
				𝑧
			

		
	

						Since 
	
		
			
				0
				≦
				𝛾
			

			

				1
			

			
				≦
				𝛾
			

			

				2
			

			
				<
				1
			

		
	
, we get 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				−
				1
				<
				1
				−
				2
				𝛾
			

			

				2
			

			
				≦
				1
				−
				2
				𝛾
			

			

				1
			

			
				≦
				1
				.
			

		
	

						Thus, by Lemma 3, we obtain 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				−
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			
				𝑘
				−
				2
			

			

				𝑔
			

			

				𝑘
			

			
				≺
				
				(
				𝑧
				)
				1
				+
				1
				−
				2
				𝛾
			

			

				1
			

			
				
				𝑧
			

			
				
			
			
				,
				1
				−
				𝑧
			

		
	

						that is, 
	
		
			
				𝑓
				∈
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
			

			

				1
			

			

				)
			

		
	
. This means that 
	
		
			
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
			

			

				2
			

			
				)
				⊂
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
			

			

				1
			

			

				)
			

		
	
. Hence the proof is completed. 
In what follows, we derive the coefficient inequality for the class 
	
		
			
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
				)
			

		
	
.
Theorem 14.  Suppose that 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				1
				𝑓
				(
				𝑧
				)
				=
			

			
				
			
			
				𝑧
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑎
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				∈
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
				)
				.
			

		
	

						Then 
							
	
 		
 			
				(
				4
				6
				)
			
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				|
				|
				𝑎
			

			

				1
			

			
				|
				|
				|
				|
				𝑎
				≦
				1
				,
			

			

				𝑛
			

			
				|
				|
				≦
				2
			

			
				
			
			
				𝑛
				+
				(
				𝑛
				+
				1
				)
				(
				2
				−
				2
				𝛾
				)
			

			
				
			
			
				𝑛
				
				1
				+
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				2
			

			
				
			
			
				
				𝑗
				+
				1
				(
				𝑛
				∈
				ℕ
				⧵
				{
				1
				}
				)
				.
			

		
	

Proof. Suppose that 
	
		
			
				𝑓
				∈
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
				)
			

		
	
; we know that 
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				ℜ
				
				−
				𝑧
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝐺
			

			

				𝑘
			

			
				
				(
				𝑧
				)
				>
				𝛾
				,
			

		
	

						where 
	
		
			

				𝐺
			

			

				𝑘
			

		
	
 is given by (34). If we set 
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				𝑞
				(
				𝑧
				)
				∶
				=
				−
				𝑧
				𝑓
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			

				𝐺
			

			

				𝑘
			

			
				,
				(
				𝑧
				)
			

		
	

						it follows that 
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				𝑞
				(
				𝑧
				)
				=
				1
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑑
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			

				.
			

		
	

						In view of Definition 1 and Lemma 9, we know that 
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				|
				|
				𝑑
			

			

				𝑛
			

			
				|
				|
				≦
				(
				2
				−
				2
				𝛾
				)
				(
				𝑛
				∈
				ℕ
				)
				.
			

		
	

						By substituting the series expressions of functions 
	
		
			
				𝑓
				,
				𝐺
			

			

				𝑘
			

		
	
, and 
	
		
			

				𝑞
			

		
	
 into (49), we obtain 
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				
				1
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝑑
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				1
				
				
			

			
				
			
			
				𝑧
				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			

				𝐵
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				
				=
				
				1
			

			
				
			
			
				𝑧
				−
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				𝑛
				𝑎
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				
				.
			

		
	

						Since 
	
		
			

				𝑓
			

		
	
 is univalent in 
	
		
			

				𝕌
			

			

				∗
			

		
	
, it is well known that 
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑎
			

			

				1
			

			
				|
				|
				≦
				1
				.
			

		
	

						On the other hand, we find from (52) that 
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			
				−
				𝑛
				𝑎
			

			

				𝑛
			

			
				=
				𝐵
			

			

				𝑛
			

			
				+
				𝑑
			

			
				𝑛
				+
				1
			

			

				+
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐵
			

			

				𝑗
			

			

				𝑑
			

			
				𝑛
				−
				𝑗
			

			
				(
				𝑛
				∈
				ℕ
				)
				.
			

		
	

						Combining (28), (51), and (54), we have 
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			
				𝑛
				|
				|
				𝑎
			

			

				𝑛
			

			
				|
				|
				≦
				2
			

			
				
			
			
				𝑛
				+
				1
				+
				(
				2
				−
				2
				𝛾
				)
				+
				(
				2
				−
				2
				𝛾
				)
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				2
			

			
				
			
			
				.
				𝑗
				+
				1
			

		
	

						Thus, the assertion (47) of Theorem 14 follows directly from (55). 
Finally, we give the distortion and growth theorems for the function class 
	
		
			
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
				)
			

		
	
.
Theorem 15.  If 
	
		
			
				𝑓
				∈
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
				)
			

		
	
, then
							
	
 		
 			
				(
				5
				6
				)
			
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				(
				1
				−
				𝑟
				)
			

			

				2
			

			
				[
				]
				1
				−
				(
				1
				−
				2
				𝛾
				)
				𝑟
			

			
				
			
			

				𝑟
			

			

				2
			

			
				≦
				|
				|
				𝑓
				(
				1
				+
				𝑟
				)
			

			

				
			

			
				(
				|
				|
				≦
				𝑧
				)
				(
				1
				+
				𝑟
				)
			

			

				2
			

			
				[
				]
				1
				+
				(
				1
				−
				2
				𝛾
				)
				𝑟
			

			
				
			
			

				𝑟
			

			

				2
			

			
				
				(
				1
				−
				𝑟
				)
				(
				|
				𝑧
				|
				=
				𝑟
				<
				1
				)
				,
			

			
				𝑟
				0
			

			
				(
				1
				−
				𝑡
				)
			

			

				2
			

			
				[
				]
				1
				−
				(
				1
				−
				2
				𝛾
				)
				𝑡
			

			
				
			
			

				𝑡
			

			

				2
			

			
				|
				|
				|
				|
				≦
				
				(
				1
				+
				𝑡
				)
				𝑑
				𝑡
				≦
				𝑓
				(
				𝑧
				)
			

			
				𝑟
				0
			

			
				(
				1
				+
				𝑡
				)
			

			

				2
			

			
				[
				]
				1
				+
				(
				1
				−
				2
				𝛾
				)
				𝑡
			

			
				
			
			

				𝑡
			

			

				2
			

			
				(
				1
				−
				𝑡
				)
				𝑑
				𝑡
				.
			

		
	

Proof. If 
	
		
			
				𝑓
				∈
				ℳ
				𝒦
			

			
				(
				𝑘
				)
			

			
				(
				𝛾
				)
			

		
	
, then there exists a function 
	
		
			
				𝑔
				∈
				ℳ
				𝒮
			

			

				∗
			

			
				(
				(
				𝑘
				−
				1
				)
				/
				𝑘
				)
			

		
	
 such that (12) holds. It follows from Theorem 10 that the function given by (34) is a meromorphic starlike function. Therefore, by Lemma 4, we have
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			
				(
				1
				−
				𝑟
				)
			

			

				2
			

			
				
			
			
				𝑟
				≦
				|
				|
				𝐺
			

			

				𝑘
			

			
				|
				|
				≦
				(
				𝑧
				)
				(
				1
				+
				𝑟
				)
			

			

				2
			

			
				
			
			
				𝑟
				(
				|
				𝑧
				|
				=
				𝑟
				;
				0
				<
				𝑟
				<
				1
				)
				.
			

		
	

						Let 
	
		
			

				𝑞
			

		
	
 be defined by (49); by Lemma 5, we know that
							
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			
				1
				−
				(
				1
				−
				2
				𝛾
				)
				𝑟
			

			
				
			
			
				≦
				|
				|
				|
				|
				≦
				1
				+
				𝑟
				𝑞
				(
				𝑧
				)
				1
				+
				(
				1
				−
				2
				𝛾
				)
				𝑟
			

			
				
			
			
				1
				−
				𝑟
				(
				|
				𝑧
				|
				=
				𝑟
				<
				1
				)
				.
			

		
	

						Thus, from (49), (58), and (59), we readily get (56). Upon integrating (56) from 
	
		
			

				0
			

		
	
 to 
	
		
			

				𝑟
			

		
	
, we get (57). The proof of Theorem 15 is thus completed. 
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