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We present an SEIS epidemic model with infective force in both latent period and infected period, which has different general
saturation incidence rates. It is shown that the global dynamics are completely determined by the basic reproductive number 𝑅

0
.

If 𝑅
0
≤ 1, the disease-free equilibrium is globally asymptotically stable in 𝑇 by LaSalle’s Invariance Principle, and the disease dies

out. Moreover, using the method of autonomous convergence theorem, we obtain that the unique epidemic equilibrium is globally
asymptotically stable in 𝑇0, and the disease spreads to be endemic.

1. Introduction

Epidemiology is the study of hot spots of the spread of infec-
tious disease, with the objective to trace factors that con-
tribute to their occurrence. Mathematical epidemiology
models describing the population dynamics of infectious dis-
eases have been playing an important role in better under-
standing of epidemiological patterns and disease control for
a long time. Epidemiological models are now widely used as
more epidemiologists realize the role that modeling can play
in basic understanding and policy development. In recent
years, many epidemiological models of ordinary differential
equations have been studies by a number of authors [1–4].

The most general form of an epidemiological model is
an SEIRS model consisting of four population subclasses: 𝑆-
susceptible, 𝐸—exposed, 𝐼—infected, and 𝑅—recovered. All
other models are limiting cases of the SEIRS model under
various parameter restrictions. If there is no immunity and
hence no R class, the SEIS model is obtained, which can be
regarded when the average period of immunity tends to zero.

Many epidemic models with the infectious force in the
latent period have been performed. Guihua and Zhen [5, 6]
studied global stability of an SEI model with general inci-
dence or standard incidence. Mukhopadhyay and Bhattach-
aryya [7] discussed global stability of an SEIS model with
standard incidence. Global dynamics of an SEI model with
acute and chronic stages were given by Yuan and Yang [8].

Incidence rate plays a very important role in the research
of epidemiological models. Comparing with bilinear and
standard incidence rate, saturating incidence rate may be
more suitable for our real word, which should generally
be written as 𝛽𝐶(𝑁)𝑆𝐼/𝑁, where 𝑁 is the total population
size. Michaelis and Menten combined the two previous
approaches by assuming that if the number of available part-
ners𝑁 is low, the number of actual per capita partners 𝐶(𝑁)

is proportional to𝑁 whereas if the number of available part-
ners is large, there is a saturation effect whichmakes the num-
ber of actual partners constant. Specifically, it has the form
(Michaelis-Menten contact rate):

𝐶 (𝑁) =
𝑎𝑁

1 + 𝑏𝑁
. (1)

Obviously, incidence with above form suggests that the num-
ber of new cases per unit time is saturated with the total pop-
ulation. Using a mechanistic argument, Heesterbeek and
Metz [9] derived the expression for the saturating contact rate
of individual contacts in a population that mixes randomly;
that is,

𝐶 (𝑁) =
𝑏𝑁

1 + 𝑏𝑁 + √1 + 2𝑏𝑁

. (2)

Furthermore, 𝐶(𝑁) is nondecreasing and 𝐶(𝑁)/𝑁 is nonin-
creasing.
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The above discussion reveals the importance of incidence
functions in epidemic models. Different nonlinear forms of
incidence can exhibit very dynamics and hence are able to
unearth some otherwise unknown features of disease dynam-
ics. Though the aspect of nonlinearity in incidence has
found a significant importance in the existing literature, the
fact that population subclasses with different infection stat-
uses should have different incidence rates has received little
attention among mathematical epidemiologists. Thus in an
SEIS epidemic model, since there is a difference in relative
measure of infectiousness between the exposed and the
infected populations, the incidence rate between the suscep-
tible fraction 𝑆 and the infected fraction 𝐼 should be different
from that between 𝑆 with the exposed fraction 𝐸.

The present analysis aims to explore the impact of this dis-
tinct incidence for exposed and infected populations under
the influence of spatial heterogeneity. As a model system,
We have divided the population in researched area into three
classes: 𝑆—susceptible, 𝐸—exposed with the infectious force,
and 𝐼—infected.

In the next section, we establish the model discussed in
this paper and determine the basic reproductive number. In
Section 3, we analyze the global stability of the disease-free
equilibrium. In Section 4, we resolve the unique existence
and global stability of the epidemic equilibrium. In Section
5, we present some numerical simulation of examples which
validate these theoretical results. The paper ends with a brief
discussion in Section 6.

2. The Model and the Basic
Reproductive Number

The model, we consider, has the following population sub-
classes: (i) 𝑆—the susceptible, (ii) 𝐸—the exposed, and (iii)
𝐼—the infected. The total population size, denoted by 𝑁, is
𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑠). The transfer mechanism from the
class 𝑆 to the class 𝐸 is guided by the function

𝑓 (𝑡) =
𝛽
1
𝐶
1
(𝑁)

𝑁
𝑆𝐸 +

𝛽
2
𝐶
2
(𝑁)

𝑁
𝑆𝐼, (3)

where 𝛽
1
and 𝛽

2
are average numbers of adequate contacts of

an exposed individual and an infectious individual per unit
time, respectively, and𝐶

𝑖
(𝑁) (𝑖 = 1, 2) are relevant saturation

contact rate, which satisfy the following assumptions, for𝑁 >

0,

(i) 𝐶
𝑖
(𝑁) > 0;

(ii) 𝐶
𝑖
(𝑁) ≥ 0;

(iii) [𝐶
𝑖
(𝑁)/𝑁]


≤ 0.

The assumptions (i) and (ii) are biologically motivated. As
the total population𝑁 increases, the probability of a contact
with a susceptible individual decreases, and thus the force of
the exposed or the infected is expected to be a decreasing
function of 𝑁. And the assumption (iii) implies that the
contact rate 𝐶

𝑖
(𝑁) is saturated.

The population transfer among compartments is sche-
matically depicted in the transfer diagram in Figure 1.

𝜇𝐼𝜇𝐸 𝛼𝐼

𝛿𝐼

Λ

𝛽2𝐶2(𝑁)

𝑁
𝑆𝐼

𝛽1𝐶1(𝑁)

𝑁
𝑆𝐸

𝜇𝑆

𝑆 𝐼𝐸
𝜀𝐸

Figure 1: The transfer diagram for model (4).

The transfer diagram leads to the following SEIS epidemic
model of ordinary differential equations:

𝑆

= Λ − 𝜇𝑆 −

𝛽
1
𝐶
1 (𝑁)

𝑁
𝑆𝐸 −

𝛽
2
𝐶
2 (𝑁)

𝑁
𝑆𝐼 + 𝛿𝐼,

𝐸

=
𝛽
1
𝐶
1
(𝑁)

𝑁
𝑆𝐸 +

𝛽
2
𝐶
2
(𝑁)

𝑁
𝑆𝐼 − (𝜇 + 𝜀) 𝐸,

𝐼

= 𝜀𝐸 − (𝜇 + 𝛼 + 𝛿) 𝐼,

(4)

where Λ is the recruitment rate of the population, 𝜇 is the
natural death rate, and 𝛼 is the death rate for the infected. 𝐸
individuals move to the class 𝐼 at the rate 𝜀 and 𝐼 individuals
recover at the rate 𝛿, which are assumed to join the susceptible
class. The above parameters are positive.

Summing up the three equations in system (4), then the
time derivative of𝑁(𝑡) along a solution of system (4) is

𝑁

= Λ − 𝜇 (𝑆 + 𝐸 + 𝐼) − 𝛼𝐼. (5)

Therefore,𝑁 ≤ Λ−𝜇𝑁, equivalently,𝑁+𝜇𝑁 ≤ Λ. Applying
a theorem on differential inequalities [10], we get 0 ≤ 𝑁 ≤

Λ/𝜇 for 𝑡 → +∞. Thus, the three-dimensional simplex

𝑇 := {(𝑆, 𝐸, 𝐼) ∈ R3
+
| 0 ≤ 𝑆 + 𝐸 + 𝐼 ≤

Λ

𝜇
} (6)

is positively invariant with respect to system (4), where
R3
+
denotes the nonnegative cone of R3 including its lower

dimensional faces.
By using 𝑆 = 𝑁−𝐸−𝐼 and (5), we get the following system:

𝐸

=
𝛽
1
𝐶
1 (𝑁) 𝐸 + 𝛽

2
𝐶
2 (𝑁) 𝐼

𝑁
(𝑁 − 𝐸 − 𝐼) − (𝜇 + 𝜀) 𝐸,

𝐼

= 𝜀𝐸 − (𝜇 + 𝛼 + 𝛿) 𝐼,

𝑁

= Λ − 𝜇𝑁 − 𝛼𝐼.

(7)

The dynamical behavior of system (4) in 𝑇 is equivalent to
that of system (7).Thus, in the rest of the paper, we will study
the system (7) in the feasible region

𝐺 := {(𝐸, 𝐼,𝑁) ∈ R3
+
| 0 ≤ 𝐸 + 𝐼 ≤ 𝑁 ≤

Λ

𝜇
} , (8)

which can be shown to be a positive invariant set for system
(7).

Now, we derive the basic reproductive number of system
(4) by the method of next-generation matrix formulated in
[11].
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Let 𝑥 = (𝐸, 𝐼, 𝑆)
𝑇, then system (4) can be written as

𝑥

= F (𝑥) −V (𝑥) , (9)

where

F (𝑥) = (

[𝛽
1
𝐶
1
(𝑁) 𝐸 + 𝛽

2
𝐶
2
(𝑁) 𝐼]

𝑆

𝑁

0

0

),

V (𝑥) = (

(𝜇 + 𝜀) 𝐸

−𝜀𝐸 + (𝜇 + 𝛼 + 𝛿) 𝐼

−Λ + 𝜇𝑆 + [𝛽
1
𝐶
1 (𝑁) 𝐸 + 𝛽

2
𝐶
2 (𝑁) 𝐼]

𝑆

𝑁
− 𝛿𝐼

) .

(10)

Then,𝑥
0
= (0, 0, Λ/𝜇)

𝑇 is the unique disease-free equilibrium
of system (9), and the Jacobian matrices ofF(𝑥) andV(𝑥) at
equilibrium 𝑥

0
are, respectively,

𝐷F (𝑥
0
) = (

𝐹 𝑂
2×1

𝑂
1×2

0

) , 𝐷V (𝑥
0
) = (

𝑉 𝑂
2×1

𝐽
1

𝜇

) ,

(11)

where

𝐹 = (
𝛽
1
𝐶
1
(
Λ

𝜇
) 𝛽
2
𝐶
2
(
Λ

𝜇
)

0 0

) ,

𝑉 = (
𝜇 + 𝜀 0

−𝜀 𝜇 + 𝛼 + 𝛿
) ,

𝐽
1
= (𝛽
1
𝐶
1
(
Λ

𝜇
) , 𝛽
2
𝐶
2
(
Λ

𝜇
) − 𝛿) .

(12)

Obviously, all eigenvalues of −𝐷V(𝑥
0
) have negative real

parts.
We call

𝐹𝑉
−1
=

1

(𝜇 + 𝜀) (𝜇 + 𝛼 + 𝛿)
(
𝛽
1
𝐶
1
(
Λ

𝜇
) (𝜇 + 𝛼 + 𝛿) + 𝜀𝛽

2
𝐶
2
(
Λ

𝜇
) 𝛽
2
𝐶
2
(
Λ

𝜇
) (𝜇 + 𝜀)

0 0

) (13)

the next generation matrix for system (9). According to [11,
Theorem 2], the basic reproductive number of system (4),
which is the number of secondary infectious cases produced
by an exposed individual and an infectious individual during
their effective infectious period when introduced in a popu-
lation of susceptible, is

𝑅
0
= 𝜌 (𝐹𝑉

−1
) =

𝛽
1
𝐶
1
(Λ/𝜇) (𝜇 + 𝛼 + 𝛿) + 𝜀𝛽

2
𝐶
2
(Λ/𝜇)

(𝜇 + 𝜀) (𝜇 + 𝛼 + 𝛿)
,

(14)

where 𝜌(𝐴) denotes the spectral radius of matrix 𝐴.

3. Stability Analysis of
the Disease-Free Equilibrium

In this section, we discuss the global stability of the disease-
free equilibrium. It is obvious that system (7) always has the
unique disease-free equilibrium 𝑃

0
= (0, 0, Λ/𝜇) in 𝐺. About

𝑃
0
, we have the following main results.

Theorem 1. The disease-free equilibrium 𝑃
0
is globally asymp-

totically stable in 𝐺 if 𝑅
0
≤ 1 and it is unstable if 𝑅

0
> 1.

Proof. The Jacobian matrix of system (7) at 𝑃
0
= (0, 0, Λ/𝜇)

goes as follows:

𝐽 (𝑃
0
) = (

𝛽
1
𝐶
1
(
Λ

𝜇
) − (𝜇 + 𝜀) 𝛽

2
𝐶
2
(
Λ

𝜇
) 0

𝜀 −𝜔 0

0 −𝛼 −𝜇

) , (15)

which has a eigenvalue 𝜆
1
= −𝜇 < 0, obviously. The other

two eigenvalues 𝜆
2
and 𝜆

3
are determined by the following

equation:

𝜆
2
− [𝛽
1
𝐶
1
(
Λ

𝜇
) − (𝜇 + 𝜔 + 𝜀)] 𝜆

− 𝜔[𝛽
1
𝐶
1
(
Λ

𝜇
) − (𝜇 + 𝜀)] − 𝜀𝛽

2
𝐶
2
(
Λ

𝜇
) = 0.

(16)

If 𝑅
0
> 1, we can have easily

𝜆
2
𝜆
3
= − 𝜔[𝛽

1
𝐶
1
(
Λ

𝜇
) − (𝜇 + 𝜀)] − 𝜀𝛽

2
𝐶
2
(
Λ

𝜇
)

= 𝜔 (𝜇 + 𝜀) (1 − 𝑅
0
) < 0.

(17)

Therefore, 𝜆
2
and 𝜆

3
are two opposite-sign real roots. Thus,

𝑃
0
is unstable.
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Since 𝑅
0
< 1 implies 𝛽

1
𝐶
1
(Λ/𝜇) < (𝜇+𝜀)−(𝜀/𝜔)𝛽

2
𝐶
2
(Λ/

𝜇), then we get

𝜆
2
+ 𝜆
3
= 𝛽
1
𝐶
1
(
Λ

𝜇
) − (𝜇 + 𝜔 + 𝜀)

< − 𝜔 −
𝜀

𝜔
𝛽
2
𝐶
2
(
Λ

𝜇
) < 0,

𝜆
2
𝜆
3
= 𝜔 (𝜇 + 𝜀) (1 − 𝑅

0
) > 0.

(18)

Therefore, 𝜆
2
and 𝜆

3
have negative real parts. Hence, 𝑃

0
is

locally asymptotically stable.
When 𝑅

0
= 1, it implies that 𝜆

2
𝜆
3
= 0, 𝛽

1
𝐶
1
(Λ/𝜇) − (𝜇 +

𝜀) = −(𝜀/𝜔)𝛽
2
𝐶
2
(Λ/𝜇). We may as well assume that 𝜆

2
= 0;

then 𝜆
3
= −𝜔− (𝜀/𝜔)𝛽

2
𝐶
2
(Λ/𝜇). The characteristic matrix of

𝐽(𝑃
0
) has three invariable factors: 1, 1, and 𝜆(𝜆 + 𝜇)(𝜆 + 𝜔 +

(𝜀/𝜔)𝛽
2
𝐶
2
(Λ/𝜇)). Because the elementary factor with respect

to 𝜆
2
= 0 is 𝜆, which is single, 𝑃

0
is stable.

Constructing a suitable Lyapunov function

𝑉 = 𝑅
0
𝐸 +

𝛽
2

𝜔
𝐶
2
(
Λ

𝜇
) 𝐼, (19)

then the time derivative of 𝑉 along a solution of system (7)
gives

�̇� = 𝑅
0

𝛽
1
𝐶
1 (𝑁) 𝐸 + 𝛽2𝐶2 (𝑁) 𝐼

𝑁
(𝑁 − 𝐸 − 𝐼)

− 𝑅
0
(𝜇 + 𝜀) 𝐸 +

𝜀𝛽
2

𝜔
𝐶
2
(
Λ

𝜇
)𝐸 − 𝛽

2
𝐶
2
(
Λ

𝜇
) 𝐼

= 𝑅
0

𝛽
1
𝐶
1
(𝑁) 𝐸 + 𝛽

2
𝐶
2
(𝑁) 𝐼

𝑁
(𝑁 − 𝐸 − 𝐼)

− 𝛽
1
𝐶
1
(
Λ

𝜇
)𝐸 − 𝛽

2
𝐶
2
(
Λ

𝜇
) 𝐼

≤ 𝑅
0

𝛽
1
𝐶
1
(𝑁) 𝐸 + 𝛽

2
𝐶
2
(𝑁) 𝐼

𝑁
(𝑁 − 𝐸 − 𝐼)

− 𝛽
1
𝐶
1
(𝑁) 𝐸 − 𝛽

2
𝐶
2
(𝑁) 𝐼

=
𝛽
1
𝐶
1
(𝑁) 𝐸 + 𝛽

2
𝐶
2
(𝑁) 𝐼

𝑁
[(𝑅
0
− 1)𝑁 − 𝑅

0
𝐸 − 𝑅

0
𝐼] .

(20)

Hence, �̇� ≤ 0 holds if𝑅
0
≤ 1. Furthermore, �̇� = 0, if and only

if 𝐸 = 𝐼 = 0. Let 𝐹 = {(𝐸, 𝐼,𝑁) ∈ 𝐺 | �̇� = 0} = {(0, 0,𝑁)},
then the largest compact invariant set in𝐹 for system (7) is the
set {(0, 0,𝑁)}. Thus, the solution of system (7) satisfies 𝐸 →

0, 𝐼 → 0 as 𝑡 → +∞ by LaSalle’s Invariance Principle [12].
Therefore, the limit system of system (7) is

𝐸

= 0,

𝐼

= 0,

𝑁

= Λ − 𝜇𝑁.

(21)

It is obviously known that the equilibrium (0, 0, Λ/𝜇) of
system (21) is globally asymptotically stable; thus, the disease-
free equilibrium𝑃

0
of system (7) is globally attractive in𝐺. On

the basis of local stability, 𝑃
0
is globally asymptotically stable

in 𝐺 if 𝑅
0
≤ 1. This completes the proof.

About system (4), we also obtain.

Theorem 2. The unique disease-free equilibrium 𝑃
0
= (Λ/𝜇,

0, 0) of system (4) is globally asymptotically stable in𝑇 if𝑅
0
≤ 1

and it is unstable if 𝑅
0
> 1.

4. Existence and Stability of
the Endemic Equilibrium

In this section, we first discuss the existence and uniqueness
of the endemic equilibrium 𝑃

∗ of system (7) when 𝑅
0
> 1.

Whereafter, we focus on investigating the local stability of𝑃∗.
We have to prove that the Jacobian matrix 𝐽(𝑃

∗
) is stable;

namely, all its eigenvalues have negative real parts. This is
routinely done by verifying the Routh-Hurwitz conditions.
Finally, we study the global stability of the endemic equilib-
rium 𝑃

∗ of system (4) with the method of autonomous con-
vergence theorem of Li and Muldowney in [13].

The coordinates of the endemic equilibrium (positive
equilibrium) of system (7) are the positive solutions of equa-
tions

𝛽
1
𝐶
1
(𝑁) 𝐸 + 𝛽

2
𝐶
2
(𝑁) 𝐼

𝑁
(𝑁 − 𝐸 − 𝐼) − (𝜇 + 𝜀) 𝐸 = 0,

𝜀𝐸 − (𝜇 + 𝛼 + 𝛿) 𝐼 = 0,

Λ − 𝜇𝑁 − 𝛼𝐼 = 0

(22)

in 𝐺𝑜.
Let 𝜔 = 𝜇+𝛼+𝛿, by the direct calculation, we can get the

following equation of𝑁 easily as

𝜑 (𝑁) :=
𝛼𝜀 + 𝜇𝜔 + 𝜇𝜀

𝛼𝜀
[𝛽
1
𝐶
1
(𝑁) +

𝜀

𝜔
𝛽
2
𝐶
2
(𝑁)]

−
Λ (𝜔 + 𝜀)

𝛼𝜀
[
𝛽
1
𝐶
1
(𝑁)

𝑁
+
𝜀

𝜔

𝛽
2
𝐶
2
(𝑁)

𝑁
]

− (𝜇 + 𝜀) = 0.

(23)

Because 𝐶
𝑖
(𝑁) (𝑖 = 1, 2) satisfy conditions (i), (ii), and

(iii), thus 𝜑(𝑁) is an increasing continuous function, and
𝜑(Λ/𝜇) = (𝜇 + 𝜀)(𝑅

0
− 1). When 𝑁 is sufficiently small,

𝜑(𝑁) < 0. If 𝑅
0
> 1, then 𝜑(Λ/𝜇) > 0. According to the

zero-point theorem, 𝜑(𝑁) has the unique positive solution
𝑁
∗ in the open interval (0, Λ/𝜇). Then, 𝐼∗ = (Λ − 𝜇𝑁

∗
)/𝛼,

𝐸
∗
= (𝜔/𝜀)𝐼

∗. Otherwise, if 𝑅
0
≤ 1, 𝑁∗ does not exist in (0,

Λ/𝜇). Therefore, we have the following theorem.

Theorem 3. When 𝑅
0
> 1, system (7) has the unique end-

emic equilibrium 𝑃
∗
= (𝐸
∗
, 𝐼
∗
, 𝑁
∗
) besides the disease-free

equilibrium 𝑃
0
in 𝐺.

Theorem 4. When 𝑅
0
> 1, the unique endemic equilibrium

𝑃
∗ is locally asymptotically stable in 𝐺𝑜.
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Proof. The Jacobian matrix of system (7) at 𝑃∗ = (𝐸
∗
, 𝐼
∗
, 𝑁
∗
)

is

𝐽 (𝑃
∗
) = (

𝑎
11

𝑎
12

𝑎
13

𝜀 −𝜔 0

0 −𝛼 −𝜇

) , (24)

where

𝑎
11
= −

𝜀𝛽
2
𝐶
2
(𝑁
∗
) (𝑁
∗
− 𝐸
∗
− 𝐼
∗
)

𝜔𝑁∗
−𝑊
∗
< 0,

𝑎
12
=
𝛽
2
𝐶
2
(𝑁
∗
) (𝑁
∗
− 𝐸
∗
− 𝐼
∗
)

𝑁∗
−𝑊
∗
,

𝑎
13
= [𝛽

1
(
𝐶
1
(𝑁
∗
)

𝑁∗
)



𝐸
∗
+ 𝛽
2
(
𝐶
2
(𝑁
∗
)

𝑁∗
)



𝐼
∗
]

× (𝑁
∗
− 𝐸
∗
− 𝐼
∗
) + 𝑊

∗

= 𝛽
1
𝐸
∗
[𝐶


1
(𝑁
∗
) − (𝐸

∗
+ 𝐼
∗
) (

𝐶
1
(𝑁
∗
)

𝑁∗
)



]

+ 𝛽
2
𝐼
∗
[𝐶


2
(𝑁
∗
) − (𝐸

∗
+ 𝐼
∗
) (

𝐶
2
(𝑁
∗
)

𝑁∗
)



] > 0,

(25)

thereinto𝑊∗ = (𝛽
1
𝐶
1
(𝑁
∗
)𝐸
∗
+ 𝛽
2
𝐶
2
(𝑁
∗
)𝐼
∗
)/𝑁
∗.

Therefore, the characteristic equation of 𝐽(𝑃∗) is

𝜆
3
+ 𝑎
1
𝜆
2
+ 𝑎
2
𝜆 + 𝑎
3
= 0, (26)

where

𝑎
1
= 𝜇 + 𝜔 − 𝑎

11
> 0,

𝑎
2
= (𝜇 − 𝑎

11
) 𝜔 − 𝜇𝑎

11
− 𝜀𝑎
12

= (𝜔 − 𝑎
11
) 𝜇 + (𝜔 + 𝜀)𝑊

∗
> 0,

𝑎
3
= − 𝜔𝜇𝑎

11
− 𝜇𝜀𝑎
12
+ 𝛼𝜀𝑎

13

= 𝜇 (𝜔 + 𝜀)𝑊
∗
+ 𝛼𝜀𝑎

13
> 0.

(27)

By calculation, we have

𝐻
1
= 𝑎
1
> 0,

𝐻
2
= 𝑎
1
𝑎
2
− 𝑎
3

= (𝜇 + 𝜔 − 𝑎
11
) [(𝜔 − 𝑎

11
) 𝜇 + (𝜔 + 𝜀)𝑊

∗
]

− 𝜇 (𝜔 + 𝜀)𝑊
∗

− 𝛼𝜀{[𝛽
1
(
𝐶
1
(𝑁
∗
)

𝑁∗
)



𝐸
∗
+ 𝛽
2
(
𝐶
2
(𝑁
∗
)

𝑁∗
)



𝐼
∗
]

× (𝑁
∗
− 𝐸
∗
− 𝐼
∗
) + 𝑊

∗
}

= (𝜔 − 𝑎
11
) 𝜇
2
+ (𝜔 − 𝑎

11
)
2
𝜇

+ [(𝜇 + 𝜔 − 𝑎
11
) (𝜔 + 𝜀) − 𝜇 (𝜔 + 𝜀) − 𝛼𝜀]𝑊

∗

− 𝛼𝜀 [𝛽
1
(
𝐶
1
(𝑁
∗
)

𝑁∗
)



𝐸
∗
+ 𝛽
2
(
𝐶
2
(𝑁
∗
)

𝑁∗
)



𝐼
∗
]

× (𝑁
∗
− 𝐸
∗
− 𝐼
∗
)

= (𝜔 − 𝑎
11
) 𝜇
2
+ (𝜔 − 𝑎

11
)
2
𝜇

+ [(𝜇 + 𝛼 + 𝛿 − 𝑎
11
) (𝜔 + 𝜀) − 𝛼𝜀]𝑊

∗

− 𝛼𝜀 [𝛽
1
(
𝐶
1
(𝑁
∗
)

𝑁∗
)



𝐸
∗
+ 𝛽
2
(
𝐶
2
(𝑁
∗
)

𝑁∗
)



𝐼
∗
]

× (𝑁
∗
− 𝐸
∗
− 𝐼
∗
) > 0,

𝐻
3
= 𝑎
3
𝐻
2
> 0.

(28)

By Routh-Hurwitz stability theorem [10], all the three eigen-
values of 𝐽(𝑃∗) have negative real parts. Thus, the endemic
equilibrium 𝑃

∗ is locally asymptotically stable in 𝐺
𝑜, when

𝑅
0
> 1.

Denote the boundary and the interior of 𝑇 by 𝜕𝑇 and 𝑇𝑜,
we also obtain for system (4).

Theorem 5. When 𝑅
0
> 1, system (4) has a unique endemic

equilibrium 𝑃
∗

= (𝑆
∗
, 𝐸
∗
, 𝐼
∗
), and it is locally asymptotically

stable in 𝑇𝑜, thereinto 𝑆∗ = 𝑁
∗
− 𝐸
∗
− 𝐼
∗.

Now, we briefly outline the autonomous convergence
theorem in [13] for proving global stability of the endemic
equilibrium 𝑃

∗.
Let 𝐷 ⊂ R𝑛 be an open set, and let 𝑥 → 𝑓(𝑥) ∈ R𝑛 be a

𝐶
1 function defined in 𝐷. We consider the autonomous sys-

tem in R𝑛:
�̇� = 𝑓 (𝑥) . (29)

Let 𝑥 be an equilibrium of (29); that is, 𝑓(𝑥) = 0. We recall
that 𝑥 is said to be globally stable in𝐷 if it is locally stable and
all trajectories in𝐷 converge to 𝑥.

Assume that the following hypothesis hold:

(H1) 𝐷 is simply connected;
(H2) there exists a compact absorbing set Γ ⊂ 𝐷;
(H3) 𝑥 is the only equilibrium of (29) and is locally stable

in𝐷.
The basic job is to find conditions under which the

global stability of 𝑥 with respect to 𝐷 is implied by its
local stability. The difficulty associated with this problem is
largely due to the lack of practical tools. A new approach
to the global stability problem has emerged from a series of
papers on higher-dimensional generalizations of the criteria
of Bendixson and Dulac for planar systems and on so-called
autonomous convergence theorems. First, we now introduce
a definition, which will appear in the following context.
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Definition 6 (see [13]). Suppose system (29) has a periodic
solution 𝑥 = 𝑝(𝑡)with least period𝜔 > 0 and orbit 𝛾 = {𝑝(𝑡) :

0 ≤ 𝑡 ≤ 𝜔}. This orbit is orbitally stable if for each 𝜀 > 0,
there exists a 𝛿 > 0 such that any solution 𝑥(𝑡), for which the
distance of𝑥(0) from 𝛾 is less than 𝛿, remains at a distance less
than 𝜀 from 𝛾 for all 𝑡 ≥ 0. It is asymptotically orbitally stable if
the distance of 𝑥(𝑡) from 𝛾 also tends to zero as 𝑡 → ∞. This
orbit 𝛾 is asymptotically orbitally stable with asymptotic phase
if it is asymptotically orbitally stable and there is a 𝑏 > 0 such
that any solution 𝑥(𝑡), for which the distance of 𝑥(0) from 𝛾

is less than 𝑏, satisfies |𝑥(𝑡) − 𝑝(𝑡 − 𝜏)| → 0 as 𝑡 → ∞ for
some 𝜏 which may depend on 𝑥(0).

Theorem 7 (see [14]). A sufficient condition for a period orbit
𝛾 = {𝑝(𝑡) : 0 ≤ 𝑡 ≤ 𝜔} of (29) is asymptotically orbitally stable
with asymptotic phase such that the linear system

𝑧

(𝑡) = (

𝜕𝑓
[2]

𝜕𝑥
(𝑝 (𝑡))) 𝑧 (𝑡) (30)

is asymptotically stable.

Remark 8. Equation (30) is called the second compound
equation of (29) and 𝜕𝑓[2]/𝜕𝑥 is the second compoundmatrix
of the Jacobian matrix 𝜕𝑓/𝜕𝑥 of 𝑓.

It is also demonstrated thatTheorem 7 generalizes a class
of Poincare for the orbital stability of periodic solutions to
planar autonomous systems.

Theorem 9 (see [13]). Under assumptions (H1), (H2), and
(H3), 𝑥 is globally asymptotically stable in 𝐷 provided that

(H4) the system (29) satisfies a Poincare-Bendixson crite-
rion;

(H5) a periodic orbit of the system (29) is asymptotically
orbitally stable.

As a matter of fact, the condition (H2) is true, if and only if
the system (4) is uniformly persistent in 𝑇𝑜.

Definition 10 (see [15, 16]). System (4) is said to be uniformly
persistent if there exists a constant 𝜂 ∈ (0, 1) such that any
solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) with initial point (𝑆(0), 𝐸(0), 𝐼(0)) ∈
𝑇
𝑜 satisfies

min { lim
𝑡→∞

inf 𝑆 (𝑡) , lim
𝑡→∞

inf 𝐸 (𝑡) , lim
𝑡→∞

inf 𝐼 (𝑡)} ≥ 𝜂. (31)

Lemma 11. When 𝑅
0
> 1, system (4) is uniformly persistent in

𝑇
𝑜.

Proof. Any solution of system (4)which begins from {(𝑆, 0, 0),

0 ≤ 𝑆 ≤ Λ/𝜇} always, in fact, converges at the point 𝑃
0
=

(Λ/𝜇, 0, 0) along the 𝑆-axis. Except the 𝑆-axis, the solution of
system (4) which begin from 𝜕𝑇 will converge in the region
𝑇
𝑜. Thus, 𝑃

0
is the unique 𝜔-limit point in 𝜕𝑇 of system (4).

Let

𝑈 = 𝑅
0
𝐸 +

𝛽
2

𝜔
𝐶
2
(
Λ

𝜇
) 𝐼, (32)

then the time derivative of 𝑈 along a solution of system (4)
gives

�̇� =
𝛽
1
𝐶
1
(𝑁) 𝐸 + 𝛽

2
𝐶
2
(𝑁) 𝐼

𝑁
𝑆𝑅
0

− 𝛽
1
𝐶
1
(
Λ

𝜇
)𝐸 − 𝛽

2
𝐶
2
(
Λ

𝜇
) 𝐼

≥ [𝛽
1
𝐶
1
(
Λ

𝜇
)𝐸 + 𝛽

2
𝐶
2
(
Λ

𝜇
) 𝐼] (

𝜇

Λ
𝑅
0
𝑆 − 1) .

(33)

When 𝑅
0
> 1, if the trajectories (𝑆, 𝐸, 𝐼) in 𝑇𝑜 sufficiently

converge to𝑃
0
, it implies that �̇� > 0.That is to say, there exists

a neighborhood U(𝑃
0
) of 𝑃
0
, such that when the trajectories

of system (4) begin from𝑇
𝑜
∩U(𝑃

0
), it will come out ofU(𝑃

0
).

Therefore, 𝑃
0
is not a 𝜔-limit point of any trajectory in 𝑇

𝑜.
Thus, 𝑀 = {(𝑆, 0, 0) | 0 ≤ 𝑆 ≤ Λ/𝜇} is the largest invariant
set in 𝜕𝑇 of system (4). When 𝑅

0
> 1, 𝑀 is isolated. Also

the invariant set 𝑊𝑠(𝑀) ⊆ 𝜕𝑇, where 𝑊𝑠(𝑀) := {𝑥 ∈ 𝐷 :

𝑓
𝑛
(𝑥) → 𝑀 as 𝑛 → +∞} [15] is the stable set of𝑀. Accord-

ing to [15, Theorem 4.1], system (4) is uniformly persist-
ent in𝑇𝑜 when𝑅

0
> 1.Thus, there exists a compact absorbing

subset in 𝑇𝑜 for system (4).

Lemma 12. When 𝑅
0
> 1, system (4) satisfies the Poincare-

Bendixson criterion in 𝑇𝑜.

Proof. Because the system (4) is not quasimonotone, we
cannot verify that the system (4) is competitive by examining
its Jacobian matrix. Thus, we can replace the system (4) by

𝑥


1
= Λ − 𝜇𝑥

1
−
𝛽
1
𝐶
1
(𝑁)

𝑁
𝑆 (𝑁 − 𝑥

1
− 𝑥
3
)

−
𝛽
2
𝐶
2 (𝑁)

𝑁
𝑆 (𝑁 − 𝑥

1
− 𝑥
2
) + 𝛿𝑥

3
,

𝑥


2
=
𝛽
1
𝐶
1
(𝑁)

𝑁
𝑆𝑥
2
+
𝛽
2
𝐶
2
(𝑁)

𝑁
𝑆𝑥
3
− (𝜇 + 𝜀) 𝑥

2
,

𝑥


3
= 𝜀𝑥
2
− (𝜇 + 𝛼 + 𝛿) 𝑥

3
.

(34)

Then, system (34) has a solution 𝑢(𝑡) = (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)).
Let x = (𝑥

1
, 𝑥
2
, 𝑥
3
)
𝑇
∈ R3, we have

x = (𝐵 − 𝜇𝐼) x + 𝐶 (𝑆, 𝐸, 𝐼) , (35)

where 𝐼 denotes the 3 × 3 unit matrix, 𝐶(𝑆, 𝐸, 𝐼) is a function
that need not concern us, and

𝐵 = (

𝛽
1
𝐶
1 (𝑁) + 𝛽2𝐶2 (𝑁)

𝑁
𝑆
𝛽
2
𝐶
2 (𝑁)

𝑁
𝑆
𝛽
1
𝐶
1 (𝑁)

𝑁
𝑆 + 𝛿

0
𝛽
1
𝐶
1 (𝑁)

𝑁
𝑆 − 𝜀

𝛽
2
𝐶
2 (𝑁)

𝑁
𝑆

0 𝜀 − (𝛼 + 𝛿)

).

(36)

The off-diagonal entries in this matrix are nonnegative; thus,
the system (34) as a whole is quasimonotone [17]. Then, we
can verify that the system (34) is competitive [18] with respect
to the partial ordering defined by the orthant𝐾 = {(𝑆, 𝐸, 𝐼) ∈

R3
+
}. Since 𝑇𝑜 is convex, system (4) satisfies the Poincare-

Bendixson criterion [10, 19] in 𝑇𝑜 when 𝑅
0
> 1.
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Lemma 13. When 𝑅
0
> 1, the trajectory of any nonconstant

periodic solution 𝑝(𝑡) = (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) to system (4), if
it exists, is asymptotically orbitally stable with asymptotically
phase.

Proof. Suppose that the period solution 𝑝(𝑡) is periodic of
least period 𝜏 > 0 such that (𝑆(0), 𝐸(0), 𝐼(0)) ∈ 𝑇

𝑜. The
period orbit is 𝑝 = {𝑝(𝑡) : 0 ≤ 𝑡 ≤ 𝜏}. The Jacobian matrix of
system (4) at (𝑆, 𝐸, 𝐼) is given by

J (𝑝 (𝑡)) =(

−𝜇 −M − N −
𝛽
1
𝐶
1
(𝑁)

𝑁
𝑆 − N 𝛿 −

𝛽
2
𝐶
2
(𝑁)

𝑁
𝑆 − N

M + N 𝛽
1
𝐶
1 (𝑁)

𝑁
𝑆 + N − (𝜇 + 𝜀)

𝛽
2
𝐶
2 (𝑁)

𝑁
𝑆 + N

0 𝜀 − (𝜇 + 𝛼 + 𝛿)

), (37)

where

M =
𝛽
1
𝐶
1
(𝑁)

𝑁
𝐸 +

𝛽
2
𝐶
2
(𝑁)

𝑁
𝐼 ≥ 0,

N = (
𝛽
1
𝐶
1
(𝑁)

𝑁
)



𝑆𝐸 + (
𝛽
2
𝐶
2
(𝑁)

𝑁
)



𝑆𝐼 ≤ 0.

(38)

Then, the second compound matrix of J(𝑝(𝑡)) is

J[2] (𝑝 (𝑡)) =(
(

(

−(2𝜇 + 𝜀) +
𝛽
1
𝐶
1 (𝑁)

𝑁
𝑆 −M 𝛽

2
𝐶
2 (𝑁)

𝑁
𝑆 + N −𝛿 +

𝛽
2
𝐶
2 (𝑁)

𝑁
𝑆 + N

𝜀 − (𝜇 + 𝜔) −M − N −
𝛽
1
𝐶
1
(𝑁)

𝑁
𝑆 − N

0 M + N − (𝜇 + 𝜀 + 𝜔) +
𝛽
1
𝐶
1
(𝑁)

𝑁
𝑆 + N

)
)

)

, (39)

whose definition can be found in the appendix.
Furthermore, the second compound system of (4) is the

following periodic linear system:

𝑋

= − [M−

𝛽
1
𝐶
1
(𝑁)

𝑁
𝑆+2𝜇 + 𝜀]𝑋 + [

𝛽
2
𝐶
2
(𝑁)

𝑁
𝑆 + N]𝑌

+ [
𝛽
2
𝐶
2
(𝑁)

𝑁
𝑆 + N − 𝛿]𝑍,

𝑌

=𝜀𝑋 − (M + N + 𝜇 + 𝜔)𝑌 − [

𝛽
1
𝐶
1
(𝑁)

𝑁
𝑆 + N]𝑍,

𝑍

= (M + N) 𝑌 + [

𝛽
1
𝐶
1 (𝑁)

𝑁
𝑆 + N − 𝜇 − 𝜀 − 𝜔]𝑍.

(40)

Let (𝑥, 𝑦, 𝑧) be a vector in R3. We choose a vector norm
in R3 as

(𝑥 (𝑡) , 𝑦 (𝑡) , 𝑧 (𝑡))
 = sup {|𝑥 (𝑡)| , 𝑦 (𝑡)

 + |𝑧 (𝑡)|} . (41)

Let

𝐿 (𝑡) = sup{|𝑋 (𝑡)| ,
𝐸 (𝑡)

𝐼 (𝑡)
(|𝑌 (𝑡)| + |𝑍 (𝑡)|)} . (42)

When 𝑅
0
> 1, system (4) is uniformly persistent in 𝑇𝑜. Then,

there exists constant 𝑘 > 0 such that

𝐿 (𝑡) ≥ 𝑘 sup {|𝑋 (𝑡)| , |𝑌 (𝑡)| + |𝑍 (𝑡)|} (43)

for all (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡)) ∈ R3.
By direct calculations, we can obtain the following differ-

ential inequalities:

𝐷
+ |𝑋 (𝑡)| ≤ − [M −

𝛽
1
𝐶
1 (𝑁)

𝑁
𝑆 + 2𝜇 + 𝜀] |𝑋 (𝑡)|

+ [
𝛽
2
𝐶
2
(𝑁)

𝑁
𝑆 + N] |𝑌 (𝑡)|

+ [
𝛽
2
𝐶
2
(𝑁)

𝑁
𝑆 + N − 𝛿] |𝑍 (𝑡)| ,

≤ − [M −
𝛽
1
𝐶
1 (𝑁)

𝑁
𝑆 + 2𝜇 + 𝜀] |𝑋 (𝑡)|

+
𝐼

𝐸
[
𝛽
2
𝐶
2
(𝑁)

𝑁
𝑆 + N] 𝐸

𝐼
(|𝑌| + |𝑍|) ,

(44)
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𝐷
+ |𝑌 (𝑡)| ≤ 𝜀 |𝑋 (𝑡)| − (M + N + 𝜇 + 𝜔) |𝑌 (𝑡)|

− [
𝛽
1
𝐶
1 (𝑁)

𝑁
𝑆 + N] |𝑍 (𝑡)| ,

(45)

𝐷
+ |𝑍 (𝑡)| ≤ (M + N) |𝑌 (𝑡)|

+ [
𝛽
1
𝐶
1 (𝑁)

𝑁
𝑆 + N − 𝜇 − 𝜔] |𝑍 (𝑡)| .

(46)

Using (45) and (46), we have

𝐷
+

𝐸

𝐼
(|𝑌 (𝑡)| + |𝑍 (𝑡)|)

= (
𝐸


𝐸
−
𝐼


𝐼
)
𝐸

𝐼
(|𝑌 (𝑡)| + |𝑍 (𝑡)|)

+
𝐸

𝐼
(𝐷
+ |𝑌 (𝑡)| + 𝐷+ |𝑍 (𝑡)|)

≤
𝜀𝐸

𝐼
|𝑋 (𝑡)| + (

𝐸


𝐸
−
𝐼


𝐼
− 𝜇 − 𝜔)

𝐸

𝐼

× (|𝑌 (𝑡)| + |𝑍 (𝑡)|) .

(47)

Therefore, we obtain from (44) and (47),

𝐷
+
𝐿 (𝑡) ≤ sup {𝑔

1
(𝑡) , 𝑔
2
(𝑡)} 𝐿 (𝑡) , (48)

where

𝑔
1
(𝑡) = − [M −

𝛽
1
𝐶
1 (𝑁)

𝑁
𝑆 + 2𝜇 + 𝜀]

+
𝐼

𝐸
[
𝛽
2
𝐶
2
(𝑁)

𝑁
𝑆 + N] ,

(49)

𝑔
2 (𝑡) =

𝜀𝐸

𝐼
+
𝐸


𝐸
−
𝐼


𝐼
− 𝜇 − 𝜔. (50)

The system (4) implies

𝛽
2
𝐶
2
(𝑁) 𝑆𝐼

𝑁𝐸
=
𝐸


𝐸
−
𝛽
1
𝐶
1
(𝑁) 𝑆

𝑁
+ 𝜇 + 𝜀, (51)

𝜀𝐸

𝐼
=
𝐼


𝐼
+ 𝜔. (52)

Substituting (51) into (49) and (52) into (50), we have

𝑔
1 (𝑡) =

𝐸


𝐸
− 𝜇 −M +

𝐼

𝐸
N ≤

𝐸


𝐸
− 𝜇,

𝑔
2
(𝑡) =

𝐸


𝐸
− 𝜇.

(53)

Thus,

sup {𝑔
1
(𝑡) , 𝑔
2
(𝑡)} ≤

𝐸


𝐸
− 𝜇,

𝐷
+
𝐿 (𝑡) ≤ (

𝐸


𝐸
− 𝜇)𝐿 (𝑡) ,

∫

𝜏

0

sup {𝑔
1 (𝑡) , 𝑔2 (𝑡)} 𝑑𝑡 ≤ ∫

𝜏

0

(
𝐸


𝐸
− 𝜇)𝑑𝑡

= ln𝐸 (𝑡)|𝜏
0
− 𝜇𝜏 = −𝜇𝜏 < 0,

(54)

which implies that 𝐿(𝑡) → 0 as 𝑡 → ∞, and in turn that
(𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡)) → 0 as 𝑡 → ∞. Aa a result, the second
compound system (40) is asymptotically stable. Thus, the
periodic solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) is asymptotically orbitally
stable with asymptotically phase.

By Lemmas 11–13, we know that system (4) is satisfied
with every condition of Theorem 9; thus we can obtain the
following.

Theorem 14. If 𝑅
0
> 1, the unique endemic equilibrium 𝑃

∗

=

(𝑆
∗
, 𝐸
∗
, 𝐼
∗
) of system (4) is globally asymptotically stable in 𝑇𝑜.

Theorem 15. If 𝑅
0
> 1, the unique endemic equilibrium 𝑃

∗
=

(𝐸
∗
, 𝐼
∗
, 𝑁
∗
) of system (7) is globally asymptotically stable in

𝐺
𝑜.

5. Example and Numerical Simulation

In this paper, we considered an SEIS model with saturation
incidence. Now, we give the number simulations for system
(4) (see Figures 2 and 3).

Choose 𝐶
1
(𝑁) = (10𝑁/3)/(1 + 10𝑁/3 + √1 + 20𝑁/3)

and 𝐶
2
(𝑁) = (𝑁/3)/(1 + 𝑁/3 + √1 + 2𝑁/3). Assume that

Λ = 0.6, 𝜇 = 0.05, 𝜀 = 0.15, 𝛿 = 0.15, 𝛽
2
= 0.36, and 𝛼 = 0.1.

We choose randomly six initial values: (1, 2.2, 5.7), (5.1, 2.2,
1.3), (3.3, 1.8, 2.7), (4.4, 2.1, 0.6), (0.8, 5.4, 2.2), and (5.4, 1.3,
1.6) in 𝑇𝑜 = {(𝑆, 𝐸, 𝐼) ∈ R3

+
| 0 < 𝑆 + 𝐸 + 𝐼 < 12}.

If 𝛽
1
= 0.1, 𝑅

0
= 0.85. We give the trajectory plot and its

tridimensional figure by Matlab software.
If 𝛽
1
= 0.36, 𝑅

0
= 1.4. We give the trajectory plot and its

tridimensional figure by Matlab software.

6. Discussion

In this paper, we present a complete mathematical analysis
for the global stability problem at the equilibria of an SEIS
epidemic model with saturation incidence. The basic repro-
ductive number 𝑅

0
is obtained as a sharp threshold parame-

ter, which represents the average number of secondary infec-
tions from a single exposed host and infectious host. If 𝑅

0
≤

1, the disease-free equilibrium 𝑃
0
is globally asymptotically

stable in the feasible region𝑇 by Lyapunov function, and thus
the disease always dies out. If𝑅

0
> 1, the unique disease equi-

librium 𝑃
∗ is globally asymptotically stable in 𝑇𝑜, so that the

disease, if initially present, will persist at the unique endemic
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Figure 2: Movement paths of 𝑆, 𝐸, and 𝐼 as functions of time 𝑡. For (a), we have 𝑅
0
= 0.85 and 𝑃

0
is globally stable.The disease is extinct. For

(b), we have 𝑅
0
= 1.4 and 𝑃∗ is globally stable. The disease spreads to be endemic.
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Figure 3: The graph of the trajectory in (𝑆, 𝐸, 𝐼)-space. (a) and (b) correspond with Figures 2(a) and 2(b), respectively.

equilibrium level.The global stability of𝑃∗ inmodel is proved
using a geometrical approach in [13]. We expect that these
approaches can be applied to solve global stability problems
in many other epidemic models.

Appendix

Compound Matrices

Let 𝐴 be a linear operator on R𝑛 and also denote its matrix
representation with respect to the standard basis of R𝑛.
Let ∧2R𝑛 denote the exterior product of R𝑛. 𝐴 induces

canonically a linear operator 𝐴[2] on ∧
2R𝑛; for 𝑢

1
, 𝑢
2
∈ R𝑛,

define

𝐴
[2]
(𝑢
1
∧ 𝑢
2
) := 𝐴 (𝑢

1
) ∧ 𝑢
2
+ 𝑢
1
∧ 𝐴 (𝑢

2
) (A.1)

and extend the definition over ∧2R𝑛 by linearity. The matrix
representation of 𝐴[2] with respect to the canonical basis in
∧
2R𝑛 is called the second additive compound matrix of 𝐴.

This is an (𝑛
2
)×(
𝑛

2
)matrix and satisfies the property (𝐴+𝐵)[2] =

𝐴
[2]
+𝐵
[2].The entries in𝐴[2] are linear relations of those in𝐴.

Let 𝐴 = (𝑎
𝑖𝑗
). For any integer 𝑖 = 1, 2 . . . , (

𝑛

2
), let (𝑖) = (𝑖

1
, 𝑖
2
)

be the 𝑖th member in the lexicographic ordering of integer
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pairs such that 1 ≤ 𝑖
1
< 𝑖
2
≤ 𝑚. Then, the entry in the 𝑗th

column of 𝑍 = 𝐴
[2] is

𝑧
𝑖𝑗
=

{{{{{{{{{

{{{{{{{{{

{

𝑎
𝑖
1
𝑖
1

+ 𝑎
𝑖
2
𝑖
2

if (𝑖) = (𝑗) ,

(−1)
𝑟+𝑠
𝑎
𝑖
𝑠
𝑗
𝑟

if exactly one entry 𝑖
𝑠
of

(𝑖) does not occur in (𝑗)

and 𝑗
𝑟
does not occur in (𝑖) ,

0 if (𝑖) differs from (𝑗) in two
or more entries.

(A.2)

For any integer 1 ≤ 𝑘 ≤ 𝑛, the 𝑘th additive compound matrix
𝐴
𝑘 of 𝐴 is defined canonically. For detailed discussions of

compound matrices and their properties, we refer the reader
to [20]. A comprehensive survey on compound matrices and
their relations to differential equations is given in [20]. For
𝑛 = 2, 3, and 4, the second additive compound matrix 𝐴[2] of
an 𝑛 × 𝑛matrix 𝐴 = (𝑎

𝑖𝑗
) is, respectively,

𝑛 = 2: 𝑎
11
+ 𝑎
22
,

𝑛 = 3: (

𝑎
11
+ 𝑎
22

𝑎
23

−𝑎
13

𝑎
32

𝑎
11
+ 𝑎
33

𝑎
12

−𝑎
31

𝑎
21

𝑎
22
+ 𝑎
33

) ,

𝑛 = 4: (

(

𝑎
11
+ 𝑎
22

𝑎
23

−𝑎
24

−𝑎
13

−𝑎
14

0

𝑎
32

𝑎
11
+ 𝑎
33

𝑎
34

𝑎
12

0 −𝑎
14

𝑎
42

𝑎
43

𝑎
11
+ 𝑎
44

0 𝑎
12

𝑎
13

−𝑎
31

𝑎
21

0 𝑎
22
+ 𝑎
33

𝑎
34

−𝑎
24

−𝑎
41

0 𝑎
21

𝑎
43

𝑎
22
+ 𝑎
44

𝑎
23

0 −𝑎
41

𝑎
31

−𝑎
42

𝑎
32

𝑎
33
+ 𝑎
44

)

)

.

(A.3)
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