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An investigation is presented for the two-dimensional and axisymmetric stagnation flows of a couple stress fluids intrude on a
moving plate under partial slip conditions. The governing partial differential equations are converted into ordinary differential
equations by a similarity transformation. The important physical parameters of skin friction coefficients of the fluid are also
obtained.Thehomotopy analysismethod (HAM) is employed to obtain the analytical solution of the problem.Also, the convergence
of the solutions is established by plotting graphs of convergence control parameter.The impacts of couple stresses and slip conditions
on the flow and temperature of the fluid have been observed. The numerical comparison for the considered fluid is compared with
previous solutions as special case.

1. Introduction

The fluids exhibiting a boundary slip are important in
industrial applications, for example, the polishing of artificial
heart valves, rarefied fluid problems, and flow on multiple
interfaces. There are many cases where no slip condition
is replaced with Navier’s partial slip condition. Partial slip
condition on solid boundary occurs in many problems such
as oscillatory flow channel, transient flow, some coated
surfaces, some rough or porous surfaces, and heat transfer
on moving plate. The flow on a moving plate is termed as
a basic content for convection processes. The partial slip
condition on a moving plate was considered by Wang [1];
the steady, laminar, axis-symmetric flow of a Newtonian fluid
due to a stretching sheet with partial slip was studied by
Ariel [2], Nadeem et al. [3] investigated steady state rotating
and MHD flow of a third grade fluid past a rigid plate with
slip; flow and heat transfer of a non-Newtonian fluid past
a stretching sheet with partial slip are considered by Sahoo
[4], and Jamil and Khan [5] considered the slip effects on
fractional viscoelastic fluids; the steady boundary layer flow
past a moving horizontal flat plate with a slip effect is studied
by Kumaran and Pop [6].

The theory of couple stresses, introduced by Stokes [7],
explain the rheological behavior of various complex non-
Newtonian fluids with body stresses and body couples which
cannot be illustrated by the classical theory of continuum
mechanics. Due to the rotational interaction of particles,
the force-stress tensor is not symmetric and flow behaviors
of such fluids are not similar to the Newtonian ones. It
draws the researcher’s attentionwith the growing applications
of such fluids in engineering, biomedical, and chemical
industries. The peristaltic transport of a couple stress fluid
in an asymmetric channel with the effect of the induced
magnetic field has been considered by Nadeem and Akram
[8], Khan et al. [9] investigate the approximate solution of
couple stress fluid with expanding or contracting porous
channel, Ramana Murthy and Nagaraju considered the flow
of a couple stress fluid generated by a circular cylinder sub-
jected to longitudinal and torsional oscillations [10], Hayat
and colleagues observed that the velocity and the boundary
layer thickness are decreasing functions of the couple stress
fluid parameter in his study of melting heat transfer in the
boundary layer flow of a couple stress fluid over a stretching
surface [11], and the time dependence of the run up flow of
a couple stress fluid between rigid parallel plates is examined
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by Devakar and Iyengar [12] in which the flow is induced by
a constant pressure gradient which is suddenly withdrawn
and the parallel plates are set to move instantaneously with
different velocities in the direction of the applied pressure
gradient.

In present paper, the effect of velocity slip factor 𝜆 and
thermal slip factor 𝛽 in two- dimensional and axisymmetric
stagnation flows of a couple stress fluid are considered.
Heat transfer analysis has also been taken into account. The
problem is solved and analyzed with the application of HAM.
The HAM provides a simple way to ensure convergence of
the solution. It does not only optimize the solution but also
gives freedom to choose the base function. The homotopy
analysis method contains the auxiliary parameter ℏ, which
provides a straightforward way to adjust and control the
convergence region of the series solution. The HAM can
overcome the restrictions and limitations of perturbation
methods [13, 14]. It has been successfully applied to many
types of nonlinear problems such as the nonlinear equations
arising in heat transfer [15], the nonhomogeneous Blasius
problem [16], the generalized three-dimensional MHD flow
over a porous stretching sheet [17], the axisymmetric flow,
and heat transfer of a second grade fluid past a stretching
sheet [18], and Kawahara equation [19], and an analytical
study for the effects of slip factors on unsteady stagnation
point flow and heat transfer towards a stretching sheet has
also been carried out throughHAM [20].The solution can be
expressed with the help of different linear operators, out of
which some converge to the exact solution faster than others.

2. Formulation of the Problem

Let us consider a two-dimensional stagnation flow with
heat transfer in the 𝑥-𝑧 plane moving with velocity 𝑈 in
the 𝑥-direction and velocity 𝑉 in 𝑦-direction (as shown
in Figure 1). The partial slip condition on the surface of
moving plate for both motion of the fluid and heat transfer
is also considered. Under the considered assumptions, in the
absence of body forces and body couples, themomentum and
energy equations of an incompressible couple stress fluid are
presented by the following equations:

∇ ⋅ V = 0,

𝜌 (
𝜕V
𝜕𝑡

+ (V ⋅ ∇)V) = −∇𝑝 + 𝜇∇
2V − 𝛾∇

4V,

𝜌𝐶
𝑝
(
𝜕𝑇

𝜕𝑡
+ (V ⋅ ∇) 𝑇) = 𝑘∇

2
𝑇.

(1)

2.1. The Two-Dimensional Flow. The potential flow far from
the plate is given by

𝑢 = 𝑎𝑥, V = 0, 𝑤 = −𝑎𝑧,

𝑝 = 𝑝
0
− 𝜌𝑎
2
(𝑥
2
+ 𝑧
2
)

2
,

(2)

where, 𝑢, V, 𝑤 are velocity components in the Cartesian
𝑥, 𝑦, 𝑧 directions, 𝑎 is the strength of the stagnation flow, 𝜌 is
the density,𝑝 is the pressure, and𝑝

0
is the stagnation pressure.

For couple stress flow, we set

𝑢 = 𝑎𝑥𝑓

(𝜂) + 𝑈𝑔 (𝜂) , V = 𝑉ℎ (𝜂) ,

𝑤 = −√𝑎]𝑓 (𝜂) ,

𝜃 (𝜂) =
𝑇 − 𝑇
∞

𝑇
0
− 𝑇
∞

, 𝜂 ≡ √
𝑎

]
𝑧,

(3)

𝑝 = 𝑝
0
− 𝜌(

𝑎
2
𝑥
2

2
+
𝑤
2

2
− ]𝑤
𝑧
+ 𝛾𝑤
𝑧,𝑧,𝑧

) , (4)

where 𝛾 is the couple stress fluid parameter and ] is the
kinematic viscosity.The subscript 𝑧 represents differentiation
with respect to 𝑧. Using (3)-(4), the momentum and energy
equations are reduced to ordinary differential equations

𝑓

+ 𝑓𝑓

− (𝑓

)
2

− 𝜉𝑓
(5)
+ 1 = 0,

𝑔

+ 𝑓𝑔

− 𝑓

𝑔 − 𝜉𝑔

(4)
= 0,

ℎ

+ 𝑓ℎ

− 𝜉ℎ
(4)

= 0,

𝜃

+ Pr𝑓𝜃 = 0,

(5)

where Pr = ]/𝛼 is Prandtl number and 𝜉 = 𝑎𝛾/(]2𝜌) is the
couple stress parameter.

On the plate, velocity slip and thermal slip similar to
Navier’s condition is

𝑢 − 𝑈 = 𝑁(𝜌]𝑢
𝑧
− 𝛾𝑢
𝑧𝑧𝑧
) ,

V − 𝑉 = 𝑁(𝜌]V
𝑧
− 𝛾V
𝑧𝑧𝑧
) , 𝑇 − 𝑇

0
= 𝑆𝑇
𝑧
,

(6)

where𝑁 and 𝑆 are slip constants. Substitution of (3) yields

𝑓

(0) = 𝜆 (𝑓


(0) − 𝜉𝑓


(0)) ,

𝑔 (0) = 1 + 𝜆 (𝑔

(0) − 𝜉𝑔


(0)) ,

ℎ (0) = 1 + 𝜆 (ℎ

(0) − 𝜉ℎ


(0)) ,

𝜃 (0) = 1 + 𝛽𝜃

(0) ,

(7)

where 𝜆 = 𝑁𝜌√]𝑎 is the nondimensional slip factor and 𝛽 =

𝑆√𝑎/] is the thermal slip factor. For an impermeable plate
and a potential flow which is recovered at infinity, we have

𝑓 (0) = 0, 𝑓

(∞) = 1, 𝑔 (∞) = 0,

ℎ (∞) = 0, 𝜃 (∞) = 0.

(8)

2.2. The Axisymmetric Stagnation Point Flow. The stagnation
flow in the 𝑥-𝑧 plane is moving two-dimensionally with
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Figure 1: (a) Two-dimensional stagnation flow. (b) Axisymmetric stagnation flow.

velocity𝑈 in the 𝑥 direction and velocity𝑉 in the 𝑦 direction.
The potential flow far from the plate is given by

𝑢 = 𝑎𝑥, V = 𝑎𝑦, 𝑤 = −2𝑎𝑧,

𝑝 = 𝑝
0
− 𝜌[

(𝑥
2
+ 𝑧
2
)

2
+ 2𝑎
2
𝑧
2
] .

(9)

We introduce the following transformations:

𝑢 = 𝑎𝑥𝑓

(𝜂) + 𝑈𝑔 (𝜂) , V = 𝑎𝑦𝑓


(𝜂) ,

𝑤 = −2√𝑎]𝑓 (𝜂) ,

𝑝 = 𝑝
0
− 𝜌[

𝑎
2
(𝑥
2
+ 𝑦
2
)

2
+
𝑤
2

2
+ ]𝑤
𝑧
+ 𝛾𝑤
𝑧,𝑧,𝑧

] .

(10)

The equations of motion and energy are reduced to
ordinary differential equations:

𝑓

+ 2𝑓𝑓


− (𝑓

)
2

− 𝜉𝑓
(5)
+ 1 = 0,

𝑔

+ 2𝑓𝑔


− 𝑓

𝑔 − 𝜉𝑔

(4)
= 0,

𝜃

+ 2Pr𝑓𝜃 = 0

(11)

with the same boundary conditions as in (7)-(8).
The shear stress of the fluid for two-dimensional and

axisymmetric flows can be found as

𝜏
𝑥𝑧
= (𝜇(

𝜕𝑢

𝜕𝑧
) − 𝜉(

𝜕
3
𝑢

𝜕𝑧3
))

𝑧=0

,

𝜏
𝑦𝑧
= (𝜇(

𝜕V

𝜕𝑧
) − 𝜉(

𝜕
3V

𝜕𝑧3
))

𝑧=0

.

(12)

Hence, the local skin friction coefficients are given by

Re1/2
𝑥
𝐶
𝑓
= 𝑓

(0) − 𝜉𝑓


(0) ,

𝐶
𝑔
=
𝑔

(0) − 𝜉𝑔


(0)

√𝑈2/𝑎]
,

𝐶
𝑔
=
ℎ

(0) − 𝜉ℎ


(0)

√𝑉2/𝑎]
,

(13)

where Re1/2
𝑥

= √𝑎𝑥2/] is the local Reynolds numbers.

3. Solution of the Problem

For the two-dimensional problempresented in (5), the course
of action for the HAM solution, we select

𝑓
0
=

−1

1 + 𝜆
+ 𝜂 +

𝑒
−𝜂

1 + 𝜆
, 𝑔

0
=

𝑒
−𝜂

1 + 𝜆
,

ℎ
0
=

𝑒
−𝜂

1 + 𝜆
, 𝜃

0
=

𝑒
−𝜂

1 + 𝛽

(14)

as the initial approximation of𝑓
0
, 𝑔
0
, ℎ
0
, and 𝜃

0
, respectively,

which satisfy the following linear operator and corresponding
boundary conditions:

L
1
=

𝑑
3

𝑑𝜂3
+

𝑑
2

𝑑𝜂2
, L

2
=

𝑑
2

𝑑𝜂2
− 1 (15)

such that

L
1
[𝑐
1
+ 𝑐
2
𝑒
𝜂
+ 𝑐
3
𝑒
−𝜂
] = 0, L

2
[𝑐
4
𝑒
𝜂
+ 𝑐
5
𝑒
−𝜂
] = 0,

(16)

where 𝑐
1
, 𝑐
2
, . . . , 𝑐

5
are arbitrary constants.
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The following nonlinear operators are defined as

𝑁
1
[𝑓 (𝜂, 𝑝)] =

𝜕
3
𝑓 (𝜂, 𝑝)

𝜕𝜂3
+ 𝑓 (𝜂, 𝑝)

𝜕
2
𝑓 (𝜂, 𝑝)

𝜕𝜂2

− (
𝜕𝑓 (𝜂, 𝑝)

𝜕𝜂
)

2

− 𝜉
𝜕
5
𝑓 (𝜂, 𝑝)

𝜕𝜂5
+ 1,

𝑁
2
[𝑓 (𝜂, 𝑝) , 𝑔 (𝜂, 𝑝)] =

𝜕
2
𝑔 (𝜂, 𝑝)

𝜕𝜂2
+ 𝑓 (𝜂, 𝑝)

𝜕𝑔 (𝜂, 𝑝)

𝜕𝜂

−
𝜕𝑓 (𝜂, 𝑝)

𝜕𝜂
𝑔 (𝜂, 𝑝) − 𝜉

𝜕
4
𝑔 (𝜂, 𝑝)

𝜕𝜂4
,

𝑁
3
[𝑓 (𝜂, 𝑝) , ℎ̃ (𝜂, 𝑝)] =

𝜕
2
ℎ̃ (𝜂, 𝑝)

𝜕𝜂2
+ 𝑓 (𝜂, 𝑝)

𝜕ℎ̃ (𝜂, 𝑝)

𝜕𝜂

− 𝜉
𝜕
4
ℎ̃ (𝜂, 𝑝)

𝜕𝜂4
,

𝑁
4
[𝑓 (𝜂, 𝑝) , 𝜃 (𝜂, 𝑝)] =

𝜕
2
𝜃 (𝜂, 𝑝)

𝜕𝜂2
+ Pr𝑓 (𝜂, 𝑝)

𝜕𝜃 (𝜂, 𝑝)

𝜕𝜂

(17)

and then construct the zeroth-order deformation equations:

(1 − 𝑝)L
1
[𝑓 (𝜂, 𝑝) − 𝑓

0
(𝜂)]

− 𝑝ℏ𝐻
1
(𝜂)𝑁
1
[𝑓 (𝜂, 𝑝)] = 0,

(1 − 𝑝)L
2
[𝑔 (𝜂, 𝑝) − 𝑔

0
]

− 𝑝ℏ𝐻
2
(𝜂)𝑁
2
[𝑓 (𝜂, 𝑝) , 𝑔 (𝜂, 𝑝)] = 0,

(1 − 𝑝)L
2
[ℎ̃ (𝜂, 𝑝) − ℎ

0
]

− 𝑝ℏ𝐻
3
(𝜂)𝑁
3
[𝑓 (𝜂, 𝑝) , ℎ̃ (𝜂, 𝑝)] = 0,

(1 − 𝑝)L
2
[𝜃 (𝜂, 𝑝) − 𝜃

0
(𝜂)]

− 𝑝ℏ𝐻
4
(𝜂)𝑁
4
[𝑓 (𝜂, 𝑝) , 𝜃 (𝜂, 𝑝)] = 0,

𝑓

(0, 𝑝) = 𝜆 (𝑓


(0, 𝑝) − 𝜉𝑓


(0, 𝑝)) ,

𝑓 (0, 𝑝) = 0,

𝑔 (0, 𝑝) = 1 + 𝜆 (𝑔

(0, 𝑝) − 𝜉𝑔


(0)) ,

ℎ̃ (0, 𝑝) = 1 + 𝜆 (ℎ̃

(0, 𝑝) − 𝜉ℎ̃


(0)) ,

𝜃 (0, 𝑝) = 1 + 𝛽𝜃

(0, 𝑝) ,

𝑓

(∞, 𝑝) = 1, 𝑔 (∞, 𝑝) = 0, ℎ̃ (∞, 𝑝) = 0,

𝜃 (∞, 𝑝) = 0

(18)

in which 𝑝 ∈ [0, 1] is the embedding parameter and ℏ is the
auxiliary nonzero parameter and 𝐻

𝑖
(𝜂), 𝑖 = 1, 2, 3, 4 are the

auxiliary functions. Here, we selected the auxiliary functions
as𝐻
𝑘
= 𝑒
−𝜂
, 𝑘 = 1, 2, 3, 4.

By Taylor’s theorem,

𝑓 (𝜂, 𝑝) = 𝑓
0
(𝜂) +

∞

∑

𝑚=1

𝑓
𝑚
(𝜂) 𝑝
𝑚
,

𝑔 (𝜂, 𝑝) = 𝑔
0
(𝜂) +

∞

∑

𝑚=1

𝑔
𝑚
(𝜂) 𝑝
𝑚
,

ℎ (𝜂, 𝑝) = ℎ
0
(𝜂) +

∞

∑

𝑚=1

ℎ
𝑚
(𝜂) 𝑝
𝑚
,

𝜃 (𝜂, 𝑝) = 𝜃
0
(𝜂) +

∞

∑

𝑚=1

𝜃
𝑚
(𝜂) 𝑝
𝑚
.

(19)

The 𝑚th-order deformation problems with the corre-
sponding boundary conditions are given by

L
1
[𝑓
𝑚
− 𝜒
𝑚
𝑓
𝑚−1

] = ℏ𝑒
−𝜂
𝑅
1
[𝑓
𝑚−1

] ,

L
2
[𝑔
𝑚
− 𝜒
𝑚
𝑔
𝑚−1

] ℏ𝑒
−𝜂
𝑅
2
[𝑓
𝑚−1

, 𝑔
𝑚−1

] ,

L
2
[ℎ
𝑚
− 𝜒
𝑚
ℎ
𝑚−1

] = ℏ𝑒
−𝜂
𝑅
3
[𝑓
𝑚−1

, ℎ
𝑚−1

] ,

L
2
[𝜃
𝑚
− 𝜒
𝑚
𝜃
𝑚−1

] = ℏ𝑒
−𝜂
𝑅
4
[𝑓
𝑚−1

, 𝜃
𝑚−1

] ,

(20)

𝑓


𝑚
(0) = 𝜆 (𝑓



𝑚
(0) − 𝜉𝑓


(0)) , 𝑓

𝑚
(0) = 0,

𝑔
𝑚
(0) = 𝜆 (𝑔



𝑚
(0) − 𝜉𝑔


(0)) ,

ℎ
𝑚
(0) = 𝜆 (ℎ



𝑚
(0) − 𝜉ℎ


(0)) ,

𝜃
𝑚
(0) = 𝛽𝜃



𝑚
(0) , 𝑓



𝑚
(∞) = 0,

𝑔
𝑚
(∞) = 0, ℎ

𝑚
(∞) = 0,

𝜃
𝑚
(∞) = 0,

(21)

where

𝑅
1
[𝑓
𝑚−1

] = 𝑓


𝑚−1
+

𝑚−1

∑

𝑖=0

𝑓
𝑖
𝑓


𝑚−1−𝑖
−

𝑚−1

∑

𝑖=0

𝑓


𝑖
𝑓


𝑚−1−𝑖

− 𝜉𝑓
(5)

𝑚−1
+ (1 − 𝜒

𝑚
) ,

𝑅
2
[𝑓
𝑚−1

, 𝑔
𝑚−1

] = 𝑔


𝑚−1
+

𝑚−1

∑

𝑖=0

𝑓
𝑖
𝑔


𝑚−1−𝑖

−

𝑚−1

∑

𝑖=0

𝑓


𝑖
𝑔
𝑚−1−𝑖

− 𝜉𝑔
(4)

𝑚−1
,

𝑅
3
[𝑓
𝑚−1

, ℎ
𝑚−1

] = ℎ


𝑚−1
+

𝑚−1

∑

𝑖=0

𝑓
𝑖
ℎ


𝑚−1−𝑖
− 𝜉ℎ
(4)

𝑚−1
,

𝑅
4
[𝑓
𝑚−1

, 𝜃
𝑚−1

] = 𝜃


𝑚−1
+ Pr
𝑚−1

∑

𝑖=0

𝑓
𝑖
𝜃


𝑚−1−𝑖
,

𝜒
𝑚
= {

0, 𝑚 ≤ 1,

1, 𝑚 ≥ 2.

(22)
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Figure 2: The ℏ curves for 6th order of approximation of HAM when 𝜆 = 0.2, 𝜉 = 1. (a) for 𝑓(0), (b) for 𝑔(0), (c) for ℎ(0).
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Figure 3: The ℏ curves for 6th order of approximation of HAM when 𝜆 = 0.2, 𝜉 = 1. (a) for 𝑓(0), (b) for 𝑔(0).

According to the procedure defined previously, it is easy
to solve the linear equations (20), one after the other in the
order 𝑚, especially by means of any computation software,
such as Mathematica.

In a similarmanner the solution of axisymmetric problem
defined in (11) can also be determined by taking the same
linear operators and initial guesses and proceeding in the
same way as for two-dimensional problem.

4. Results and Discussions

The paper presents an analysis of the flow and heat transfer
of the stagnation slip flow of a couple stress fluid over a
moving plate. Approximate analytical solutions are derived
for momentum and energy equations. We found analytic
solutions corresponding to the heat transfer of stagnation
slip flow over a moving plate by using symbolic software
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Figure 4: Effect of slip factor 𝜆 on 𝑓(𝜂) (slip and no-slip cases) when ℏ = −0.3, 𝜉 = 0.5. (a) for two-dimensional and (b) for axisymmetric
case.
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Figure 5: Effect of slip factor 𝜆 on 𝑓(𝜂) (slip and no-slip cases) when ℏ = −0.2, 𝜆 = 0.2 (a) for two-dimensional, and (b) for axisymmetric
case.

Mathematica 9. The HAM is adopted to achieve the analytic
solution of the problem. In HAM, a deformation equation
defines a continuous variation from an initial approximation
to the solution through an embedding parameter. The con-
vergence region of the obtained solution can be determined
with the help of embedding parameter ℏ which provides the
straight line parallel to 𝑥-axis in which the resultant solution
is convergent. For the two-dimensional flow, Figures 2(a)–
2(c), the ℏ curves are plotted for 𝑓(0), 𝑔(0) and ℎ(0), and
for axisymmetric flow, Figures 3(a) and 3(b) are plotted for
𝑓

(0) and𝑔(0) that presents the admissible values of ℏ under

which the solution is convergent.
For both two-dimensional and axisymmetric stagnation

flows, the effect of couple stress parameter 𝜉 on temperature
and velocity profiles, the effects of velocity slip factor 𝜆 on
velocity components, and the effect of thermal slip factor
𝛽 on temperature, which in turn depends on velocity, are

presented in the form of graphical and tabulated results. In
Tables 1, 2, and 3 (for two-dimensional) and Tables 4 and 5
(for axisymmetric), the initial values of√Re𝐶

𝑓
, (√𝑈2/𝑎V)𝐶

𝑔
,

and (√𝑉2/𝑎V)𝐶
𝑛
are presented for the various values of 𝜉

and 𝜆. At 𝜉 = 0 the problem recovers the Newtonian flow
problemofWang [1].The results in the tables are in agreement
with the results of Wang [1] (for 𝜉 = 0) and follow the
same trend for increasing slip factor 𝜆 when there are couple
stresses in the fluid. Figures 4 and 5 represent the influence
of velocity slip factor 𝜆 on 𝑓

 and 𝑓. An increase in the
slip factor 𝜆 decelerates the velocity 𝑓 (see Figure 4). The
increase in the function 𝑓 is observed with the increasing
in slip factor as shown in Figure 5. It can be noticed from
Figure 6 that positive increase in the couple stress parameter 𝜉
has the negative impact on the velocity 𝑓 of the couple stress
fluid; it influences more on axisymmetric flow as compared
to two-dimensional flow, whereas couple stress parameter 𝜉
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Table 1: Initial values of√Re𝐶
𝑓
for the two-dimensional stagnation flow when ℎ = −0.61 (bracket values from [1]).

𝜆 \ 𝜉 0 0.1 0.2 0.3 0.4
0 1.23260 (1.23259) 1.43251 2.58260 5.25453 9.72257
0.2 1.04385 (1.04259) 1.17052 1.94111 3.82149 7.15871
0.5 0.82483 (0.82148) 0.90095 1.38118 2.60405 4.90074
1 0.59637 (0.59346) 0.63885 0.90465 1.60141 2.97625
2 0.37692 (0.37589) 0.39660 0.51389 0.82142 1.44177
10 0.094047 (0.094036) 0.09559 0.10423 0.12349 0.14926
20 0.048476 (0.048472) 0.04889 0.05126 0.05608 0.05987
50 0.019753 (0.019752) 0.01982 0.02022 0.02097 0.021125

Table 2: Initial values of√𝑈2/𝑎]𝐶
𝑔
for the two dimensional stagnation flow when ℎ = −0.35 (bracket values from [1]).

𝜆 \ 𝜉 0 0.1 0.2 0.3 0.4
0 −0.83406 (−0.81130) −0.98987 −1.37103 −2.07901 −3.19268
0.2 −0.75213 (−0.77521) −0.84363 −1.09389 −1.59464 −2.43874
0.5 −0.63674 (−0.67196) −0.68416 −0.83462 −1.16169 −1.75519
1 −0.49511 (−0.52189) −0.51574 −0.59259 −0.78238 −1.15175
2 −0.33602 (−0.34911) −0.34277 −0.37504 −0.45978 −0.64203
10 −0.091548 (−0.09248) −0.09184 −0.09389 −0.10003 −0.11507
20 −0.047812 (−0.04806) −0.04788 −0.048423 −0.05008 −0.05418
50 −0.019642 (0.019685) −0.01965 −0.019744 −0.02002 −0.02070

Table 3: Initial values of√𝑉2/𝑎]𝐶
ℎ
for the two dimensional stagnation flow when ℎ = −0.5 (bracket values from [1]).

𝜆 \ 𝜉 0 0.1 0.2 0.3 0.4
0 −0.68635 (−0.57047) −0.68046 −0.51044 0.02198 1.18096
0.2 −0.62273 (−0.55440) −0.63793 −0.59093 −0.34999 0.31703
0.5 −0.53707 (−0.50283) −0.56007 −0.58301 −0.54172 −0.27375
1 −0.43014 (−0.41618) −0.45097 −0.49846 −0.561178 −0.56149
2 −0.30360 (−0.29951) −0.31649 −0.35525 −0.43436 −0.54462
10 −0.08882 (−0.08871) −0.09018 −0.09528 −0.10908 −0.13932
20 −0.047054 (−0.04703) −0.04744 −0.04896 −0.05324 −0.06318
50 −0.01951 (−0.01951) −0.019580 −0.01985 −0.020635 −0.02252

Table 4: Initial values of√Re𝐶
𝑓
for the axisymmetric flow when ℎ = −0.59 (bracket values from [1]).

𝜆 \ 𝜉 0 0.1 0.2 0.3 0.4
0 1.31166 (1.31193) 1.35335 1.50955 1.61316 1.22802
0.2 1.11399 (1.11097) 1.17608 1.44234 1.85177 2.07303
0.5 0.873726 (0.86688) 0.94076 1.24538 1.82827 2.50949
1 0.622290 (0.6173) 0.67807 0.94791 1.54311 2.44917
2 0.386430 (0.38526) 0.41918 0.59476 1.03573 1.84473
10 0.094590 (0.09459) 0.09752 0.11831 0.18272 0.33557
20 0.048630 (0.04862) 0.04943 0.05557 0.07543 0.12409
50 0.019780 (0.01977) 0.01992 0.02100 0.02463 0.03398

decelerates the velocity function 𝑓 for both two-dimensional
and axisymmetric flows (see Figure 7).

Figure 8 illustrates the influence of velocity slip factor
𝜆 (for both two-dimensional and axisymmetric flows) on
the velocity component 𝑔. An increase in the slip factor 𝜆
results in an exponential decay of 𝑔; the effect of couple
stress parameter 𝜉 on the velocity component 𝑔 reveals that

it supports the two-dimensional flow and the axisymmetric
flow in axial direction (see Figure 9). From Figure 10, it is
noted that the influence of velocity slip factor 𝜆 on the
translational velocity ℎ is a reducing function of slip factor
𝜆. The effect of couple stress parameter 𝜉 on the translational
velocity ℎ is plotted in Figure 11; it is observed that it is also
a decreasing function of couple stress parameter.
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Table 5: Initial values of√𝑈2/𝑎]𝐶
𝑔
for the axisymmetric flow when ℎ = −0.3 (bracket values from [1]).

𝜆 \ 𝜉 0 0.1 0.2 0.3 0.4
0 −0.87723 (−0.93873) −0.98615 −1.17030 −1.43528 −1.77243
0.2 −0.78757 (−0.88766) −0.86814 −1.02163 −1.26119 −1.58740
0.5 −0.66257 (−0.74987) −0.72114 −0.84428 −1.05073 −1.35156
1 −0.51106 (−0.56453) −0.55219 −0.64428 −0.80782 −1.06257
2 −0.343538 (−0.36643) −0.36980 −0.42972 −0.54027 −0.72341
10 −0.092122 (−0.09356) −0.09888 −0.11326 −0.13908 −0.18304
20 −0.047969 (−0.04835) −0.05146 −0.05867 −0.07123 −0.09205
50 −0.019669 (−0.01973) −0.02109 −0.02396 −0.02883 −0.03662
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Figure 6: Effect of couple stress parameter 𝜉 on 𝑓(𝜂) (Newtonian and couple stress cases) when ℏ = −0.2, 𝜆 = 0.2. (a) for two-dimensional
and (b) for axisymmetric cases.
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Figure 7: Effect of couple stress parameter 𝜉 on 𝑓(𝜂) (Newtonian and couple stress cases) when ℏ = −0.2, 𝜆 = 0.2. (a) for two-dimensional
and (b) for axisymmetric.
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Figure 8: Effect of slip factor 𝜆 on 𝑔(𝜂) (slip and no-slip cases) when ℏ = −0.2, 𝜉 = 0.5. (a) for two-dimensional flow and (b) for axisymmetric
flow.
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Figure 9: Effects of couple stress parameter 𝜉 on 𝑔(𝜂) (Newtonian and couple stress cases) when 𝜆 = 0.2. (a) for two-dimensional when
ℏ = 0.3 and (b) for axisymmetric flow when ℏ = 0.3.
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Figure 12: Temperature profile 𝜃(𝜂) of two-dimensional flow for various values of thermal slip 𝛽 (slip and no-slip cases) when ℏ = −0.5,
𝜉 = 0.5. (a) for Pr = 7. (b) for Pr = 0.7. (c) for Pr = 0.07.
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Figure 13: Temperature profile 𝜃(𝜂) of axisymmetric flow for various values of thermal slip 𝛽 (slip and no-slip cases) when ℏ = −0.5, 𝜉 = 0.5.
(a) for Pr = 7. (b) for Pr = 0.7. (c) for Pr = 0.07.
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Figure 14: Profile of temperature gradient at the plate −𝜃(0) against 𝜆 when Pr = 7, 𝜉 = 0.3, ℏ = 0.5. (a) for two-dimensional. (b) for
axisymmetric.
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Figure 15: Profile of temperature gradient at the plate −𝜃(0) against 𝜆 when Pr = 0.7, 𝜉 = 0.3, ℏ = 0.5. (a) for two-dimensional. (b) for
axisymmetric.
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Figure 16: Profile of temperature gradient at the plate −𝜃(0) against 𝛽 when Pr = 0.07, 𝜉 = 0.3, ℏ = 0.5. (a) for two-dimensional (b) for
axisymmetric.

Figures 12(a), 12(b), and 12(c) for two-dimensional flow
and Figures 13(a), 13(b), and 13(c) for axisymmetric flow
presented the temperature profiles for various values of
thermal slip 𝛽. It has been analyzed that the increment in
the thermal slip 𝛽 tends to decrease the temperature of the
couple stress fluid. From the definition of Prandtl number, it is
quite obvious that a large Prandtl number has a lower thermal
diffusivity; therefore, an increase in Pr tends to decrease the
temperature.

The consequences of an increase in Prandtl number Pr
and thermal slip factor 𝛽 on the heat transfer are visualized
and compared with the viscous fluid considered by Wang [1]
in Figures 14, 15, and 16. It is seen that the heat transfer is
increasing function of Pr and 𝜆 and decreasing function of 𝛽.
It has also been observed that the presence of couple stresses
decreases the heat transfer as compared to Newtonian fluid.

The heat transfer coefficient for axisymmetric flow is smaller
as compared with large value of −𝜃(0) for two-dimensional
flow.

5. Conclusions

The study has been done to explore the influence of couple
stresses with partial slip condition on the flow pattern of
couple stress fluid with heat transfer.

(i) The trends for the physical parameters of skin
frictions, 𝐶

𝑓
, 𝐶
𝑔
, and 𝐶

ℎ
for two-dimensional and

axisymmetric flows are decreasing function of slip
factor.

(ii) The velocity functions 𝑓 and 𝑓 are increasing func-
tions of slip factor 𝜆 (0 ≤ 𝜆 < ∞).
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(iii) The axial velocity 𝑔 and translational velocity ℎ are
decreasing functions of slip factor 𝜆.

(iv) Couple stress parameter 𝜉 has the negative impact on
velocity functions𝑓,𝑓 on both two-dimensional and
axisymmetric flows.

(v) The axial velocity𝑔 increases in two-dimensional flow
and decreases in axisymmetric flow for the increasing
values of couple stress parameter 𝜉.

(vi) The velocity function ℎ found no support from the
couple stresses in the fluid for the flow in translational
direction in both type of flows.

(vii) The temperature of the couple stress fluid is the
decreasing function of thermal slip 𝛽.

(viii) Prandtl number has the positive effect on the heat
transfer of the fluid.

Notations

(𝑥, 𝑦, 𝑧): Space coordinates
(𝑢, V, 𝑤): Velocity components
]: Kinematic viscosity
𝜌: Density
𝑘: Thermal conductivity
𝑐
𝑝
: Specific heat

𝑇: Temperature of fluid
𝛾: Couple stress parameter
𝑁, 𝑆: Slip constants
Pr: Prandtl number
𝜉: Dimensionless couple stress parameter
𝑎, 𝑈, 𝑉: Dimensional rate constant
𝜆: Nondimensional slip factor
𝛽: Thermal slip factor
Re: Reynolds number
𝐶
𝑓
, 𝐶
𝑔
, 𝐶
ℎ
: Skin friction coefficients.
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