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Although a smoothly running supply chain is ideal, the reality is to deal with imperfectness in transportations. This paper tries to
propose amathematical model for a supply chain under the effect of unexpected disruptions in transport. Supplier offers the retailer
a trade credit period 𝑡

1
and the retailer in turn offers his customers a permissible delay period. The retailer offers his customers

a credit period 𝑡
2
and he receives the revenue from 𝑡

2
to 𝑇 + 𝑡

2
, where 𝑇 is the cycle time at the retailer. Under this situation, the

three cases such as 𝑇 ≤ 𝑡
1
≤ 𝑇 + 𝑡

2
, 𝑇 ≤ 𝑇 + 𝑡

1
≤ 𝑡
2
, and 𝑡

1
≤ 𝑡
2
are discussed. An EPQ-based model is established and retailer’s

optimal replenishment policy is obtained through mathematical theorems. Finally, numerical examples and sensitivity analysis are
presented to felicitate the proposed model.

1. Introduction

Much of the logistician’s planning and control effort is
directed toward running an efficient operation under normal
conditions. At the same time, global trades such asWal-Mart,
HomeDepot, andDollarGeneral are facing the extraordinary
circumstances (such as earth quake, mishandling in trans-
port, shipping damage, and misplacing products) that may
result a risk in delivery froma supplier to a retailer.The supply
disruptions take the form of high-impact and low-probability
contingencies which can threaten decision makers of a
supply chain. Mathematical modeling helps decision makers
to evaluate optimal ordering policies against an incredibly
complex and dynamic set of risks and constraints.

In the classical logistics models, it was assumed that the
retailers and their customers must pay for the items as soon
as the items are received. However, in practices, the sup-
plier/retailer would allow a specified credit period (say
30 days) to their retailers/customers for payment without
penalty to stimulate the demand of the consumable products.
This credit term in financial management is denoted as “net
30.” Teng [1] illustrated the benefits of trade credit policy: (1) it
attracts new customers who consider trade credit policy to be
a type of price reduction, and (2) it should cause a reduction
in sales outstanding, since some established customerwill pay

more promptly in order to take advantage of trade creditmore
frequently.

This paper investigates a supply chainmodel in which the
supplier is willing to provide the retailer a full trade credit
period for payments and the retailer offers the full trade credit
to his/her customer. This is called two-echelon (or two-level)
trade credit financing. In practice, this two-level trade credit
financing at a retailer ismorematched to real-life situations in
a supply chain. Companies, like TATA and Toyato, can delay
the full amount of purchasing cost until the end of the delay
period offered by his suppliers. But these companies only offer
partial delay payment to his dealership on the permissible
credit period.

This paper attempts to develop a mathematical model for
the supply chainwith two-level trade credits and probabilistic
considerations of supply disruptions. To manage the risk in
delivery, the retailer arranges some alternatives to rework
those defective items which involve defective costs. Here, the
retailer offers trade credits to his customers and also receives
full trade credit from the supplier. The retailer replenishes
his inventory noninstantaneously and faces probabilistic risks
due to supply disruptions. According to risk management in
operations research, two situations such as (a) risk neutral
and (b) risk averse are considered. The solution procedures
are described for the retailer in both cases.
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The rest of this paper is organized as follows.The literature
review is presented in Section 2. Notations and assumptions
are described in Section 3. In Section 4, a mathematical
model for the illustrated supply chain is developed. Optimal
solutions are obtained in Section 5. Numerical examples
are illustrated in Section 6 and conclusions are drawn in
Section 7.

2. Literature Review

During the past few years, many researchers have studied
inventory models for permissible delay in payments. Goyal
[2] was the first proponent for developing an economic order
quantity (EOQ) model under the conditions of permissible
delay in payments. Shah [3] considered a stochastic inventory
model when items in inventory deteriorate and delays in
payments are permissible. Aggarwal and Jaggi [4] extended
Goyal’s model to allow for deteriorating items. Jamal et al. [5]
further generalized Aggarwal and Jaggi’s model to allow for
shortages. Hwang and Shinn [6] developed a model consid-
ering exponentially deteriorating items and found decision
policy for selling price and lot size. Teng [1] amended Goyal’s
model by considering the difference between unit price and
unit cost and established an easy analytical closed-form
solution to the problem. Chung and Huang [7] generalized
Goyal’s EOQ model to an economic production quantity
(EPQ) model in which the selling price is the same as the
purchase cost. Huang [8] extended Goyal’s model to the case
in which the supplier offers the retailer the permissible delay
period𝑀 (i.e., the upstream trade credit) and the retailer in
turn provides the trade credit period 𝑁 (with 𝑁 < 𝑀) to
his customers (i.e., the downstream trade credit). Teng and
Goyal [9] amended Huang’s model by complementing his
shortcomings. Chang et al. [10] reviewed the contributions
on the literature in modeling inventory lot sizing under
trade credits. Ho et al. [11] developed an integrated supplier-
buyer inventory model with the assumption that demand
is sensitive to retail price and the supplier adopts a two-
part trade credit policy. Huang and Hsu [12] have developed
an inventory model under two-level trade credit policy by
incorporating partial trade credit option at the customers of
the retailer. Liao [13] developed an EOQ model with non-
instantaneous receipt and exponentially deteriorating items
under two-level trade credit financing. Teng and Chang [14]
extended the Huang [15] model by relaxing the assumption
𝑁 < 𝑀. Jaggi et al. [16] developed a simple EOQ model
in which the retailer’s demand is linked to credit period.
Thangam and Uthayakumar [17] developed an EPQ model
for perishable items under two-level trade credit policy and
selling price and credit-period-dependent demand. Teng [18]
developed an EOQ model for a retailer who receives a full
trade credit from his supplier and offers a partial trade credit
to his bad credit customers or a full trade credit to his good
credit customers. Tsao [19] developed amodel by considering
advance sales discount and trade credits. Chen and Kang
[21] considered trade credit and imperfect quality in an
integrated vendor-buyer supply chainmodel. Chen and Kang
[20] developed integrated vendor-buyer inventory model
with two-level trade credits and price negotiation scheme.

Chang et al. [22] have extended the Liao [13] model by
considering the case𝑀 < 𝑁 also. Balkhi [23] has developed
a finite horizon inventory model with deteriorating items
under inflation and time value of money when shortages are
not allowed. Liao et al. [24] have developed a two-warehouse
lot-sizing model with order-dependent trade credit period.
Tsao and Sheen [25] have developed a multi-item supply
chainmodel with trade credit periods andweight freight cost.
Thangam and Uthayakumar [26] have built a mathematical
model for a retailer under two-level trade credit and two-
payment methods. Recently, Thangam [27] has developed a
two-level trade credit financingmodel for a supply chain with
deteriorating items and advance payment scheme.

For the literature related to supply disruptions, Gulyani
[28] studied the effects of highly ineffective freight trans-
portation systems on the supply chain and showed how it
increases the probability of incurring damage in transit and
total inventories. Silver [29] used the EOQmodel illustrating
a situation where the order quantity received from the sup-
plier does not necessarily match the quantity requisitioned.
He showed that the optimal order quantity depends on the
mean and standard deviation of the amount received. Shih
[30] developed optimal ordering schemes in cases where
the proportion of defective products in the accepted lots
has a known probability distribution. Noori and Keller [31]
extended Silver’s [29] model and obtained optimal replenish-
ment policy when the amount of products received at stores
assumes probability distributions such as uniform, normal,
and gamma. Blos et al. [32] identified supply chain risks in
the automotive and electronic industries in Brazil and high-
lighted the urgency of supply chain risk in management
implementation. Tsao [33] has developed an EPQ inventory
model with trade credit and logistics risk in a one-level trade
credit financing.

3. Notations and Assumptions

𝜆: Annual demand rate at the retailer
𝑃: Replenishment rate at the retailer, 𝑃 ≥ 𝜆
𝑐: Unit purchasing cost
𝑠: Unit selling price, 𝑠 ≥ 𝑐
𝐴: The ordering cost per order
ℎ: Stock holding cost per year excluding interest
charge
𝐼
𝑘
: The interest charged per dollar in stock per year
𝐼
𝑒
: The interest earned per dollar per year
𝑡
1
: The retailer’s trade credit period offered by the

supplier in years
𝑡
2
: The customer’s trade credit period offered by the

retailer in years
𝜋: Defective cost, the unit cost per item due to
defectiveness in disruption intransport
𝑥: Percentage of imperfect quality products due to
disruption in transport
𝑡
𝑐
: Time when contingency occurs
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TC(𝑇): The annual total cost incurred at the retailer,
which is a function of 𝑇.

This paper considers the following assumptions.

(1) The present model is confined to single supplier, sin-
gle retailer, and multiple customers.

(2) The inventory systemdeals with only one type of item.
(3) Shortages are not allowed.
(4) Demand rate (𝜆) and replenishment rate (𝑅) are

known and are constant.
(5) Lead time is zero.
(6) Time period is infinite.
(7) The supplier offers the full trade credit 𝑡

1
to the

retailer.
(8) The retailer also offers the trade credit 𝑡

2
to his

customers.
(9) Elapsed time (𝑡

𝑐
) until contingency occurs is a prob-

abilistic continuous random variable. According to
birth-death process in queueing theory, 𝑡

𝑐
follows an

exponential distribution with mean 1/𝜇.
(10) If the products are defective due to contingency in

delivery, the retailers need to find supply sources to
recover these defective products. It accounts for the
defective cost 𝜋.

4. Mathematical Model Formulation

The objective is to minimize the annual total cost incurred at
the retailer:

TC (𝑇)

= Annual ordering cost + Annual stock holding cost

+ Annual interest payable − Annual interest earned

+ Annual defective cost.
(1)

(1) Annual ordering cost = 𝐴/𝑇.
(2) Excluding interest charges, the annual stock holding

cost is

ℎ𝑇 (𝑃 − 𝜆) (𝜆𝑇/𝑃)

2𝑇
=
ℎ

2
[𝜆(1 −

𝜆

𝑃
)]𝑇. (2)

(3) Interest earned by the retailer.

Case 1 (𝑇 ≤ 𝑡
1
≤ 𝑇 + 𝑡

2
). Consider the following:

Annual interest earned =
𝑠𝐼
𝑒

𝑇
[
𝜆(𝑡
1
− 𝑡
2
)
2

2
]

=
𝑠𝐼
𝑒
𝜆

2𝑇
(𝑡
1
− 𝑡
2
)
2

.

(3)

Case 2 (𝑇 ≤ 𝑇 + 𝑡
1
≤ 𝑡
2
). Consider the following:

Annual interest earned =
𝑠𝐼
𝑒

2𝑇
[
𝜆𝑇
2

2
+ 𝜆𝑇 (𝑡

1
− 𝑡
2
− 𝑇)] .

(4)

Case 3 (𝑡
1
≤ 𝑡
2
). There is no interest earned for the retailer

since retailer’s credit period is prior to customer’s credit
period.

(4) Interest payable by the retailer.

Case 1 (𝑇 ≤ 𝑡
1
≤ 𝑇 + 𝑡

2
). Consider the following:

Interest payable =
𝑐𝐼
𝑘

𝑇
[
𝜆(𝑇 + 𝑡

2
− 𝑡
1
)
2

2
] . (5)

Case 2 (𝑇 ≤ 𝑇 + 𝑡
1
≤ 𝑡
2
). There is no interest payable for the

retailer.

Case 3 (𝑡
1
≤ 𝑡
2
). Consider the following:

Interest payable =
𝑐𝐼
𝑘

𝑇
[(𝑡
1
− 𝑡
2
) 𝜆𝑇 +

𝜆𝑇
2

2
] . (6)

(5) Annual defective cost due to disruption in supply.

If the number of defective items in each replenishment
cycle, as in Tsao [33], is

𝛾 =

{{{

{{{

{

0 if 𝑡
𝑐
≥
𝜆𝑇

𝑃
,

𝑥𝑃(
𝜆𝑇

𝑃
− 𝑡
𝑐
) if 𝑡

𝑐
<
𝜆𝑇

𝑃
,

(7)

then the expected number of defective products in each cycle
is

𝐸 [𝛾] = ∫

∞

0

𝛾 𝜇𝑒
−𝜇𝑡
𝑐

𝑑𝑡
𝑐

= 𝑃𝑥 [
𝜆𝑇

𝑃
+
1

𝜇
(𝑒
−𝜇(𝜆𝑇/𝑃)

− 1)] .

(8)

The annual defective cost is

𝜋𝜆𝐸 [𝛾]

𝑃 (𝜆𝑇/𝑃)
= 𝜋𝜆𝑥(1 +

𝑒
−𝜇(𝜆𝑇/𝑃)

− 1

𝑃
) . (9)

Using the approximation 𝑒−𝑥 ≈ 1 − 𝑥 + (𝑥2/2), the annual
defective cost can be rewritten as (𝜋𝜆𝑥𝜇/2)(𝜆𝑇/𝑃) when 𝜇 is
small.

Therefore, the total cost incurred at the retailer TC(𝑇) is

TC (𝑇) =
{{

{{

{

TC
1
(𝑇) if 𝑇 ≤ 𝑡

1
≤ 𝑇 + 𝑡

2
,

TC
2
(𝑇) if 𝑇 ≤ 𝑇 + 𝑡

1
≤ 𝑡
2
,

TC
3
(𝑇) if 𝑡

1
≤ 𝑡
2
,

(10)
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where

TC
1
(𝑇)

=
𝐴

2
+
ℎ

2
[𝜆(1 −

𝜆

𝑃
)]𝑇

+
𝑐𝐼
𝑘
𝜆

2𝑇
[𝑇
2
+ (𝑡
1
− 𝑡
2
)
2

+ 2𝑇 (𝑡
1
− 𝑡
2
)]

−
𝑠𝐼
𝑒
𝜆

2𝑇
[(𝑡
1
− 𝑡
2
)
2

] +
𝜋𝜆𝑥𝜇

2
(
𝜆𝑇

𝑃
) ,

TC
2
(𝑇)

=
𝐴

2
+
ℎ

2
[𝜆(1 −

𝜆

𝑃
)]𝑇

−
𝑠𝐼
𝑒
𝜆

2𝑇
[𝜆𝑇
2
+ 2𝜆𝑇 (𝑡

1
− 𝑡
2
− 𝑇)]

+
𝜋𝜆𝑥𝜇

2
(
𝜆𝑇

𝑃
) ,

TC
3
(𝑇)

=
𝐴

2
+
ℎ

2
[𝜆(1 −

𝜆

𝑃
)]𝑇 +

𝑐𝐼
𝑘

𝑇
[𝜆 (𝑡
1
− 𝑡
2
) 𝑇 +

𝜆𝑇
2

2
]

+
𝜋𝜆𝑥𝜇

2
(
𝜆𝑇

𝑃
) .

(11)

5. Optimal Solutions

Here, two situations, namely, (a) risk neutral and (b) risk
averse are considered. To minimize the annual total cost
TC(𝑇), the following cases are considered.

5.1. Risk-Neutral Situation

Case 1 (when 𝑇 ≤ 𝑡
1
≤ 𝑇 + 𝑡

2
). The first-order and second-

order derivatives of TC
1
(𝑇) are as follows:

𝑑TC
1
(𝑇)

𝑑𝑇

=
−1

2𝑇
2
[2𝐴 − 𝑐𝐼

𝑘
𝜆 [𝑇
2
− (𝑡
1
− 𝑡
2
)
2

] + 𝑠𝐼
𝑒
𝜆(𝑡
1
− 𝑡
2
)
2

]

+
ℎ

2
𝜆(1 −

𝜆

𝑃
) +

𝜋𝜆𝑥𝜇

2
(
𝜆

𝑃
)

𝑑
2TC
1
(𝑇)

𝑑𝑇
2

=
2𝐴

𝑇
3
− (𝑠𝐼
𝑒
− 𝑐𝐼
𝑘
) 𝜆
(𝑡
1
− 𝑡
2
)
2

𝑇
3

.

(12)

If [2𝐴 − (𝑠𝐼
𝑒
− 𝑐𝐼
𝑘
)𝜆(𝑡
1
− 𝑡
2
)
2
] > 0, then TC

1
(𝑇) is a convex

function of 𝑇; therefore, there exists an optimal cycle time

𝑇
∗

1
whichminimizes TC

1
(𝑇). Solving (𝑑TC

1
(𝑇)/𝑑𝑇) = 0, the

optimal replenishment cycle time is

𝑇
∗

1
= √

[2𝐴 − (𝑠𝐼
𝑒
− 𝑐𝐼
𝑘
) 𝜆(𝑡
1
− 𝑡
2
)
2

]

𝜆 [ℎ (1 − (𝜆/𝑃)) + 𝑐𝐼
𝑘
+ 𝜋𝑥𝜇 (𝜆/𝑃)]

. (13)

To ensure the condition that (𝑡
1
− 𝑡
2
) ≤ 𝑇, it is observed that

𝑇
∗
= 𝑇
∗

1
if and only if 2𝐴 ≥ 𝜆(𝑡

1
− 𝑡
2
)
2

× [ℎ(1 −
𝜆

𝑃
) + 𝑠𝐼

𝑒
+ 𝜋𝑥𝜇(

𝜆

𝑃
)] .

(14)

Case 2 (when 𝑇 ≤ 𝑇 + 𝑡
1
≤ 𝑡
2
). The first-order and second-

order derivatives of TC
2
(𝑇) are as follows:

𝑑TC
2
(𝑇)

𝑑𝑇
=
−𝐴

𝑇
2
+
ℎ

2
𝜆(1 −

𝜆

𝑃
) +

𝑠𝐼
𝑒
𝜆

2
+
𝜋𝜆𝑥𝜇

2
(
𝜆

𝑃
) ,

𝑑
2TC
2
(𝑇)

𝑑𝑇
2

=
2𝐴

𝑇
3
> 0.

(15)

Observing that the second derivative TC
2
(𝑇) is a convex

function of 𝑇, therefore there exists an optimal cycle time 𝑇∗
2

which minimizes TC
2
(𝑇). Solving (𝑑TC

2
(𝑇)/𝑑𝑇) = 0, the

optimal replenishment cycle time is

𝑇
∗

2
= √

2𝐴

𝜆 [ℎ (1 − (𝜆/𝑃)) + 𝑠𝐼
𝑒
+ 𝜋𝑥𝜇 (𝜆/𝑃)]

. (16)

Ensuring the condition that (𝑡
1
− 𝑡
2
) ≥ 𝑇, it is observed that

𝑇
∗
= 𝑇
∗

2
if and only if 2𝐴 ≤ 𝜆(𝑡

1
− 𝑡
2
)
2

× [ℎ(1 −
𝜆

𝑃
) + 𝑠𝐼

𝑒
+ 𝜋𝑥𝜇(

𝜆

𝑃
)] .

(17)

Case 3 (when 𝑡
1
≤ 𝑡
2
). The first-order and second-order

derivatives of TC
3
(𝑇) are as follows:

𝑑TC
3
(𝑇)

𝑑𝑇
=
−𝐴

𝑇
2
+
ℎ

2
𝜆(1 −

𝜆

𝑃
) +

𝑐𝐼
𝑘
𝜆

2
+
𝜋𝜆𝑥𝜇

2
(
𝜆

𝑃
) ,

𝑑
2TC
3
(𝑇)

𝑑𝑇
2

=
2𝐴

𝑇
3
> 0.

(18)

Observing that the second derivative TC
3
(𝑇) is a convex

function of 𝑇, therefore there exists an optimal cycle time 𝑇∗
3

which minimizes TC
3
(𝑇). Solving (𝑑TC

3
(𝑇)/𝑑𝑇) = 0, the

optimal replenishment cycle time is

𝑇
∗

3
= √

2𝐴

𝜆 [ℎ (1 − (𝜆/𝑃)) + 𝑐𝐼
𝑘
+ 𝜋𝑥𝜇 (𝜆/𝑃)]

. (19)

From the previous discussions, the following theorem is
obtained.
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Theorem 1. (1)When 𝑡
1
≥ 𝑡
2
, one has the following.

(a) If 2𝐴 ≥ 𝜆(𝑡
1
−𝑡
2
)
2
[ℎ(1−(𝜆/𝑃))+𝑠𝐼

𝑒
+𝜋𝑥𝜇(𝜆/𝑃)] then

there exists an optimal replenishment cycle time 𝑇∗
1
as

in (13).
(b) If 2𝐴 ≤ 𝜆(𝑡

1
−𝑡
2
)
2
[ℎ(1−(𝜆/𝑃))+𝑠𝐼

𝑒
+𝜋𝑥𝜇(𝜆/𝑃)] then

there exists an optimal replenishment cycle time 𝑇∗
2
as

in (16)

(2) When 𝑡
1
≥ 𝑡
2
, there exists an optimal replenishment

cycle time 𝑇∗
3
as in (19).

5.2. Risk-Averse Solution. In this section, a solution proce-
dure is given to find optimal replenishment policy by limiting
the expected number of defective items (up to 𝐷max) due
to supply disruptions in transport. Now, the optimization
problem is

TC (𝑇) =
{{

{{

{

TC
1
(𝑇) if 𝑇 ≤ 𝑡

1
≤ 𝑇 + 𝑡

2
,

TC
2
(𝑇) if 𝑇 ≤ 𝑇 + 𝑡

1
≤ 𝑡
2
,

TC
3
(𝑇) if 𝑡

1
≤ 𝑡
2
,

(20)

subject to

𝐸 [𝛾] ≤ 𝐷max. (21)

Case 1 (when 𝑇 ≤ 𝑡
1
≤ 𝑇 + 𝑡

2
). Kuhn-Tucker conditions are

used to solve the constrained optimization as in (20). In this
case, the following are the Kuhn-Tucker conditions:

𝑑TC
1
(𝑇)

𝑑𝑇

− 𝜂
1

𝑑

𝑑𝑇
[𝐸 [𝛾] − 𝐷max] − 𝜂2

𝑑

𝑑𝑇
[(𝑡
1
− 𝑡
2
) − 𝑇] = 0,

𝐸 [𝛾] − 𝐷max ≤ 0,

[(𝑡
1
− 𝑡
2
) − 𝑇] ≤ 0,

𝜂
1
[𝐸 [𝛾] − 𝐷max] = 0,

𝜂
2
[(𝑡
1
− 𝑡
2
) − 𝑇] = 0,

𝜂
1
≥ 0, 𝜂

2
≥ 0.

(22)

If 𝑇∗
1
is the optimal replenishment cycle time, then there exist

values 𝜂∗
1
and 𝜂∗
2
such that 𝑇∗

1
, 𝜂
∗

1
, and 𝜂∗

2
satisfy the previous

conditions.

Case 2 (when 𝑇 ≤ 𝑇 + 𝑡
1
≤ 𝑡
2
). In this case, the following are

the Kuhn-Tucker conditions:
𝑑TC
2
(𝑇)

𝑑𝑇

− 𝜂
1

𝑑

𝑑𝑇
[𝐸 [𝛾] − 𝐷max] − 𝜂2

𝑑

𝑑𝑇
[(𝑇 − 𝑡

2
) + 𝑡
1
] = 0,

𝐸 [𝛾] − 𝐷max ≤ 0,

[(𝑇 − 𝑡
2
) + 𝑡
1
] ≤ 0,

𝜂
1
[𝐸 [𝛾] − 𝐷max] = 0,

𝜂
2
[(𝑇 − 𝑡

2
) + 𝑡
1
] = 0,

𝜂
1
≥ 0, 𝜂

2
≥ 0.

(23)

If 𝑇∗
2
is the optimal replenishment cycle time, then there exist

values 𝜂∗
1
and 𝜂∗
2
such that 𝑇∗

2
, 𝜂
∗

1
, and 𝜂∗

2
satisfy the previous

conditions.

Case 3 (when 𝑡
1
≤ 𝑡
2
). In this case, the following are the

Kuhn-Tucker conditions:
𝑑TC
3
(𝑇)

𝑑𝑇

− 𝜂
1

𝑑

𝑑𝑇
[𝐸 [𝛾] − 𝐷max] − 𝜂2

𝑑

𝑑𝑇
[𝑡
1
− 𝑡
2
] = 0,

𝐸 [𝛾] − 𝐷max ≤ 0,

[𝑡
1
− 𝑡
2
] ≤ 0,

𝜂
1
[𝐸 [𝛾] − 𝐷max] = 0,

𝜂
2
[𝑡
1
− 𝑡
2
] = 0,

𝜂
1
≥ 0, 𝜂

2
≥ 0.

(24)

If 𝑇∗
3
is the optimal replenishment cycle time, then there exist

values 𝜂∗
1
and 𝜂∗
2
such that 𝑇∗

3
, 𝜂
∗

1
, and 𝜂∗

2
satisfy the previous

conditions.

6. Numerical Example

In order to illustrate the model, we consider the following
examples.

Let 𝑃 = 1000, 𝜆 = 500, 𝐴 = 80, 𝑠 = 15, 𝑐 = 10, 𝜋 = 6,
𝑥 = 0.4, 𝜇 = 0.1, ℎ = 7, 𝐼

𝑘
= 0.1, 𝐼

𝑒
= 0.2, 𝑀 = 0.1, and

𝑁 = 0.06. For risk-neutral solution, applying Theorem 1, we
get 𝑇∗
2
= 0.1109, TC

2
(𝑇
∗

2
) = 112.65. The expected number of

defective items 𝐸[𝛾] = 2.91.
For the risk-averse solution, we limit the expected num-

ber of defective items at most 𝐷max = 1. Using the solution
procedure in Section 5.2, we obtain𝑇∗

2
= 0.2, TC

2
(𝑇
∗

2
) = 287.

The total cost in the risk-averse solution is greater than that
in the risk-neutral solution. It is because that the retailer will
increase the cost to reduce the product’s defectiveness which
is bound to be within the upper limit 𝐷max. If the number
of defective items 𝐷max = 2, the total cost in the risk-averse
solution is 296.2; if the number of defective items = 3, the
total cost in the risk-averse case is 58.98. This means that
when the number of defective products is larger than 3, the
risk-averse solution gives total cost lesser than that in the
risk-neutral solution. On the contrary, when the number of
defective items is less than or equal to 2, the risk-neutral
solution is better than the risk-averse solution. In the case
𝜆 = 1000, that is 100 units (1/10 of the demand) defect,
the total cost in risk-neutral solution is 98.83, whereas the
risk-averse solution is 26.41; this means that the risk-averse
solution can save 98.83 − 26.41 = 62.42 dollars. Therefore
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this method is useful for the case of low-probability high-
consequence contingency event.

The previous examples illustrate that when the number
of defective items is limited to 2, the risk-neutral solution is
better than the risk-averse solution; if number of defective
items is greater than or equal to 3, then the risk-averse
solution is better than the risk-neutral one.

7. Conclusions and Future Research

The illustrated model is very useful for low-probability high-
consequence contingency event. In this paper, an EPQ-based
model in which retailer offers trade credit to his customer
and fixes the bound for defectiveness due to contingency such
as shipping damages, misplacing products, earthquake, and
hurricane is developed. Theorem 1 has been established to
determine optimal solutions under various conditions. Two
solution procedures are discussed for both risk-neutral and
risk-averse cases. Finally numerical examples have been given
to illustrate theoretical results, and the sensitivity analysis of
key model parameters has been examined.

For the future research, this paper can be extended by
considering perishable items or seasonal products.
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