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Kernel-based neural network (KNN) is proposed as a neuron that is applicable in online learning with adaptive parameters. This
neuron with adaptive kernel parameter can classify data accurately instead of using a multilayer error backpropagation neural
network. The proposed method, whose heart is kernel least-mean-square, can reduce memory requirement with sparsification
technique, and the kernel can adaptively spread. Our experiments will reveal that this method is much faster and more accurate

than previous online learning algorithms.

1. Introduction

Adaptive filter is the heart of most neural networks [1]. LMS
method and its kernel-based methods are potential online
methods with iterative learning that are used for reducing
mean squared error toward optimum Wiener weights. Due
to simple implementation of LMS [1], this method became
one of the candidates for online kernel-based learning. The
kernel-based learning [2] utilizes Mercer kernels in order to
produce nonlinear versions of conventional linear methods.

After the introduction of the kernel, kernel least-mean-
square (KLMS) [3, 4] was proposed. KLMS algorithm tries
to solve LMS problems in reproducing kernel hilbert spaces
(RKHS) [3] using a stochastic gradient methodology. KNN
has such characteristics as kernel abilities and LMS features,
easy learning over variants of patterns, and traditional neu-
rons capabilities. The experimental results show that this
classifier has better performance than the other online kernel
methods, with suitable parameters.

Two main drawbacks of kernel-based methods are select-
ing proper value for kernel parameters and series expansions
whose size equals the number of training data, which make
them unsuitable for online applications.

This paper concentrates only on Gaussian kernel (for
similar reasons to those discussed in [5]), while KNN uses

other kernels too. In [6], the role of kernel width in the
smoothness of the performance surfaces. Determining the
kernel width of Gaussian kernel in kernel-based methods
is very important. Controlling kernel width can help us to
control the learning rate and the tradeoff between overfitting
and underfitting.

Use of cross-validation is one of the simplest methods to
tune this parameter which is costly and cannot be used for
datasets with too many classes. So, the parameters are chosen
using a subset of data with a low number of classes in [7].
In some methods, genetic algorithm [8] or grid search [5]
is used to determine the proper value of such parameters.
However, in all the mentioned methods, the kernel width is
chosen as a preprocess which is against the principle of online
learning methods. In addition, it has time overhead problem.
Therefore, we follow methodologies that are consistent with
online applications. In other works, the kernel width is
scaled in a distribution-dependent way for SVM methods [9],
kernel Polarization is used as a kernel optimality criterion
independent of the learning machine [10], and in [11] a data-
dependent kernel optimization algorithm is employed whcih
maximizes the class separability in the empirical feature
space. The computational complexity of these methods is
quadratic with respect to the number of selected training
data. Lately, an adaptive kernel width method to optimize
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TaBLE 1: Notations.

Description Examples
Scalers Small italic letters W o, PN
Vectors Small bold letters w,X, e a
Matrixes Capital bold letters X, G, O
Time or iteration Indices in parentheses wi(t), k(t)
Components of vector Subscript indices w;(t)

FIGURE 1: Structure of neural network KLMS.

minimum error entropy (MEE) criterion that has a linear
complexity with respect to the length of the window used for
computing the density estimate is proposed [12].

We proposed an adaptive kernel width learning in KNN
method to maintain the online nature of it without any pre-
process and reach convergence. We use the gradient property
of KNN in order to estimate the best kernel width value
during the process. Therefore, KNN method with adaptive
Kernel width remains online and improves its accuracy as
compared to the versions with fixed kernel width.

In other sides, it is needed to decrease computational
complexity of kernel-based method to be useful in online
application. Usually, used pruning [13-15] or fixed size mod-
els [13, 14, 16-18] in batching methods and truncation [17, 18]
in online methods. We focus on online model reduction.
KRLS and KLMS algorithms proposed some sparsification
techniques based on ALD criterion [19, 20], by checking
the linear dependency of the input feature vectors, which
have a quadratic complexity. A sliding-window kernel RLS
algorithm consists in only taking the last L pairs of arrived
data, but it is a local method [21]. In [22, 23], proposed
an online coherence based sparsification method on kernel-
based affine projection (KAP) and KLMS that has only
linear complexity. Coherence parameter is a fundamental
quantity that characterizes the behavior of dictionaries in
sparse approximation problems. In this paper, we combine
the coherence criterion with proposed AKNN to control
growth number of instances.

This paper is organized as follows. In Section 2, KLMS
and KNN are introduced. Section 3 discusses adapting kernel
parameter and sparsing instances in KNN. In Section 4,
experiments illustrate the effectiveness of our approach com-
pared to other existing methods. Finally, Section 5 sum-
marizes the conclusions and points out avenues for further
research.

Selected 270 samples from 270 training data (100.000%)
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FIGURE 2: Spiral dataset by 800 instances.
2. Background

In this section, a short review of LMS and KLMS algorithms
is presented. We introduce notations in Table 1 for better
understanding of the formulation.

2.1. LMS Algorithm. 'The main purpose of the LMS algorithm
is to find a proper weight vector, which can reduce the MSE
of the system output based on a set of examples (x;,d;).
Therefore, LMS cost function is

t
J = min'(d; - w)’ = mind - Xw]’. 0
i=1

The LMS algorithm approximates weight vector w using
gradient method [1]:

wt+)=w(t)-nV, () =wt) +nex, ()

where 7 is the stepsize parameter. LMS algorithm is a famous
linear filter because it has easy implementation and low
computation.

2.2. KLMS Algorithm. The LMS algorithm can learn linear
patterns very well but it is poor in learning nonlinear patterns.
To overcome this problem, Puskal derived LMS algorithm
directly in the kernel feature space [3, 4]. Kernel methods map
the input data into a high dimensional space (HDS) [24]. The
mapping procedure (®) helps to compute nonlinear prob-
lems using linear algorithms. After that, Mercer’s theorem
provides a kernel function to compute inner product of data
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FIGURE 4: Evolution curves of the o changes in AKNN method for different (a) 0 = 0.001, (b) 0 = 1.
from HDS directly in the input space that is called the kernel =~ By exploiting the kernel trick, output is given by
trick:
t-1
n _ ' T
k (x,x ) = <(p (%), (x )> . (3) Y = rIZeik (x5x,) =ne(t —1)°k, (6)

The basic idea of the KLMS algorithm is to perform the linear
LMS algorithm on {(¢(x,),d,), ..., (¢(x,),d,)} in the feature
space. So, KLMS cost function is given by

(4)

where @ and w are matrixes of input vectors and weight vec-
tors in feature space (RKHS), respectively. For convenience
assuming that w(0) = 0, therefore

J= m“}n"d - <l)w||2,

t—1
wt)=w®) +1%, () =1 ep(x). )
i=0

i=0
where k = [k(x,X,),...,k(X,_;,x,)]". Good prediction
ability in nonlinear channels is an advantage of the KLMS
algorithm, but the complexity of this method for each input is
O(n), and n is the number of training data, which is a problem
especially in online application.

3. Kernel-Based Neural Network

This section includes five parts for better presentation of the
proposed kernel-based neural network. First, KLMS based
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Initialization:

learning step #

learning kernel width step y

primal kernel width o

sparsity threshold

t=1;

While {x(t), d(t)} available do
for I instances do

dis, = 1%, - [’

% save 0,4 for o tracking

apred = an[Upred, an(diS)]
% update kernel width &

if o became negative then

% update kernel width o again.
end if
if (max(k(t - 1) < )

else

end if
t=t+1
end for
if (mse; > §)

else if (|mse,_, — mse| < ¢)
% exit training process

end if

end while

% compute distances of dictionary instances to tth instance
% compute kernel vector, output and error for tth instance

k = exp(~dis"/0?), y, = f(na'k),e, = d, -y, O(m,_;)
% compute coefficient &, using (19)

o(t) = ot — 1) + ya,&" ((dis/o”) - k)

% decrease y until o becomes non-negative

% add x, to dictionary and update & using (23);

% update Coefficients & using (24);

% manipulated step size y using (20)

O(mt_l)

O(m,_,)

ALGORITHM 1: The adaptive KNN algorithm (AKNN,). Complexity for each instance.

neuron is explained; then kernel adaptation and stepsize of
adaptation and termination condition are discussed, and final
subsection includes the sparsification.

3.1. The KLMS Neural Network (KNN). The KLMS neural
network (KNN) performs the classification task by adding a
nonlinear logistic function to KLMS structure; Figure 1 illus-
trates the structure of KNN.

Similar to the KLMS algorithm, we perform a gradient
search in order to find the optimum weight. If y, =

f ((p(xt)Tw) is tth output and w(0) = 0, then
S T
wit)=nyef (px) wit-D)ox). O
i=0
By using kernel trick, y, is given as follows:

Ve=f <772“ik (xf,xt)> =f(nat-1'k), (8

i=0

wherea, = ¢, f ! (na(t— l)Tk). Therefore, KNN can determine
the classifier output by calculating coefficients « in learning
state and input vectors.

According, what was said, finding a proper kernel play
an important role in kernel-based learning. The best kernel
function for learning each dataset is different. One solution
for improving kernel function is finding the best kernel
parameters. We try to determine the best kernel width o
in KNN (assuming a Gaussian kernel). Whereas KNN is an
online learning method, we need an iterative method to
find appropriate o instead of methods by high complexity
or methods that find it by preprocessing on data. A good
suggestion is to select a random value for o at the beginning of
the training step and update it until convergence is obtained.

3.2. Adaptation of Kernel Width. The goal of LMS family’s
methods is to reduce mean square error, and this aim will
be achieved by using gradient search. It can be proved that
the KNN, such as KLMS algorithm, converges when there
are infinite numbers of samples. If kernel space structure and
cost function were derivable, then gradient methods can be
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FIGURE 5: Classification result of KNN method for different values of o.
used for finding kernel’s parameters. Due to the derivability ~ where y' is stepsize and
of Gaussian kernel function and MSE cost function, gradient
search method can be used for updating kernel weight to 5
reach the least mean square error. If the proposed modified v, (ef) = 2e, < 9y, > _ 2e, (_f ou > )
KNN cost function is defined as do(t) Ou 0o (t)
2 T t-1 12)
]t ((X, 0') =€, €= dt - f(;'](x k) (9) where u = i Z (xl.k (Xi’xt)g'
i=0
and the kernel formulation is
—lx - z|? At first, 0k/0o can be solved that depends on o:
ka (x, Z) = exp T > (10)
. . . . ok x - z|? ~[lx - z|I*
then there is an error function which depends on weight Q — =2 | | exp | " (13)
. . ) 2. oo a3 o2
and kernel weight 0. Using gradient of e; with respect to o,
the least mean square error is achieved: 1 2
ou__ Ix x|
’ , = 5000 ’12“:‘ e k(x;,x,). (14)
ot+1)=0(t)-y'V,y(e), (1) i o)
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Gaussian kernel projection in the empirical feature space
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FIGURE 6: Two-dimensional projection in empirical feature space for different initial values of o.

By substituting (14) in (12), error gradient is given by:

> R e
V(&) = —nef ) Y 5 2wk (x.x,). (15)
iz o)
As a result, by substituting error gradient in (11) and using
«, = e, f'(u), o is updated by

x|

o(t+1)=0(t) - yatz s

ak(x,x),  (16)

where y = y'# is the stepsize that controls the convergence
and speed of the kernel weight process. Choosing proper
value for y is a main challenge that some of its problems are

explained in Section 3.2. The AKNN output can be calculated
with coefficients &, kernel width o, achieved from training
state, and input vectors X as follows:

Vo= f (ﬂiaika (xi,xn)>, 17)

i=0

where f(-) is a sigmoid function that covers all ranges of data
(—00 < u < +00) and is bounded between 0 and 1. This
function is derivable, which is important for using gradient
method, and its derivative can be achieved from sigmoid
function, but you can use other suitable functions. Sigmoid
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function and its derivatives are equal to

1
flw) = m,

. a8)
£y =L B (1- fw).

1+efu

According to (18), we can reformulate &, for the next sample
as below that decrease training time:

& = etf,(”) = ey, (1 - Yt)' 19)

Algorithm 1 describes the proposed adaptive KNN method
that has a unique solution the same as KLMS algorithm.

3.3. Modulation of Stepsize y. There are some problems with
choosing a fixed y that we intend to solve them with a simple
way without adding a new procedure. Some of these solutions
are as follows:

(a) Preventing Negation of Kernel Width o. By choosing large
y,large jumps occurs which sometimes lead to o passing from
positive range to negative range. In order to prevent negation
of 0, new o value is checked in each time step. If o is negative,
y has been decreased until o stays in positive range.

(b) Tracking Kernel Width 0. When current o is far from real
o(o,) and y is too small, adaptation procedure cannot reach
o, very well. Or when ¢ is nearby o,, occasionally o will be
far from o, under a too large y.

We can track o value change by controlling stepsize y. But
when does this problem happen? Assuming that § is a danger
threshold, we expect that the error learning does not exceed
this threshold and MSE; is mean square error for [ instances;
it MSE; > &, then we can change y according to distance of
current o from o,:

y = |0pred - a|, (20)
where 0,4 is a prediction of o,.. It means that MSE is too large
when y is too small to change quickly o by (16). So, when o is
far from o,, y will increase to o reaching to o, quickly, or when
o is nearby o,, y will decrease for convergence. A simple way

for expecting 0,,,.q is using the average distance of I passed
instances:

I m
Oprea = 2 ) [% =% (2)

i=1 j=1

According to (10), Gaussian kernel has a good resolution
when 0.1 < |x — z||/o* < 10. Therefore, this average could
give me an approximation of o,.

3.4. Termination Condition. When MSE is an acceptable
range (MSE, < §) and its change is not noticeable (I[MSE,_; —
MSE| < ¢), the procedure can be terminated.

TABLE 2: Datasets used in the experiments.

Dataset No. of instances No. of features
Small
Sonar 208 60
Tonosphere 351 34
Pima 768 8
Medium
German 1,000 24
Splice 1,000 60
Cloud 2048 10
Large
Football 4288 13
Spambase 4601 58
MITFace 6,977 361
Mushrooms 8,124 112

3.5. Adaptive Sparsification in KNN. Growing network with
arriving training inputs is the other drawback of kernel-
based online learning algorithms. In this section, we use a
proper criterion to cope with this problem and to produce
sparse approximation of functions based on RKHS [22, 23].
As we show, this sparsification approach yields an efficient
algorithm that has a linear complexity with respect to the
number of dictionary elements. We incorporate the coher-
ence criterion into the new AKNN method to increase the
number of variables controlled by the coherence parameter
(Ho)-

In online coherence-based sparsification algorithm using
coherence criterion, whenever a new data pair (¢(x,),d,)
are arrives, a decision is made of whether the new data add
to the dictionary Xmm = {%j}T:’Il. Ifk = [k(X,x),...,
k()?mH, xt)]T is kernel vector for tth instance, the coherence
rule has two modes [23].

(a) If maszlmm|k| > Uy. The new instance is not added
to X,, because ¢(%,) can be reasonably well represented by
the kernel functions of the dictionary elements. We suggest
a gradient approach for applying effects of removed instance

error on dictionary elements coefficients to minimize e?:

de’ of ou ou ;=
—t =2e (L =)=2E|=)=#+ak 22
& q(@u@&) f(aa) % (22

So, recursive update equation for E is obtained by
at)y=at-1)+qK_ e, (23)

where 1§’ = 5/m,_, is the stepsize with forgetting factor capa-
bility.

(b) If max;_;..,,, k| < yo. The new instance is added to X,,,
and & vector is updated by
&(t) = ["‘ (to_ 1)] +1 [Ki—l] a,. (24)

Adaptive kernel width and sparsity techniques in KNN
method (AKNNM) which is described in Algorithm 1, are
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TABLE 3: Evaluation of online learning algorithms with sparsing ability on the large datasets.

Algorithm Football Spambase

Density (%) Training time (s) Training mistake (%) Test mistake (%) Density (%) Training time (s) Training mistake (%) Test mistake (%)
Perceptron  21.493 6.002 21.493 41.043 25.325 8.179 25.325 40.881
ROMMA 45.605 12.550 20.282 40.905 46.360 15.474 23.403 39.708
ALMA 23.807 6.646 20430 40.416 28.203 9.440 23306 39.361
PA 49.531 13.864 20.256 40.694 54.262 17.776 23.757 38.731
DOUL 45.457 19.883 21.775 40.041 49.744 27720 23.422 39.382
AKNNV 6.626 0.699 5.631 17.840 23.627 4.619 23.174 17.648
Algorithm MITFace Mushrooms

Density (%) Training time (s) Training mistake (%) Test mistake (%) Density (%) Training time (s) Training mistake (%) Test mistake (%)
Perceptron  20.764 15.333 20764 50.366 41.085 40.077 41.085 47587
ROMMA 32.428 24.932 19.347 50.724 61.679 60.266 41.437 49.569
ALMA 21138 15.822 18.888 50.365 43.330 42153 40.501 45.335
PA 43.635 32.526 19.828 48.674 62.218 61.115 41.234 47.378
DOUL 39.419 49,529 19.279 50.193 63.467 192.678 41.075 47,082
AKNNM 37.366 9.903 7.420 16.038 0.480 0.442 9.992 39.931

*Bold number shows the algorithm with best efficiency measurement in each dataset.

produced from combination of this online sparsification
strategy with AKNN methods. This algorithm has high
accuracy because errors of removed instances are committed
in learning process, and it is capable of online application.
Algorithm 1 shows that its complexity for each instance is
O(m), if m is the number of dictionaries.

4. Experiments and Results

Two experiments have been designed. In the first experiment
effects of kernel width parameter on performance of the
proposed KNN method with adaptive kernel width and the
KNN method with fixed kernel width were demonstrated.
In the second experiment, simulations on some classification
problems to compare performance of the proposed method
with other online classification methods were conducted.

4.1. Evaluation Effect of Parameter o on the Fixed and
Adaptive KNN Methods. This experiment is an example that
visualizes effect of choosing initial o on learning error. It
was performed on an artificial two-dimensional (2D) dataset
with 720 samples (Figure 2), whose design is complex. A
comparison was carried out between the performance of the
adaptive kernel width KNN method and the fixed kernel
width KNN approach in the same conditions. The plot of
Figure 3 depicts the average square error rate in both methods
for small (Figure 3(a)) and large o (Figure 3(b)). The changing
process of ¢ in each time step of online learning algorithm
in AKNN is plotted in Figure 4(a) (for small o) and in
Figure 4(b) (for large o).

The empirical feature space preserves the geometrical
structure of @ in the feature space [11, 26]. Figure 5 gives

the 2D projection of the training data (90% of data) in the
empirical feature space when the Gaussian kernel function
with different o is employed. It is based on only the 2D
projection of the embedding that means the first two largest
eigenvalues of kernel Gram matrix. Classification results of
testing data (10% of data) for three o values are presented in
Figure 6 that shows misclassified data by circles.

Figure 3 demonstrates the effects of initial o change on
the MSE changing process for both methods. We observe
that AKNN achieves significantly smaller MSE than the
KNN algorithm in both cases. This shows that the proposed
AKNN approach is effective for different initial o values and
can reach appropriate o value (from Figure 4). Achieved ¢
from AKNN approach for spiral dataset is about 0.14. In
addition, effect of o on result classification is shown clearly
in Figure 6. It means that KNN too has misclassified data for
inappropriate o and least misclassified data for the best o that
the achieved from proposed method.

Figure 5 gets some intuitive feeling about the position of
data into the empirical feature space. From Figure 5(b), it
is seen that the embedded data are too dense in empirical
feature space and they cannot explain class separability. In
Figure 5(c) with large o, the embedded data are not dense, but
they have complex structure yet that cannot be separated by
linear hyper plans. Opposed to the two mentioned cases, the
embedded data have a good resolution and a linear structure
that can be separated by linear hyper plans.

4.2. Performance Comparison of AKNN with Online Learning
Methods. The experiments have been carried out to evaluate
the performance of the proposed method in comparison
with a number of online classification methods. They include
the kernel perception algorithm [25], the aggressive version
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TABLE 4: Evaluation of online learning algorithms on the small and medium datasets.

Algorithm Sonar Tonosphere

Density (%) Training time (s) Training mistake (%) Test mistake (%) Density (%) Training time (s) Training mistake (%) Test mistake (%)
Perceptron  35.722 0.031 35.722 39.952 15.886 0.038 20.675 48117
ROMMA 69.946 0.066 33.048 39.405 68.829 0.084 22.829 42.260
ALMA 42.139 0.042 33.961 34.643 45.949 0.057 23.601 46.907
PA 77112 0.069 33.636 37.571 67.785 0.094 18.714 45.470
DOUL 71.551 0.078 31.818 39.428 68.449 0.114 24.727 48.126
KNN 98.716 0.056 27.166 26.857 99.968 0.139 27.331 39.395
AKNN 100 0.059 28.343 25.357 95.032 0.132 32.894 39.361
AKNN, 20.267 0.038 25.561 24.024 38.418 0.077 45.338 38.269
Algorithm Pima German

Density (%) Training time (s) Training mistake (%) Test mistake (%) Density (%) Training time (s) Training mistake (%) Test mistake (%)
Perceptron  30.679 0313 30.679 45.955 40.289 0.637 40.289 35.0
ROMMA 51.185 0.527 30.824 45.957 99.922 1.574 34.555 33.7
ALMA 32.442 0345 29.003 43.481 99.722 1.574 34.600 34.4
PA 61.257 0.609 29.176 44.400 99.911 1.578 34.544 333
DOUL 55.390 0.635 31.228 49.086 99.911 2.539 34.544 314
KNN 97.471 0.489 25.462 23.689 100 0.824 45.022 39.6
AKNN 94.957 0.494 25.144 24735 100 0.876 31733 29.7
AKNN[4 26.084 0.237 28.367 25.916 3.422 0.169 30.189 29.9
Algorithm Splice Cloud

Density (%) Training time (s) Training mistake (%) Test mistake (%) Density (%) Training time (s) Training mistake (%) Test mistake (%)
Perceptron  46.033 0715 146.033 493 0.222 0.048 0222 25.243
ROMMA 99.611 1.538 43.389 46.4 14.248 1191 0.108 25.441
ALMA 95.933 1.479 44.022 43.9 0.494 0.101 0.125 24.661
PA 98.455 1507 43378 455 3.076 0.332 0.108 25.292
DOUL 98.455 2.305 43.378 45.6 3.076 0.339 0.108 23.536
KNN 36.000 0.176 13.967 424 44.927 0.697 0.054 0
AKNN 92.000 0.765 39.289 41.7 44.927 0.737 0.108 0
AKNN, 81188 0.694 40.155 415 0.488 0.144 0.103 0

*Bold number shows the algorithm with the best efficiency measurement in each dataset.

of ROMMA [27], the ALMAP(oc) algorithm [28], and the
passive-aggressive algorithms (PA) [29]. We test all the
algorithms on ten real datasets which are listed in Table 2 and
can be downloaded from LIBSVM, UCI, and MIT CBCL face
websites.

To make a fair comparison, all algorithms adopt the same
experimental setup. For all algorithms in comparison, we set
the penalty parameter C = 5 and train all datasets with the
Gaussian kernel with ¢ = 8. For the ALMAP((x) algorithm,
parameters p and « are set to 2 and 0.9, respectively. We fix
sparsity threshold to be 0.7 (p in DUOL algorithm and y in
AKNN,).

We scale all training and testing data to be in [0, 1]. Then
we use a 10-fold cross-validation to estimate the efficiency

measurements the same as mistake rate, density rate, and
running time. The mistake rate evaluates the online learning
performance that is the percentage of instances that are
misclassified by the learning algorithm. We measure the
sparsity of the learned classifiers by the density rate that is the
percentage of remained instances (or support vectors in some
of the methods). The running time evaluates computational
efficiencies of all the algorithms. All the experiments are run
in MATLAB over a windows machine.

Table 3 presents the result of comparing eight online
learning algorithms over the large datasets. And Table 4
summarizes the performance of six compared online learning
algorithms over the small and medium datasets. KNN and
AKNN methods are not in Table 3 because they do not
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have sparsification technique. The online learning efficiency
measurements are presented in both tables.

According to the experimental results shown in Tables 3
and 4, we can see that

(i) although there is little difference in the training mis-
take rate among all methods, the proposed method
has the best training mistake rate especially for large
datasets;

(ii) the proposed method achieves significantly smaller
testing mistake rates than the other online approaches
except in pima dataset;

(iii) it can be seen that the perceptron, ALMA, and
AKNN,, methods return more density rate than other
approaches especially for large datasets. That means
they need to keep fewer training data. Therefore,
we can say that these methods are faster than other
approaches because in general the training time is
proportional to the size of dictionary.

So, we can say that among all online learning, the AKNN
method yields the least mistake rate with the smallest density
rate and running time for most of the cases. It happens
because AKNN, method is able to find a proper kernel
function by finding the best kernel parameters and it keep
the least and the best possible instances that are selected by
online sparsification method.

5. Conclusion and Future Works

The goal of the present paper was to present a novel
adaptive kernel least-mean-square neural network method.
This method (AKNN) has an adaptive kernel width and
sparsification processes simultaneously. We briefly touched
history of learning algorithms based on LS. Then, we pro-
posed an adaptive kernel that iteratively decreases least mean
square error in form (4) to select proper kernel width
for Gaussian kernel. For improving the method in online
application, we have used a sparsification methodology for
controlling the model order increasing that its computational
complexity is only linear in the dictionary size. By use
of the acquired p-coherence dictionary from the training
samples, the algorithm needs less computational cost and
memory requirement compared with conventional KNN. The
conducted experiments show that varying o did not affect
the proposed algorithm. Experiments results also prove that
the given algorithm has faster learning rate than conven-
tional KNN algorithm and better classification performance
than other online classification methods. However, selecting
proper values for other parameters is still a challenge.

Our future works deal with the following questions: can
we use a more efficient function as the sigmoid function in the
KNN neuron? Can we adapt other kernel functions to use in
neuron KNN? How to improve the performance of AKNN on
imbalanced data and noisy data?

ISRN Signal Processing
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