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Mathematical models, such as sets of equations, are used in engineering to represent and analyze the behaviour of physical systems.
The conventional notations in formulating engineering models do not clearly provide all the details required in order to fully
understand the equations, and, thus, artifacts such as ontologies, which are the building blocks of knowledge representationmodels,
are used to fulfil this gap. Since ontologies are the outcome of an intersubjective agreement among a group of individuals about
the same fragment of the objective world, their development and use are questions in debate with regard to their competencies
and limitations to univocally conceptualize a domain of interest. This is related to the following question: “What is the criterion
for delimiting the specification of the main identifiable entities in order to consistently build the conceptual framework of the
domain in question?” This query motivates us to view the Yoneda philosophy as a fundamental concern of understanding the
conceptualization phase of each ontology engineering methodology. In this way, we exploit the link between the notion of formal
concepts of formal concept analysis and a concluding remark resulting from the Yoneda embedding lemma of category theory in
order to establish a formal process.

1. Introduction

In the computer science context, the terms ontology and
concept are defined in many various ways, and sometimes
their use is a confused mixture of both terms. On the one
hand, an ontology is defined as a common conceptualization
of a general idea, or a domain of interest [1, 2], while, on
the other hand, a concept is defined as a general idea, which
is created by removing the uncommon characteristics from
several particular ideas [3].Thus, it is obvious that ontologies
use concepts to convey their semantics and concepts are
definitional structures that are explicitly encoded within
ontologies.

In practice, an ontology consists of classes that are
concepts of a particular domain, relations between classes,
a hierarchy of classes, properties of classes that describe
their attributes, instances of classes with specific values, and
axioms that specify additional constraints over classes. So, the
most crucial task of building an ontology is to consistently
express its classes, that is, the concepts of a particular domain.

An indispensable condition for formally expressing a concept
that should carry a meaning, besides its name that does not
carry any meaning, is to determine all its stakeholders, that
is, other terms interrelated with the concept in question,
properties attached to it, and specific values, directly or
indirectly, affecting its noema, since, in natural language, a
concept can be described by the objects belonging to it or by
its determining features [4].

In order to make the ontological status of concepts
apparent, independently of the language used to express
them and of the techniques used for embedding them within
ontologies, we have exploited the link between the notion
of formal concepts of formal concept analysis (FCA) and
a concluding remark resulting from the Yoneda embedding
lemma of category theory. This enables the formalization of
concepts by considering their semantics, since the notion of a
concept in computer science is very subtle and does not rely
on mathematical constructors. This step intends to eliminate
anymisunderstanding that occurs, due to ontological seman-
tic heterogeneity, arising from synonymy (i.e., ontological
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concepts for a domain described with different terminolo-
gies) and polysemy (i.e., different meanings assigned to the
same word in different contexts).

The basics and the role of formal concept analysis in
defining ontology concepts are discussed in Sections 2 and
4, respectively, while the basics and a discussion of related
work on category theory are presented in Sections 3 and
5, respectively. In Section 6, the main point of this work is
illustrated, by means of a simple example. In Section 7, other
possible meeting points of FCA and category theory, aiming
at direct research into the critical path of formalizing tasks
concerning ontology engineering and facilitating progress of
the field, are discussed. The conclusion is drawn in the last
section.

2. Formal Concept Analysis Background:
Formal Context, Formal Concept, and
Concept Lattice

This section introduces basic terms of formal concept anal-
ysis, among which are the fundamental notions of a formal
context, formal concept, and concept lattice, as well as their
basic properties.

Formal concept analysis (FCA), introduced by Wille [5],
is a method for analyzing data which describe relationships
between a set of objects and a set of attributes. From the input
data, FCA produces a concept lattice, which is a collection of
formal concepts in the data. Formal concepts are clusters of
data drawn together by having common attributes [6] rep-
resenting natural human-like concepts and are hierarchically
ordered by a subconcept-superconcept relation. FCA also
produces attribute implications which describe particular
dependencies valid in the data. It integrates the discovery and
reasoning with concepts in data, the discovery and reasoning
with dependencies in data and the visualization of data,
and concepts and dependencies with folding and unfolding
capabilities, which are referred to as the reconstruction of a
diagram of concepts and their dependencies, in order to be
more simplified, but as informative as the original one. For
more details see [7, 8].

In FCA, a cross-table with logical attributes is represented
by a triplet ⟨𝑋, 𝑌, 𝐼⟩ (a so-called context), where the elements
of the set 𝑋 are called objects and correspond to the rows of
the table, the elements of the set 𝑌 are called attributes and
correspond to the columns of the table, and 𝐼 is a binary
(incidence) relation between 𝑋 and 𝑌. ⟨𝑥, 𝑦⟩ ∈ 𝐼, or 𝑥𝐼𝑦
indicates that object 𝑥 has attribute 𝑦 or that 𝑦 holds for 𝑥,
while ⟨𝑥, 𝑦⟩ ∉ 𝐼 indicates that object𝑥 does not have attribute
𝑦. An example of such a table is shown in Table 1.

A partially ordered collection of particular clusters of
objects and attributes is obtained out of a given context cross-
table, and it is called a concept lattice.The clusters of a concept
lattice, called formal concepts, are pairs ⟨𝐴, 𝐵⟩, where 𝐴 ⊆ 𝑋

is a set of objects and 𝐵 ⊆ 𝑌 is a set of attributes, such that
𝐴 is the set of all objects which have all attributes from 𝐵

and 𝐵 is the set of all attributes which are common to all
objects from𝐴. For instance, ⟨{𝑥

1
, 𝑥
2
}, {𝑦
1
, 𝑦
2
}⟩ is an example

of a formal concept for the table of Table 1. Under suitable

Table 1: A table defining an incidence relation.

𝑦
1

𝑦
2

𝑦
3

𝑥
1

× × ×

𝑥
2

× ×

𝑥
3

× ×

permutations of the rows and the columns of the cross-table,
a formal concept ⟨𝐴, 𝐵⟩ is represented by amaximal rectangle
full of crosses.

Moreover, formulas describing dependencies which are
true in the table are obtained, which are called attribute
implications. An attribute implication is an expression 𝐴 ⇒

𝐵, with 𝐴 and 𝐵 being sets of attributes. 𝐴 ⇒ 𝐵 is true in
the context ⟨𝑋, 𝑌, 𝐼⟩ if each object having all attributes from
𝐴 has all attributes from 𝐵 as well. For instance, {𝑦

3
} ⇒ {𝑦

2
}

is true for the context of Table 1, while {𝑦
1
, 𝑦
2
} ⇒ {𝑦

3
} is not,

𝑥
2
being a counterexample.
In order to produce the formal concepts of a formal

context ⟨𝑋, 𝑌, 𝐼⟩, the so-called concept-forming operators are
used, defined between the powersets of𝑋 and 𝑌:

↑: 𝐴 ∈ 2
𝑋
󳨀→ 𝐵 ∈ 2

𝑌
: 𝐴
↑

= {𝑦 ∈ 𝑌/for each 𝑥 ∈ 𝐴 : ⟨𝑥, 𝑦⟩ ∈ 𝐼} ,

(1)

where 𝐴↑ is just the set of all attributes shared by all objects
of 𝐴 and

↓: 𝐵 ∈ 2
𝑌
󳨀→ 𝐴 ∈ 2

𝑋
: 𝐵
↓

= {𝑥 ∈ 𝑋/for each 𝑦 ∈ 𝐵 : ⟨𝑥, 𝑦⟩ ∈ 𝐼} ,
(2)

where𝐵↓ is just the set of all objects sharing all attributes from
𝐵.

A formal concept now in ⟨𝑋, 𝑌, 𝐼⟩ is just a pair ⟨𝐴, 𝐵⟩ of
𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑌, such that 𝐴↑ = 𝐵 and 𝐵↓ = 𝐴. 𝐴 is
called the extent and 𝐵 the intent of ⟨𝐴, 𝐵⟩, respectively. The
formal concepts are naturally ordered by using a subconcept-
superconcept relation, based on inclusion relation on objects
and attributes; that is, for formal concepts ⟨𝐴

1
, 𝐵
1
⟩ and

⟨𝐴
2
, 𝐵
2
⟩ of the context ⟨𝑋, 𝑌, 𝐼⟩, ⟨𝐴

1
, 𝐵
1
⟩ ≤ ⟨𝐴

2
, 𝐵
2
⟩ if and

only if 𝐴
1
⊆ 𝐴
2
(if and only if 𝐵

2
⊆ 𝐵
1
).

By using basic mathematical structures behind FCA,
it can be proven that the pair ⟨↑, ↓⟩ of concept-forming
operators induced by ⟨𝑋, 𝑌, 𝐼⟩ forms a Galois connection
between𝑋 and 𝑌, and the formal concepts ⟨𝐴, 𝐵⟩ are just the
fixed points of this Galois connection.

More precisely, given a pair of sets 𝑋 and 𝑌, a pair ⟨𝑓, 𝑔⟩
of operators, 𝑓 : 2

𝑋
→ 2
𝑌 and 𝑔 : 2

𝑋
→ 2
𝑌, is a Galois

connection if for 𝐴,𝐴
1
, 𝐴
2
⊆ 𝑋, 𝐵, 𝐵

1
, 𝐵
2
⊆ 𝑌 it satisfies the

following:

𝐴
1
⊆ 𝐴
2
󳨐⇒ 𝑓 (𝐴

2
) ⊆ 𝑓 (𝐴

1
) ,

𝐵
1
⊆ 𝐵
2
󳨐⇒ 𝑔 (𝐵

2
) ⊆ 𝑔 (𝐵

1
) ,

𝐴 ⊆ 𝑔 (𝑓 (𝐴)) ,

𝐵 ⊆ 𝑓 (𝑔 (𝐵)) .

(3)
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For a Galois connection ⟨𝑓, 𝑔⟩ between the sets𝑋 and 𝑌,
the fixpoint set of ⟨𝑓, 𝑔⟩ is defined as the set

fix (⟨𝑓, 𝑔⟩) = {⟨𝐴, 𝐵⟩ ∈ 2𝑋 × 2
𝑌

𝑓 (𝐴)
= 𝐵, 𝑔 (𝐵) = 𝐴} . (4)

Also, for a Galois connection ⟨𝑓, 𝑔⟩ between the sets 𝑋
and 𝑌, we have

𝑓 (𝐴) = 𝑓 (𝑔 (𝑓 (𝐴))) , 𝑔 (𝐵) = 𝑔 (𝑓 (𝑔 (𝐵))) . (5)

Now, given a set 𝑋, a mapping 𝐶 : 2
𝑋
→ 2
𝑋, such that,

for each 𝐴,𝐴
1
, 𝐴
2
⊆ 𝑋,

𝐴
1
⊆ 𝐶 (𝐴) ,

𝐴
1
⊆ 𝐴
2
󳨐⇒ 𝐶 (𝐴

1
) ⊆ 𝐶 (𝐴

2
) ,

𝐶 (𝐴) ⊆ 𝐶 (𝐶 (𝐴)) ,

(6)

is called a closure operator on𝑋 and its fixpoint set is given by

fix (𝐶) = {𝐴 ⊆
𝑋

𝐶 (𝐴)
= 𝐴} . (7)

In addition, for a Galois connection ⟨𝑓, 𝑔⟩ between the
sets𝑋 and𝑌, the composition𝐶

𝑋
: 𝑓∘𝑔 is the closure operator

on𝑋 and 𝐶
𝑌
: 𝑔 ∘ 𝑓 is the closure operator on 𝑌.

Finally, since the pair ⟨↑, ↓⟩ of concept-forming operators
induced by ⟨𝑋, 𝑌, 𝐼⟩ forms a Galois connection between 𝑋

and 𝑌, the compositions ↑↓ and ↓↑ of the concept-forming
operators are closure operators on𝑋 and 𝑌, respectively.

Another fundamental notion in FCA is that of the set of
all formal concepts of ⟨𝑋, 𝑌, 𝐼⟩, denoted byB (𝑋, 𝑌, 𝐼) the so-
called concept lattice, where

B (𝑋, 𝑌, 𝐼) = {⟨𝐴, 𝐵⟩ ∈ 2
𝑋
×
2
𝑌

𝐴↑
= 𝐵, 𝐵

↓
= 𝐴} . (8)

Then, the fixpoints of the composition operator ↑↓ give
the set of all extents of the formal concepts of ⟨𝑋, 𝑌, 𝐼⟩ that is,

Ext (𝑋, 𝑌, 𝐼) = {𝐴 ∈
2
𝑋

⟨𝐴, 𝐵⟩
∈ B (𝑋, 𝑌, 𝐼) for some 𝐵}

= fix (↑↓) ,

(9)

and the fixpoints of the composition operator ↓↑ give the set
of all intents of the formal concepts of ⟨𝑋, 𝑌, 𝐼⟩; that is,

Int (𝑋, 𝑌, 𝐼) = {𝐵 ∈ 2
𝑌

⟨𝐴, 𝐵⟩
∈ B (𝑋, 𝑌, 𝐼) for some 𝐴}

= fix (↓↑) .
(10)

The extents and intents are just the images under the
concept-forming operators:

Ext (𝑋, 𝑌, 𝐼) = {𝐵
↓

𝐵
⊆ 𝑌} ,

Int (𝑋, 𝑌, 𝐼) = {𝐴
↑

𝐴
⊆ 𝑋} .

(11)

Hence,

B (𝑋, 𝑌, 𝐼) = {
⟨𝐴,𝐴

↑
⟩

𝐴
∈ Ext (𝑋, 𝑌, 𝐼)} ,

= {
⟨𝐵
↓
, 𝐵⟩

𝐵
∈ Int (𝑋, 𝑌, 𝐼)} .

(12)

Now, a partial order ≤ can be defined onB(𝑋, 𝑌, 𝐼), since
for ⟨𝐴

1
, 𝐵
1
⟩, ⟨𝐴
2
, 𝐵
2
⟩ ∈ B(𝑋, 𝑌, 𝐼), 𝐴

1
⊆ 𝐴
2
if and only if

𝐵
2
⊆ 𝐵
1
. Thus, one puts ⟨𝐴

1
, 𝐵
1
⟩ ≤ ⟨𝐴

2
, 𝐵
2
⟩, meaning that

⟨𝐴
1
, 𝐵
1
⟩ is more specific than ⟨𝐴

2
, 𝐵
2
⟩ or, equivalently, that

⟨𝐴
2
, 𝐵
2
⟩ is more general than ⟨𝐴

1
, 𝐵
1
⟩. Then ⟨B(𝑋, 𝑌, 𝐼), ≤⟩

is a complete lattice, which means that, for any collection of
formal concepts 𝐾 ⊆ B(𝑋, 𝑌, 𝐼), B(𝑋, 𝑌, 𝐼) contains both
their direct generalization (the supremum of𝐾, noted as ∨𝐾)
and their direct specialization (the infimum of 𝐾, noted as
∧𝐾). The main theorem of concept lattices states that the
supremum and infimum of a collection of formal concepts
⟨𝐴
𝑗
, 𝐵
𝑗
⟩, 𝑗 ∈ 𝐽, 𝐽 = 1, 2, 3, . . ., are given by

⋀
𝑗∈𝐽

⟨𝐴
𝑗
, 𝐵
𝑗
⟩ = ⟨⋂

𝑗∈𝐽

𝐴
𝑗
, (⋃
𝑗∈𝐽

𝐵
𝑗
)

↓↑

⟩,

⋁
𝑗∈𝐽

⟨𝐴
𝑗
, 𝐵
𝑗
⟩ = ⟨(⋃

𝑗∈𝐽

𝐴
𝑗
)

↑↓

,⋂
𝑗∈𝐽

𝐵
𝑗
⟩.

(13)

3. Category Theory Background: Categories,
Functors, Natural Transformations, and
Yoneda Embedding Lemma

In this section, we briefly refer to the basic notions of
category theory, such as categories, functors, and natural
transformations that guide to the comprehension of the
Yoneda embedding lemma.

Category theory [9–12], which can, in general, be consid-
ered as a mathematical theory of structures and of systems
of structures, occupies a central position in contemporary
mathematics and theoretical computer science, since (a) it
focuses on relationships (categorical morphisms, functors,
and natural transformations) and not on entities (categor-
ical objects and categories), (b) it allows the coexistence
of heterogeneous entities, since it provides the ability to
define several categories, according to the kind of entities
to be described, which can be related by the definition of
special morphisms (categorical functors), (c) it offers a set of
categorical constructors for creating new categories, by using
predefined ones, (d) it provides a means for the combination
of categorical objects (colimits can be used to compose them
and limits to decompose them) and for the combination
of categorical functors (natural transformations), and (e)
it provides a multilevel study of its categorical notions, by
defining three interrelated levels (the level of categories, of
functors, and of natural transformations).

A category is a mathematical structure consisting of
entities of some kind, together with the relationships between
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A B C D
f g h

h ∘ (g ∘ f) = (h ∘ g) ∘ f

g ∘ f

h ∘ g

Figure 1: The composition operation is associative.

A B
1B ∘ f = f = f ∘ 1A

Figure 2: The unit of the composition.

them that express the structure. Formally, a category consists
of objects (entities) and morphisms (relationships), together
with a law of composition for the morphisms, and a unique
identitymorphism for each object.More rigorously speaking,
a categoryC is anything comprising the following data.

(i) A classC
0
of objects is denoted by 𝐴, 𝐵, 𝐶, . . ..

(ii) A class C
1
of morphisms between objects is denoted

by 𝑓, 𝑔, ℎ, . . .. In order to denote a morphism 𝑓 from
object 𝐴 to object 𝐵, we write 𝑓 : 𝐴 → 𝐵, where 𝐴 is
the domain of 𝑓(dom𝑓 = 𝐴) and 𝐵 is the codomain
of 𝑓(cod𝑓 = 𝐵). In general, there may exist more
than one morphism from 𝐴 to 𝐵. The collection of all
morphisms from𝐴 to 𝐵 is denoted by HomC(𝐴, 𝐵) =

C(𝐴, 𝐵).
(iii) A composition operator is denoted by ∘, assigning to

each pair of composable morphisms 𝑓 : 𝐴 → 𝐵 and
𝑔 : 𝐵 → 𝐶 a composite arrow ℎ : 𝐴 → 𝐶, ℎ = 𝑔 ∘ 𝑓.
The composition of morphisms is associative, that is,
for any morphisms 𝑓 : 𝐴 → 𝐵, 𝑔 : 𝐵 → 𝐶, and
ℎ : 𝐶 → 𝐷 : ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓, as depicted in
Figure 1.

(iv) For each object 𝐴 in C
0
, a unique morphism 1

𝐴
:

𝐴 → 𝐴, which acts as the unit of the composition;
that is, for any morphism 𝑓 : 𝐴 → 𝐵, 1

𝐵
∘ 𝑓 = 𝑓 =

𝑓 ∘ 1
𝐴
, as depicted in Figure 2.

A categoryC is called small when the objectsC
0
and the

morphisms C
1
are sets and not proper classes. A less strict

concept is that of a locally small category, when for all objects
𝐴 and 𝐵 in C

0
, the collection of morphisms between them,

C(𝐴, 𝐵), is a set, called a Hom-set (in this case, we may still
have “too many” pairs of objects).

An important category is 𝑆𝑒𝑡, the category having sets as
objects, total functions as morphisms, and identity functions
as identity morphisms. The composition of total functions,
𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶, is the total function ℎ : 𝐴 → 𝐶,
mapping 𝑎 ∈ 𝐴 to (𝑔 ∘ 𝑓)(𝑎) = 𝑔(𝑓(𝑎)) ∈ 𝐶.

For each category C, the dual category Cop is defined as
the category having the same objects as those of C and as

A1

A2

A3
0 ...

!

!

!

Figure 3: An initial object.

A1

A2

A3

1
...

!

!

!

Figure 4: A terminal object.

morphisms the opposites of the morphisms in C; that is, if
𝑓 : 𝐴 → 𝐵 is a morphism in C

1
, then 𝑓op

: 𝐵 → 𝐴 is a
morphism inC

op
1
.

Another essential feature of category theory is that of
an isomorphism, which is mainly used in order to compare
objects. An isomorphism is a morphism 𝑓 : 𝐴 → 𝐵 that has
an inverse, that is, a morphism 𝑓

−1
: 𝐵 → 𝐴, such that

𝑓 ∘ 𝑓
−1

= 1
𝐵
and 𝑓−1 ∘ 𝑓 = 1

𝐴
. If 𝑓 : 𝐴 → 𝐵 is an iso-

morphism, then its inverse 𝑓−1 : 𝐵 → 𝐴 is unique. By using
this definition, two objects 𝐴 and 𝐵 are isomorphic (𝐴 ≅ 𝐵)
if there is a pair of inverse morphisms 𝑓 : 𝐴 → 𝐵 and 𝑓−1 :
𝐵 → 𝐴 between them. Two isomorphic objects are said to
be identical up to an isomorphism if every object satisfying a
property 𝑝 of an object 𝐴 is isomorphic to 𝐴.

There are two special objects that are defined in a
category: the initial and the terminal objects. More formally,
an object of a categoryC is called an initial object, denoted by
0 in Figure 3, if for every object 𝐴 inC, there exists exactly a
unique morphism 0 → 𝐴.

The symbol ! is used to characterize unique morphisms.
On the other hand, an object of a category C is called a
terminal object, denoted by 1 in Figure 4, if for every object
𝐴 inC, there exists exactly a unique morphism 𝐴 → 1.

In this mathematical theory, any part of a category can
be pictured as a directed diagram, which is a set of objects
and morphisms. A significant operation in category theory is
the pushout, which is defined over a diagram. A pushout of
a pair of morphisms, 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐴 → 𝐶, is an
object 𝑄, together with a pair of morphisms 𝑞

𝑓
: 𝐶 → 𝑄

and 𝑞
𝑔
: 𝐵 → 𝑄, such that 𝑞

𝑓
∘ 𝑔 = 𝑞

𝑔
∘ 𝑓, and with the

universal property stating that, whenever 𝑞󸀠
𝑓
: 𝐶 → 𝑄

󸀠 and
𝑞
󸀠

𝑔
: 𝐵 → 𝑄

󸀠 are such that 𝑞󸀠
𝑓
∘ 𝑔 = 𝑞

󸀠

𝑔
∘ 𝑓, there exists a

unique morphism 𝑠 : 𝑄 → 𝑄
󸀠, such that 𝑠 ∘ 𝑞

𝑓
= 𝑞
󸀠

𝑓
and

𝑠 ∘ 𝑞
𝑔
= 𝑞
󸀠

𝑔
. In Figure 5, the pushout is indicated by drawing

a square corner ⌈ next to it.
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Figure 5: The pushout tuple (𝑄, 𝑞
𝑓
, 𝑞
𝑔
) of 𝑓 and 𝑔.

P󳰀

A

B

C
f

P

!m

g

pf

pg

p󳰀
f = pg ∘ m

p󳰀
g = pf ∘ m

Figure 6: The pullback tuple (𝑃, 𝑝
𝑓
, 𝑝
𝑔
) of 𝑓 and 𝑔.

The pushout is the categorical dual of pullback, which is
depicted in Figure 6, which is obtained by reversing arrows
in the graph of pushout.

These categorical constructions are characterized as uni-
versal constructions, describing a class of objects and the
accompanying morphisms that share a common property.

Another important notion of category theory is functors,
which are structure-preservingmappings between categories.
Given two categoriesC andD, a functor 𝐹 : C → Dmaps

(i) each object 𝐴 ∈ C to an object 𝐹𝐴 ∈ D,
(ii) each morphism 𝑓 : 𝐴 → 𝐵 ∈ C to a morphism

𝐹𝑓 : 𝐹𝐴 → 𝐹𝐵 ∈ D,
(iii) identity morphisms ofC to identity morphisms ofD;

that is, 𝐹(1
𝐴
) = 1
𝐹𝐴
,

(iv) the composition of morphisms 𝑓 and 𝑔 in C to the
composition of their mappings in D; that is, with 𝑓
and 𝑔 composable inC, 𝐹(𝑔 ∘ 𝑓) = 𝐹(𝑔) ∘ 𝐹(𝑓).

For a given categoryC, the identity functor 1C maps each
object and each arrow inC to itself.Moreover, functors can be
composed. Given two functors𝐹 : C → D and𝐺 : D → E,
their composition 𝐺 ∘ 𝐹 : C → E is a functor mapping
an object 𝐴 ∈ C

0
to the object 𝐺(𝐹𝐴) ∈ E

0
and mapping a

morphism 𝑓 ∈ C
1
to the morphism 𝐺(𝐹𝑓) ∈ E

1
.

Let us now consider two locally small categories C and
D. For every pair of objects𝐴, 𝐵 ∈ C

0
, a functor 𝐹 : C → D

defines a function𝐹
𝐴,𝐵

: C(𝐴, 𝐵) → D(𝐹𝐴, 𝐹𝐵) in 𝑆𝑒𝑡.Then,
the functor 𝐹 : C → D is

(i) faithful if the function 𝐹
𝐴,𝐵

is injective,

(ii) full if the function 𝐹
𝐴,𝐵

is surjective,

(iii) fully faithful if the function 𝐹
𝐴,𝐵

is bijective.

A functor 𝐹 : C → D is an embedding if it is full,
faithful, and injective on objects. A functor from C to D is
called a covariant functor, while a functor 𝐹 : Cop

→ D
is called a contravariant functor from C to D if it reverses
arrow; that is, it is a covariant functor 𝐹 : Cop

→ D from
the opposite categoryCop toD.

In order to comprehend the Yoneda embedding, the
more elaborate categorical notions of representable functors
are needed. The representable functors map a locally small
categoryC to the category 𝑆𝑒𝑡. They refer either to incoming
morphisms to a fixed object in C (generalized elements) or
to outgoing morphisms from a fixed object inC (generalized
properties).

Given a category C, the covariant representable functor
C(𝐴, −) : C → 𝑆𝑒𝑡, which is depicted in Figure 7, can
be defined, for each fixed object 𝐴 ∈ C

0
, and it takes each

object 𝐵 ∈ C
0
to the set C(𝐴, 𝐵) ∈ 𝑆𝑒𝑡

0
of morphisms

from𝐴 to 𝐵 (C(𝐴, 𝐵) is an object of 𝑆𝑒𝑡) and each morphism
𝑓 : 𝐵 → 𝐶 ∈ C

1
to the function

C (𝐴, −) (𝑓) = C (𝐴, 𝑓)

= 𝑓 ∘ − : C (𝐴, 𝐵) 󳨀→ C (𝐴, 𝐶) ∈ 𝑆𝑒𝑡
1
.

(14)

This last function takes a morphism 𝑔 : 𝐴 → 𝐵 ∈ C
1

(an element of the set C(𝐴, 𝐵) in 𝑆𝑒𝑡
0
) to the morphism

C(𝐴, 𝑓)(𝑔) = 𝑓 ∘ 𝑔 ∈ C
1
(an element of the set C(𝐴, 𝐶)

in 𝑆𝑒𝑡
0
). The covariant representable functor refers to the

outgoing morphisms from a fixed object 𝐴 in C and to their
compositions with other morphisms inC.

Given a categoryC, the contravariant representable func-
tor C(−, 𝐵) : Cop

→ 𝑆𝑒𝑡, which is depicted in Figure 8,
is defined, for each fixed object 𝐵 ∈ C

0
, taking each object

𝐴 ∈ C
0
to the set C(𝐴, 𝐵) ∈ 𝑆𝑒𝑡

0
of morphisms from 𝐴 to

𝐵 (C(𝐴, 𝐵) is an object of 𝑆𝑒𝑡) and each morphism 𝑓 : 𝐴 →

𝐶 ∈ C
1
to the function

C (−, 𝐵) (𝑓) = C (𝑓, 𝐵)

= − ∘ 𝑓 : C (𝐶, 𝐵) 󳨀→ C (𝐴, 𝐵) ∈ 𝑆𝑒𝑡
1
,

(15)

which takes a morphism 𝑔 : 𝐶 → 𝐵 ∈ C
1
(an element of

the setC(𝐶, 𝐵) in 𝑆𝑒𝑡
0
) to themorphismC(𝑓, 𝐵)(𝑔) = 𝑔∘𝑓 ∈

C
1
(an element of the setC(𝐴, 𝐵) in 𝑆𝑒𝑡

0
). The contravariant

representable functor refers to the incoming morphisms to
a fixed object 𝐵 in C and their compositions with other
morphisms inC.

Moreover, given a category C, the Hom-set bifunctor
C(−, −) : Cop

× C → 𝑆𝑒𝑡, which is depicted in Figure 9, is
defined, for each pair of fixed objects 𝐴 ∈ C

0
and 𝐵 ∈ C

0
,

and it takes each such pair of fixed objects 𝐴 ∈ C
0
and

𝐵 ∈ C
0
to the set C(𝐴, 𝐵) ∈ 𝑆𝑒𝑡

0
of morphisms from 𝐴 to



6 International Journal of Engineering Mathematics

∀g B

A

C

f

Fixed

𝒞

𝒞(A, –)(B) = 𝒞(A, B)

𝒞(A, –)(f) = 𝒞(A, f) = f ∘ –

𝒞(A, –)(C) = 𝒞(A, C)

𝒞(A, –)

𝒞(A, –)

𝒞(A, –)

𝒞(A, –)

f ∘ g

Set

Figure 7: The covariant representable functorC(𝐴, −).

∀g ∀g
B B

A A

C Cf f

Fixed Fixed

𝒞

g ∘ f g ∘ f

𝒞op
𝒞(–, B)

𝒞(–, B)

𝒞(–, B)

𝒞(–, B)
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Set

Figure 8: The contravariant representable functorC(−, 𝐵).

𝐵 (C(𝐴, 𝐵) is an object of 𝑆𝑒𝑡) and each pair of morphisms
𝑓 : 𝐴
󸀠
→ 𝐴 ∈ C

1
and 𝑔 : 𝐵󸀠 → 𝐵 ∈ C

1
to the function

C (−, −) (𝑓, 𝑔)

= C (𝑓, 𝑔)

= 𝑔 ∘ − ∘ 𝑓 : C (𝐴, 𝐵
󸀠
) 󳨀→ C (𝐴

󸀠
, 𝐵) ∈ 𝑆𝑒𝑡

1

(16)

This last function takes a morphism ℎ : 𝐴 → 𝐵 ∈ C
1
(an

element of the set C(𝐴, 𝐵) in 𝑆𝑒𝑡
0
) to the morphism

C(𝑓, 𝑔)(ℎ) = 𝑔 ∘ ℎ ∘ 𝑓 ∈ C
1
(an element of the set C(𝐴󸀠, 𝐵󸀠)

in 𝑆𝑒𝑡
0
).The contravariant representable functor refers to the

incoming morphisms to a fixed object 𝐴 in C and to the
outgoing morphisms from a fixed point 𝐵 inC.

Another important notion of category theory is that of
natural transformations, which relate two functors. Given
two functors 𝐹 : C → D and 𝐺 : C → D from C to
D, a natural transformation 𝜂 : 𝐹 ⇒ 𝐺, which is depicted in
Figure 10, is a map ℎ : C

0
→ D

1
, assigning to each object

𝐴 ∈ C
0
a morphism 𝜂

𝐴
: 𝐹𝐴 → 𝐺𝐴 ∈ D

1
, called the

component of 𝜂 at𝐴, such that, for every morphism 𝑓 : 𝐴 →

𝐵 ∈ C
1
, it holds that 𝜂

𝐵
∘ 𝐹𝑓 = 𝐺𝑓 ∘ 𝜂

𝐴
. The components 𝜂

𝐴

are morphisms inD
1
and can thus be composed.

Given two categories C and D, a functor category
denoted byDC is defined, having as objects the functors from
C toD and having asmorphisms the natural transformations
between them. In this functor category, HomDC(𝐹, 𝐺) =

Nat(𝐹, 𝐺) is the set of natural transformations from functor 𝐹
to functor 𝐺 (𝐹 and 𝐺 are objects of DC). The contravariant
representable functor for DC is then denoted by Nat(−, 𝐺)

and sends a functor 𝐹 ∈ DC to the set Nat(𝐹, 𝐺) ∈ 𝑆𝑒𝑡

of natural transformations between 𝐹 and 𝐺 and a natural
transformation 𝜂 : 𝐹 ⇒ 𝐻 to the function

Nat (−, 𝐺) (𝜂) = Nat (𝜂, 𝐺)

= − ∘ 𝜂 : Nat (𝐻, 𝐺) 󳨀→ Nat (𝐹, 𝐺) .
(17)

The function Nat(𝜂, 𝐺) sends a natural transformation 𝜃 :
𝐻 ⇒ 𝐺 to the natural transformation 𝜃 ∘ 𝜂 : 𝐹 ⇒ 𝐺 (which is
amorphism inDC and an element of the set Nat(𝐹, 𝐺) ∈ 𝑆𝑒𝑡).

An isomorphism can be defined in a functor category
DC. Given two functors 𝐹, 𝐺 : C → D (objects of DC),
if a natural transformation 𝜂 : 𝐹 → 𝐺 (morphism in DC)
has an inverse natural transformation 𝜂−1 : 𝐺 → 𝐹 such that
for every object 𝐴 in 𝐶 it is (𝜂 ∘ 𝜂−1)

𝐴
= (1
𝐹
)
𝐴

= 1
𝐹𝐴

and (𝜂
−1
∘ 𝜂)
𝐴
= (1
𝐺
)
𝐴
= 1
𝐺𝐴
, then 𝜂 is called a natural

isomorphism, and 𝐹 and 𝐺 are said to be naturally isomor-
phic; that is, 𝐹 ≅ 𝐺.

Given an object 𝐴 in a category C, there is a functor 𝑦 :

C → 𝑆𝑒𝑡
Cop

from C to the category 𝑆𝑒𝑡C
op
of functors from

Cop to 𝑆𝑒𝑡 (called the category of presheaves) that sends 𝐴 to
the functor C(−, 𝐴) ∈ 𝑆𝑒𝑡

Cop
. This functor 𝑦 is the Yoneda

embedding. The Yoneda embedding also sends a morphism
𝑓 : 𝐴 → 𝐵 ∈ C

1
to the natural transformation 𝑦

𝑓
:

C(−, 𝐴) → C(−, 𝐵) between functors C(−, 𝐴) and C(−, 𝐵),
having a component (𝑦

𝑓
)
𝑋
: C(𝑋, 𝑓) = 𝑓∘− at𝑋 ∈ 𝐶

0
, which

sends a morphism 𝑔 : 𝑋 → 𝐴 ∈ C(𝑋, 𝐴) to the morphism
𝑓 ∘ 𝑔 : 𝑋 → 𝐵 ∈ C(𝑋, 𝐵).

The Yoneda lemma is an abstract result on functors of
the type morphisms into a fixed object, which allows the
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Figure 9: The Hom-set bifunctorC(−, −).
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Figure 10: The definition of the natural transformation.

embedding of any category into a category of functors defined
on that category. It states that every functor 𝐹 : Cop

→ 𝑆𝑒𝑡 ∈

𝑆𝑒𝑡
Cop

is naturally isomorphic to the functor Nat(𝑦−, 𝐹); that
is, for every 𝐴 ∈ C

0
, Nat(𝑦𝐴, 𝐹) ≅ 𝐹𝐴 and this isomorphism

is natural both in𝐴 and 𝐹. One instance of Yoneda’s lemma is
the Yoneda embedding, which informally states that in order
to determine an object of a category, it suffices to determine
all its generated elements or all its generated properties.

4. The Interplay between FCA and
Ontological Concepts

An ontology is the formal expression of relations between
relevant notions in order to consistently describe a domain of
interest, and in this perspective, it must clearly conceptualize
these notions. At the conceptualization level, it is necessary
to formally describe the relevant concepts, which are to be
included in the ontology.

FCA, on the other hand, is a mathematical theory, which
is based on the philosophical statement that a concept is
constituted by two parts: its extension consisting of all objects
belonging to the concept and its intension comprising all
attributes shared by those objects [13]. In FCA, a formal
concept is produced from a formal context such as ⟨𝑋, 𝑌, 𝐼⟩
of Section 2 by applying the concept-forming operators to its
intension or to its extension; that is, a formal concept is a pair
⟨𝐴, 𝐵⟩, where 𝐴 ⊆ 𝑋 is a set of objects and 𝐵 ⊆ 𝑌 is a set of
attributes, such that 𝐴 is the set of all objects which have all

attributes from 𝐵 and 𝐵 is the set of all attributes which are
common to all objects from 𝐴.

Based on the assumption that an isolated concept has
no meaning, since meaning is a product of the relationships
among concepts in a specific context, an extension of FCA
has been designed, the so-called relational concept analysis
(RCA) [14], in order to deal with multirelational data [15].
RCA provides a generalization of FCA in the case of many-
valued contexts. A many-valued context is defined as a
context (𝐺,𝑀,𝑊, 𝐼) consisting of three sets, namely,𝐺, whose
elements are called formal objects, 𝑀 with many-valued
attributes, and 𝑊, whose elements are values, and a ternary
relation 𝐼 between them, with the conditions (𝑔,𝑚, 𝑤) ∈ 𝐼

and (𝑔,𝑚, V) ∈ 𝐼 ⇒ 𝑤 = V, with (𝑔,𝑚, 𝑤) being read as “the
attribute𝑚 has the value 𝑤 for the object 𝑔.” Thus, relational
context schemas are useful for attributes that have not just
only one but several values for an object.

Moreover, a triadic approach to FCA has been designed,
the so-called triadic concept analysis (TCA) [16], as another
FCA extension, which is based on a formalization of the
triadic relation connecting objects, attributes, and conditions,
where a concept is described by its extension, intention, and
modus, respectively [17]. In this framework, instead of the
dyadic relation between objects and attributes used in FCA,
the triadic approach is based on a triadic relation saying
that the object 𝑔 has the attribute 𝑚 under the condition
𝑏. Similar to the dyadic form of FCA, a triadic concept
is produced from a triadic context, which is defined as a
quadruple ⟨𝑋, 𝑌, 𝑍, 𝐼⟩, where 𝑋, 𝑌, and 𝑍 are sets of objects,
attributes, and conditions, respectively, and 𝐼 is a ternary
relation between them, by applying derivation operators to
its intension, extension, or modus.Thus, triadic concepts can
be considered, for example, as those formal concepts that
have the same extent but differ according to their intent and
modus.

The interplay between FCA and ontologies has been
studied to a considerable extent [18]. It turns out that there
are basically two ways concerning how FCA and ontological
concepts can be combined. The most obvious way is to
identify the ontology concepts with the formal concepts of
FCA. However, in many applications, the ontology concepts
correspond to the FCA attributes [19, 20]. Since the onto-
logical status of concepts has an internal structure, within
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the framework of FCA, this is sometimes generated by
tertiary relations withinmultivalued contexts [21] or by using
distributional formal contexts [22].

The crucial point in specifically describing a concept
within an ontology is to find out all the attributes that are
shared by this concept. Thus, from an FCA-based point
of view, for formally describing a concept, its intentional
description is required. In the case where a concept is
described by a set of attributes under specific conditions, the
notion of triadic contexts is used for its representation [23].
Moreover, each concept within an ontology denotes a specific
role emerging from adding specific values to its intentional
structure, that is, its attributes. In this perspective, ontology
concepts are considered as the relational structures that the
RCA process provides [24, 25].

5. The Interplay between Category Theory and
Ontological Concepts

Since ontology can be regarded as a categorization of that
which exists, issues involving the ontological status of con-
cepts and the notion of a category are important. According to
Aristotle, a class or collection of things all of one type, where
typicality is determined by a concept, is a category. Later on,
a category, as a purely mathematical notion, was defined as
having an internal structure given by relationships among
members. Thus, the exact match between the terms category
and concept has emerged because a concept can be defined as
having internal structure, due to their explanatory capabilities
[26].

Category theory has been established as an appropriate
mathematical basis for the formalization and study of ontolo-
gies [27, 28], since it focuses on relationships (categorical
morphisms) between entities (categorical objects) in such a
way that an entity can be defined according to its interaction
with other entities [29]. There have been various category
theoretic approaches to ontology engineering, which involves
tasks, such as development, mapping, andmerging of ontolo-
gies. In particular, in the case of ontology mapping and
merging, the category 𝑂𝑛𝑡 of ontologies is defined and the
categorical constructions of pullback and pushout are used,
respectively [30–32].

Formally speaking, ontology is a theory over logic. But
many ontologies are described in different languages, each
one with its own logic. Thus, in order to integrate ontologies,
many approaches using the theory of institutions [33] have
emerged, such as in [34, 35] for mapping between different
logics to deal with heterogeneous formalization. Moreover,
the constructions of category theory have been combined
with information flow theory [36], which describes how
information about one thing can convey information about
something else, for integrating distributed ontologies [37, 38].
Finally, in [39] a rigorous foundation for integrating heteroge-
neous information is provided, by unifying information flow
theory, institutions, formal concept analysis, and category
theory.

By using a category theoretic language, ontologies can
be represented as categories with finite limits and finite

A1

A2 A3

A4

A5 A6

Figure 11: A simple example of an ontology.

coproducts, where classes (concepts) are represented by
nodes and functional relationships by arrows of a directed
graph [40], and if an ontology has a representation by a
category, then one may apply homological and homotopical
algebra constructions to study the ontology [41]. Another
view of the category theoretic perspective of ontologies and
their underlying classes (concepts) is given in [42], where an
ontology is regarded as a mathematical category of theories
and a concept is represented by the ideas of theories and
models that are borrowed from FCA. Moreover, in [43] an
ontology can be described by formal concepts and thus it can
be viewed as a category.

6. From the Yoneda Embedding to
Formal Concepts

Our main point is the fact that, from an ontological point of
view, the formal determination of a concept is guided by the
interconnection existing between a concluding remark of the
Yoneda embedding lemma of category theory and the intents
of the formal concepts of FCA. In order to illustrate this point,
an example is used in this section, relying on the assumption
that attributes can also be considered as concepts, according
to the German standard DIN 2330, stating that attributes “are
units of thought which are gained by abstraction, and hence
they are also concepts” [19, 44].

Following this statement, we can represent binary rela-
tions between entities within an ontology, by using a suitable
formal context. For this purpose, we consider the entities of
the ontology, both as objects and as attributes of the context.
A binary relation present in the context signifies that the
respective entities are related. As an example, the ontology
of Figure 11, where the concepts 𝐴

𝑖
, 𝑖 = 1, 2, . . . , 6, are

hierarchically structured, is represented by the formal context
of Figure 12, by using Lattice Miner [45], which is a formal
concept analysis software tool for the construction of concept
lattices.

In Figure 12, the concept lattice and the formal concepts
associated with the formal context of Figure 11 are depicted.
It is a representation of a formal context called cross-table.
The context has six attributes, 𝑎

𝑖
, 𝑖 = 1, 2, . . . , 6. An “𝑥” in a
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Figure 12: The formal context for the ontology of Figure 11.

A1 A2 A3 A4 A5 A6

A2A3

a1
A4

a3
A5 A6

a4

a1 a3 a4a2 a5 a6

Figure 13: The formal concepts and the concept lattice for the
ontology of Figure 11.

particular location or cell in the cross-table indicates that an
object has an attribute, so, for example, the object “𝐴

2
” has

the attribute “𝑎
1
.” Conversely a blank location indicates that

the object does not have that attribute.
The concept lattice of Figure 13 contains five concepts,

themost general being ⟨{𝐴
1
, . . . , 𝐴

6
}⟩.The bottom concept is

⟨{}, {𝑎
1
, . . . , 𝑎

6
}⟩ because it is the concept of objects that have

all attributes. The remaining concepts are marked with their
intent and their extent.

The diagram shows that there is an ordering over the
concepts, which is a specialization ordering, denoted by ≤
[46].

It is interesting to notice here that the formal concepts
represent the incoming relations to an ontology entity; that
is, the intents of each formal concept correspond to the
incoming arrows to each respective ontological concept. For
example, the formal concept ⟨{𝑎

1
}, {𝐴
2
, 𝐴
3
}⟩ represents the

incoming relations (arrows) to ontological entity (concept)
𝐴
1
. Now, if we consider a categorical perspective of the

ontology, where the ontology entities are the objects of
a category and the relations between the entities are the

Europe

Greece
France

Athens

Kifisia Glyfada

Belongs to

Belongs to

Belongs to Belongs to

Belongs to

Figure 14: A segment of an ontology conceptualizing European
places.

morphisms (arrows), then the intent of a formal concept rep-
resents the incoming arrows to an entity (object). But, from a
category theoretic point of view, this remark is equivalent to
the remark concluded from the Yoneda embedding lemma,
which states that an object is completely determined by the
incoming arrows to this object.

This statement yields from the Yoneda lemma, which
is interpreted as follows: an object 𝑋 of a category 𝐶 is
determined by the network of relationships that the object
𝑋 has with all the other objects in 𝐶 [47]. Thus, a concept
can be clearly specified only by identifying the set of all
its attributes and a set of attributes that are common for
a concept determines completely a concept. This reciprocal
condition can guide the building of the ontological status
of concepts completely and consistently, since it eliminates
polysemy and synonymy.

In amore illustrative example, such as that of the ontology
of Figure 14, following the same process and taking into
account its category theoretical representation, where con-
cepts are objects of a category and their attributes/relations
are morphisms, we observe the alignment between the intent
of the formal concept ⟨{𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑇𝑜}, {𝐺𝑟𝑒𝑒𝑐𝑒, 𝐹𝑟𝑎𝑛𝑐𝑒}⟩ and
the incoming arrows to the ontological entity “Europe,” that
is, the Yoneda philosophy in unequivocally determining
concepts in ontology engineering.

7. Equivalent Points of FCA and
Category Theory

In this section, we refer to the possiblemeeting points of FCA
and category theory aiming at direct research into the critical
path of formalizing tasks concerning ontology engineering
and facilitating progress of the field.

Due to the fact that we focus on the abstract notion of
concepts, as well as their formal representation, and not on
strict mathematical objects, it is incongruous to talk about
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equality between different points of mathematical theories,
rather than equivalence, or isomorphism between them.
Thus, the main question to be answered is not if two concepts
are equivalent, but if they are isomorphic, that is, if they
are interchangeable in the sense that they have the same
relationships with all concepts within a context. In that
sense, it will be interesting to investigate the correspondence
between the basic notions and constructions of FCA and
category theory, such as between (a) the supremum of any
collection of formal concepts of a complete lattice and the
initial object of a category, (b) the infimum of any collection
of formal concepts of a complete lattice and the terminal
object of a category, and (c) the application of the concept-
forming operators to the intention or to the extension of a
formal context and the fact that from an object of a category,
one can define a specific functor that encodes the essence of
these objects, as well as between other notions.

8. Conclusion

A formal view on ontologies or on ontological concepts can
contribute a lot to the direction of achieving effective inter-
operability, since the coexistence of multiple heterogeneous
ontologies within or among ontology-based applications is
an objective reality. Thus, by carefully studying FCA and
category theory, as the mathematical theories that provide
frameworks for structuring, analyzing, and visualizing data
to make them more understandable and for combining and
maintaining heterogeneous collections of data to enable them
to interoperate, respectively, we investigate some equivalent
notions of both theories. This can lead, despite the abstract
but quite accurate techniques of these theories, to create a
unified framework for the ontological representation as well
as their management.
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[7] R. Bělohlávek, Introduction to Formal Concept Analysis, UP
Olomouc, 2008.

[8] B. Ganter and R. Will, Formal Concept Analysis: Mathematical
Foundations, Springer, Berlin, Germany, 1999.

[9] S.Awodey,CategoryTheory, OxfordUniversity Press,NewYork,
NY, USA, 2010.

[10] B. Pierce, Basic Category Theory for Computer Scientists, The
MIT Press, Cambridge, Mass, USA, 1991.

[11] W. Lawvere and S. Schanuel, Conceptual Mathematics, A First
Introduction to Categories, Cambridge University Press, New
York, NY, USA, 1997.

[12] J. Fiadeiro, Categories for Software Engineering, Springer, New
York, NY, USA, 2004.

[13] M. Obitko, V. Snasel, and J. Smid, “Ontology design with formal
concept analysis,” in Proceedings of the International Conference
on Concept Lattices and Their Applications (CLA ’04), V. Snasel
and R. Belohlavek, Eds., pp. 111–119, 2004.

[14] U. E. Priss,Relational concept analysis: semantic structures in dic-
tionaries and lexical databases [Dissertation], TH-Darmstadt,
1996.

[15] M. Huchard, M. R. Hacene, C. Roume, and P. Valtchev,
“Relational concept discovery in structured datasets,” Annals of
Mathematics and Artificial Intelligence, vol. 49, no. 1–4, pp. 39–
76, 2007.

[16] F. Lehmann and R. Will, “A triadic approach to formal concept
analysis,” in Conceptual Structures: Applications, Implementa-
tion and Theory, vol. 954 of Lecture Notes in Computer Science,
pp. 32–43, Springer, Berlin, Germany, 1995.

[17] J. Konecny and P. Osicka, “General approach to triadic concept
analysis,” in Proceedings of the 7th International Conference
on Concept Lattices and Their Applications (CLA ’10), M.
kryszkiewicz and S. A. Obiedkov, Eds., pp. 116–126, Sevilla,
Spain, 2010.

[18] P. Hitzler, “What’s happening in semantic web—and what FCA
could have to do with it?” in Formal Concept Analysis, P.
Valtchev and R. Jäschke, Eds., vol. 6628 of Lecture Notes in
Computer Science, pp. 18–23, Springer, Berlin, Germany, 2011.

[19] P. Cimiano, A. Hotho, G. Stumme, and J. Tane, “Conceptual
knowledge processing with formal concept analysis and ontolo-
gies,” in Proceedings of the 2nd International Conference on
Formal Concept Analysis (ICFCA ’04), pp. 189–207, February
2004.

[20] R. Bendaoud, A. Napoli, and Y. Toussaint, “Formal con-
cept analysis: a unified framework for building and refining
ontologies,” in Knowledge Engineering: Practice and Patterns,
A. Gangemi and J. Euzenat, Eds., vol. 5268 of Lecture Notes in
Computer Science, pp. 156–171, Springer, Berlin, Germany, 2008.

[21] J. Nanda, T. W. Simpson, S. R. T. Kumara, and S. B. Shooter, “A
methodology for product family ontology development using
formal concept analysis and web ontology language,” Journal of
Computing and Information Science in Engineering, vol. 6, no. 2,
pp. 103–113, 2006.

[22] D. Jurkevicius and O. Vasilecas, “Formal concept analysis for
concept collecting and their analysis,” Scientific Papers, Univer-
sity of Latvia, Computer Science and Information Technologies,
vol. 751, pp. 22–39, 2009.



International Journal of Engineering Mathematics 11
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