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We have developed the recent investigations on the second-order phase transition in the holographic superconductor using the
probe limit for a nonlinear Maxwell field strength coupled to a massless scalar field. By analytical methods, based on the variational
Sturm-Liouville minimization technique, we study the effects of the spacetime dimension and the nonlinearity parameter on
the critical temperature and the scalar condensation of the dual operators on the boundary. Further, as a motivated result, we
analytically deduce theDCconductivity in the low and zero temperatures regime. Especially in the zero temperature limit and in two
dimensional toy model, we thoroughly compute the conductivity analytically. Our work clarifies more features of the holographic
superconductors both in different space dimensions and on the effect of the nonlinearity in Maxwell’s strength field.

1. Introduction

In the recent years, using the holographic picture of the
world, the AdS/CFT (anti de Sitter/conformal field the-
ory) correspondence [1–3] has been applied to study some
strongly correlated systems in condensed matter physics,
especially for strongly coupled systems with the scale-
invariance. Particularly, people studied the low temperature,
quantum critical systems near critical point (see, e.g., [4,
5] and references therein). The critical phenomena, which
happen here, is a second-order phase transition from nor-
mal phase to the superconducting phase, in which below
a specific temperature 𝑇

𝑐
, the DC conductivity becomes

infinite. Such second-order phase transitions happen in the
high-temperature superconductors and can be described very
well by the AdS/CFT dictionary [6, 7]. From the classical
and phenomenological point of view, superconductivity,
in the high-temperature type II superconductors, modeled
by a phenomenological Landau-Ginzburg Lagrangian. This
Lagrangian contains a general complex value scalar field Ψ,
plays the role of a condensate in a superconductive phase.
Basically, to have a scalar condensation in the boundary
quantum field theory using CFT on the boundary of the bulk,

Hartnoll et al. [8] introduced a 𝑈(1) abelian gauge field 𝐴
𝜇

and a typical conformal coupled charged complex scalar field
in the bulk black hole background. The conformal mass is
above the Breitenlohner-Freedman (BF) bound [9]. To solve
the negative mass problem, finally Gubser [10] showed that
the vector potential modifies themass term of scalar field and
we have a possibility to have hairy black holes in some parts
of the parameter space.

The full description of the superconductivity in the probe
limit or away this limit needs to provide the numerical
solutions of a couple of nonlinear differential equations. By
simplicity, they can be solved using the shooting approach
by expanding in series the functions and matching these by
varying the free parameters of the series in a typical point
between the horizon and the spatial infinity. Parallel to the
numerical studies, recently some analytical approaches have
been proposed to find the universal properties of second-
order phase transitions in holographic superconductors [11–
18]. In particular, the authors in [18] used the variational
functional method on the real valued functions for the
Sturm-Liouville eigenvalue problem to compute analytically
the basic properties of the holographic superconductors in
a three-dimensional boundary using the solutions of the
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bulk gauge fields in the four dimensional bulk theory. In
[18, 19] the authors have shown that also it is possible to
calculate critical exponent and critical temperature by this
approach. The eigenvalue of this variational problem is a
function of the critical chemical potential 𝜇

𝑐
, and conse-

quently, it is related to the 𝑇
𝑐
. Different modes of super

criticality s-wave, p-wave and d-wave have been studied [20].
Also, one can apply this method to superconductors with
external magnetic fields, which gives the analytical results in
good agreement with numerical results produced previously
[21, 22].

Furthermore, a number of aspects of external and bulk
magnetic fields in holographic superconductors have been
investigated [23–26]. The phase transition can be interpreted
in terms of the string interactions [27–31]. The effects of the
nonlinear electrodynamics in the holographic superconduc-
tors have been investigated recently [32–36].

There are many interests in the modified gravity the-
ories. For example, on Gauss-Bonnet and Weyl corrected
superconductors, on which, we are working with a higher
derivative corrected bulk black hole, like Weyl corrections
[37] numerically. Furthermore, we have studied the Weyl
corrections to the superconductors analytically [38, 39].
Moreover, we showed that there exists a family of p-wave
holographic with Weyl corrections [40].

In the present paper, we would like to study the ((𝑑 −

2) + 1)-dimensional holographic superconductor in the
probe limit for a power law Maxwell field strength (𝐹𝜇]𝐹

𝜇])
𝛿

coupled to a scalar field. We focus just on the s-wave cases.
We must clarify the motivation of the s-wave approximation
in holographic models of superconductors. In the relativistic
models of the gravity, it is highly known that s-wave approx-
imation is not a good approximation, for example, in the
cosmological models and black holes [41]. The meaning of
the s-wave here does not back to the reduction of the action
from four to two dimensional like the dilatonic action from
the four dimensional spinor (Majorana) action. We mean
by s-wave, in the context of holographic superconductors, a
scalar order parameter, whose expectation value breaks the
U(1) but not rotational symmetry. Moreover, we can have the
Yang-Mills fields with 𝑆𝑈(2) symmetry which additionally
they can generate another symmetry breaking of an axial
vector type. The last case resembles the p-wave models. We
mention here that the three dimensional non-linear model of
the superconductors, whichwe used in this paper, is a realistic
model and it will be more interesting that we can find a direct
relation between this nonlinear model and the results of a
higher dimensional model, by a principle like the detailed
balance.

Another additional point is to restrict ourselves just to the
case of a single horizon. The problem of the multihorizon
cases needs more investigation, for example, the case of
the Nariai black holes. The theory here will be so different.
This later appeared in the lower dimensional models. For
example, the case of the quantum corrected BTZ like black
hole is a good example [42]. In the holographic set up
for superconductors one must identify a temperature in
his gravitational bulk model to the CFT temperature on

the boundary. If the black hole has only one horizon, in
this case, we can use the Hawking-Bekenstein (horizon)
or Kodama- Hayward temperature [43] as a reasonable
candidate. But if our asymptotically AdS bulk has more
than one horizon, for example, in the case of the charged
BTZ like black holes, then we take the temperature of the
real physical horizon (the temperature which is obtained by
calculation the surface gravity of the biggest null hypersurface
orthogonal surface) as the candidate for temperature of the
CFT. In fact the effects of the quantum corrections and
chargedMaxwell field on the background of the bulk are very
interesting problems and can be investigated in more details.
Also it is possible to relate the instability of such charged
dilaton configurations in the AdS spacetime [44] to the
symmetry breaking mechanism of the superconductors. The
idea has motivation enough as a new work. In this paper we
investigate analytically the effect of the spacetime dimension
𝑑 and the power 𝛿 on the critical temperature 𝑇

𝑐
. Although

our problem is the especial massless case of the model
which has been investigated recently [45], we study these
corrections to the superconductors analytically. Additionally,
we want to compute the DC conductivity for this kind of
the superconductor using the perturbation method. In this
approach, we apply an external linear electromagnetic field.
This field is periodic in time. By calculating, the response
in the first order linear approximation, we compute the
conductivity for the low temperature case, especially for zero
temperature configuration.

Our plan in this paper is as the following. In Section 2, we
clarify our motivation for considering the nonlinearMaxwell
action instead of the linear theory. In Section 3, we introduce
our model for holographic superconductors. In Section 4, we
apply the variational method to obtain the critical temper-
ature of the system. In Section 5, we calculate the critical
exponent for the condensation operator. In Sections 6 and 7
we compute the conductivity for low and zero temperature
cases. We summarize and conclude in the final section.

2. Motivation for Nonlinear Maxwell Effects in
Holographic Superconductors

The linear approximations in themathematical physics, as we
know, have limitations, both in predictions of the model and
especially on matching with the full description of the model
using the numerical results.The linearMaxwell theory fails in
some domains, and it is needed to consider the general form
of the Lagrangian instead of the linear one. The Lagrangian
of the Maxwell model is

L
𝑀
= −

1

4
𝐹
2

, (1)

where 𝐹2 = 𝐹
𝜇]
𝐹
𝜇]. A natural extension of (1) is obtained by

replacing a general function of𝐹 in the formΦ(𝐹). Recently, it
has been shown that such nonlinear general forms have a rich
family of black holes in 𝑓(𝑅) gravity [46]. There are different
reasons for investigating these forms. The oldest one may be
the Born-Infeld (BI) alternative for linear Maxwell’s theory.
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In string theory language, this BI action can be replaced by
the tachyonic action. The BI Lagrangian reads [47]

LBI = 𝜂
2

(1 − √1 +
𝐹
2

2𝜂2
) . (2)

Here 𝜂 is the string’s tension parameter. This form reduces to
(1) in the limit of 𝜂 → ∞. Indeed, we can expand in series
(2) in the following form:

LBI =
∞

∑

𝑛=1

𝑐
𝑛
𝜂
2(1−𝑛)

𝐹
2𝑛

. (3)

The leading order term 𝑛 = 1 is just in the form of (1). Even,
if we do not work with BI theory, this nonlinearity meets us
from a geometrical point of view. Suppose that we want to
write a conformal invariance (CI) Lagrangian, constructed
from the 𝑈(1) gauge fields 𝐴𝜇. Such CI is the invariance of
the whole theory under geometrical transformation 𝑔

𝜇] →

𝑒
2𝜎

𝑔
𝜇] in a 𝑑 ≥ 4 Riemannian manifold without torsion or

nonmetricity fields. However, previously, a version of such
Lagrangian has been found in Weitznbock spacetime with
torsion and nonmetricity fields [48]. It is easy to show that the
LagrangianL ∝ 𝐹

𝑑/2 is invariant under CI transformations.
When 𝑑 = 4, the proper Lagrangian is L ∝ 𝐹

2 but
in 𝑑 = 5 the suitable form is L ∝ 𝐹

5/2. The last form
belongs to the nonlinear, noninteger Maxwell family. Thus
from geometrical view, the nonlinearity is welcome in our
Lagrangian dynamical theory. Further, even if we do not
know any on BI or CI, when we are working with vacuum
effects, there is a simple generalization ofMaxwell Lagrangian
in a logarithmic form

Llog = −𝜂
2 log(1 + 𝐹

2

4𝜂2
) . (4)

As BI case, in the limit of |𝐹| ≪ 𝜂, by expanding this equation
the leading order term 𝑛 = 1, is the linear theory (1). In brief,
according to the above discussion, it seems that consideration
of the nonlinear effects of theMaxwell field as𝐹𝛿 is important,
and the significant differences between the usual linear theory
𝐹
2 and nonlinear theory 𝐹

𝛿 can be shown. Holographic
superconductors provide a rich background for testing such
type of new physics. In this paper, we will describe a (𝑑 −

1) dimensional holographic superconductor (HSC) via 𝑑-
dimensional gravity dual, described by a 𝑑-dimensional AdS
black hole on the static patch. We set the Stuckelberg field to
zero and work with massless scalar fields.

3. Field Equations

We write the following action [32–36] for a power Maxwell
field 𝐹

𝜇], which it is coupled minimally to a massless scaler
field 𝜓 in a 𝑑-dimensional asymptotic AdS

𝑑
spacetime [45]

𝑆 = ∫𝑑
𝑑

𝑥√−𝑔 [𝑅+(𝑑 − 1) (𝑑 − 2)−𝜉(𝐹
𝜇]
𝐹
𝜇])
𝛿

−
󵄨󵄨󵄨󵄨󵄨
𝐷
𝜇
𝜓
󵄨󵄨󵄨󵄨󵄨

2

) .

(5)

Here, we set the radius of the AdS, 𝐿 = 1, 𝐷
𝜇
= 𝜕
𝜇
− 𝑖𝑒𝐴

𝜇
,

𝐹
𝜇] ≡ 2𝜕

[𝜇
𝐴]] = 𝜕

𝜇
𝐴] − 𝜕]𝐴𝜇, 𝐴𝜇 is 𝑈(1) vector potential.

The exponent (power) 𝛿 can be noninteger as we explained it
in the previous section. Further, when we work withMaxwell
linear electrodynamics 𝛿 = 1, 𝑑 = 4, then 𝜉 = 1/4. However,
in our case with 𝛿 ̸= 1, in general, 𝜉 ∈ R remains as a free
parameter in our model. We set the electric charge 𝑒 = 1.
In normal phase and in the absence of the scalar field we
put 𝜓 = 0. This action has been used before in literature
for full description of the nonlinear Maxwell field in the
gravitational action. In the probe limit when thematter action
and the gravitational part decouple, the system of the field
equations has an exact solution which will be discussed here.
The solution of the generalized Maxwell-Einstein equations
is the simple 𝑑-dimensional static Reissner-Nordstrom-Anti-
de Sitter (RNAdS) black hole with the following metric
form:

𝑔
𝜇] = diag(−𝑓 (𝑟) , 1

𝑓 (𝑟)
, 𝑟
2

Σ
𝑑−2

) , (6)

where Σ
𝑑−2

is the metric on a (𝑑 − 2) dimensional sphere and
the metric function is

𝑓 (𝑟) = 𝑟
2

(1 − (
𝑟
+

𝑟
)

𝑑−1

) . (7)

Here 𝑟
+
is the black hole horizon which in general is the

largest root of the algebraic equation𝑓(𝑟
+
) = 0. If we set 𝛿 = 1

in (5), we recover the usual holographic superconductors.
In the probe limit by ignoring the backreaction effects of
the matter fields in the background metric 𝑔

𝜇], and with
spherically symmetric staticmetric and by choosing a suitable
gauge fixing for the gauge field 𝐴

𝜇
we can take the functions

(𝜓, 𝜙) ∈ R and one variable functions. We assume that the
functions 𝜓 and 𝜙 have finite numbers of poles on the real
axis. It means the analytical solutions can be written in the
forms of the algebraic series expressions. To obtain the field
equations, we assume that 𝐴

𝜇
= 𝜙(𝑟)𝛿

𝜇𝑡
, so the nonzero

components of the 𝐹
𝜇] read as

𝐹
𝑟𝑡
= −𝐹
𝑡𝑟
= 𝜙
󸀠

. (8)

Hence, we have

𝐹
𝜇]
𝐹
𝜇] = −2𝜙

󸀠2

. (9)

Also, the Ricci 𝑅 of a 𝑑-dimensional spacetime with spherical
symmetry reads

𝑅 = −(𝑓
󸀠󸀠

+
2 (𝑑 − 2) 𝑓

󸀠

𝑟
−
(𝑑 − 2) (𝑑 − 3) 𝑓

𝑟2
) . (10)

Further, we compute

󵄨󵄨󵄨󵄨󵄨
𝐷
𝜇
𝜓
󵄨󵄨󵄨󵄨󵄨

2

= 𝑓𝜓
󸀠2

−
𝜙
󸀠2

𝑓
. (11)
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Finally, by plugging the above expressions into the action (5),
making a partial integration, we get the following effective
Lagrangian:

L = 𝑟
𝑑−2

[−(𝑓
󸀠󸀠

+
2 (𝑑−2) 𝑓

󸀠

𝑟
−
(𝑑−2) (𝑑−3) 𝑓

𝑟2
)

+ (𝑑−1) (𝑑−2) − 𝜉(−2𝜙
󸀠2

)
𝛿

−(𝑓𝜓
󸀠2

−
𝜙
󸀠2

𝑓
)] .

(12)

As a first step, it is necessary to eliminate the 𝑓󸀠󸀠 term, by
integration part by part. After it, to write the field equation,
we use the Euler-Lagrange equation as the following:

𝑑

𝑑𝑟
(
𝜕L

𝜕𝑞
,𝑟

) =
𝜕L

𝜕𝑞
, 𝑞 = {𝜙, 𝜓} . (13)

The field equations, derived from (12), read

𝜓
󸀠󸀠

+ (
𝑓
󸀠

𝑓
+
𝑑 − 2

𝑟
)𝜓
󸀠

+
𝜙
2

𝑓2
𝜓 = 0, (14)

𝜙
󸀠󸀠

+
𝑑 − 2

2𝛿 − 1

𝜙
󸀠

𝑟
− 𝐶
𝛿

𝜓
2

𝜉𝑓
𝜙(𝜙
󸀠

)
2(1−𝛿)

= 0, (15)

here 𝐶
𝛿
= ((−2)

2−𝛿

𝛿(2𝛿 − 1))
−1. To avoid the pure complex

numbers in our field equations, we assume that𝛿 ̸= 2−(1/2𝑁).
The case with 𝛿 = 1,𝐷 = 4 is the usual four-dimensionalHSC
which describes the three dimensional superconductors.

These field equations are the special massless case of the
model which has been investigated recently [45, 49]. To avoid
the divergence near the singularity 𝑓(𝑟

+
) = 0 we write the

boundary conditions for (14), (15) by

𝜙 (𝑟
+
) = 𝜓
󸀠

(𝑟
+
) = 0. (16)

The asymptotic solutions for system (14), (15) on the AdS
boundary 𝑟 → ∞, are

𝜓 = 𝐷
−
+

𝐷
+

𝑟𝑑−1
, (17)

𝜙 = 𝐴 −
𝐵

𝑟𝜂
, (18)

in (18), 𝐷
±
= ⟨O
±
⟩, 𝜂 = (𝑑 − 2𝛿 − 1)/(2𝛿 − 1), where ⟨O

±
⟩

denotes the vacuum expectation value of the dual operator
O
±
on the boundary, and the chemical potential and charge

density of the dual theory are 𝐴 = 𝜇, 𝐵 = 𝜌
(2𝛿−1)

−1

,
respectively.

We must clarify the reason for the modification of the
form of the electric potential 𝜙 modified. In the asymptotic
regime, we know that the metric function 𝑓 behaves like
𝑓 ∼ 𝑟

2. Also, the scalar field has the following asymptotic
form 𝜓 ∼ 0, so (15) gives us

𝜙
󸀠󸀠

∞
∼ −

𝑑 − 2

2𝛿 − 1

𝜙
󸀠

∞

𝑟
. (19)

The solution (19) reads

𝜙
∞
(𝑟) = 𝑐

1
+
𝑐
0
(2𝛿 − 1)

2𝛿 − 𝑑 + 1

1

𝑟(𝑑−2𝛿−1)/(2𝛿−1)
. (20)

This solution coincides completely with the solution pre-
sented in (18).Wementionhere that the above function𝜙

∞
(𝑟)

in the limit of the linear electrodynamic theory 𝛿 = 1 has
the true asymptotic form of 𝜙

∞
(𝑟) ∼ 𝑟

3−𝑑, 𝑑 ̸= 2. For 𝑑 = 2

the expression of 𝜙
∞
(𝑟) is in the form of a diverging log term

𝜙
∞
(𝑟) ∼ log(𝑟) and the application of the AdS/CFT fails. At

least, we do not know the unique and true dictionary of the
AdS/CFT in this lower dimensional bulk theory.

The only thing left is to identify the parameters with the
physical quantities in the dual theory, that is, the chemical
potential 𝜇 and the charge density 𝜌. We did it before, so the
asymptotic behaviors have the same forms.

The asymptotic solutions for 𝜙, 𝜓 are the same as the
previous expressions which have been presented in [45]. For
normalization purposes, we set𝐷

−
= 0.

4. Variational Method

To solve the solutions of the field equations given by (14)
and (15), the well-known technique is numerical algorithms.
However, from these numerical solutions, it is not so easy
and straightforward to read ⟨O⟩. Another method is using
the matching method. It is a potentially powerful method.
Even so, the resultsmust be interpreted very carefully near the
boundaries. The first step for solving system (14), (15) using
variational approach [18], is rewriting the equations in a new
dimensionless coordinate 𝑧 = 𝑟

+
/𝑟 in the following forms:

𝜓
󸀠󸀠

+ (
𝑓
󸀠

𝑓
−
𝑑 − 4

𝑧
)𝜓
󸀠

+ (
𝑟
+

𝑧2
)

2 𝜙
2

𝑓2
𝜓 = 0, (21)

𝜙
󸀠󸀠

−
𝜂 − 1

𝑧
𝜙
󸀠

− 𝐶
𝛿

𝑟
2𝛿

+

𝜉𝑧4𝛿

𝜓
2

𝑓
𝜙(𝜙
󸀠

)
2(1−𝛿)

= 0. (22)

Now, the prime is for differentiation with respect to the
dimensionless radial coordinate 𝑧. Near the critical point𝑇 =

𝑇
𝑐
, the following solution is valid:

𝜙 ≈ 𝜙
𝐵
(1 − 𝑧

𝜂

) . (23)

Here 𝜙
𝐵
= 𝜇
𝑐
= 𝜌
(2𝛿−1)

−1

/(𝑟
+
)
𝜂+1 is the value of the 𝜙 at the

horizon 𝑟 = 𝑟
+
, 𝛿 ̸= (𝑑−1)/2 and the critical point corresponds

by the critical chemical potential𝜇 = 𝜇
𝑐
. Further, we canwrite

𝜓 ≈ ⟨𝑂
+
⟩ (

𝑧

𝑟
+

)

𝑑−1

𝐹 (𝑧) , (24)

near the AdS boundary 𝑧 → 0 with 𝐹(0) = 1, 𝐹󸀠(0) = 0. The
trial variational function satisfies the following second-order
Sturm-Liouville self sdjoint differential equation:

[𝜇 (𝑧) 𝐹
󸀠

(𝑧)]
󸀠

− 𝑄 (𝑧) 𝐹 (𝑧) + (
𝜙
𝐵

𝑟
+

)

2

𝑃 (𝑧) 𝐹 (𝑧) = 0,

(25)
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where

𝜇 (𝑧) = 𝑧
2𝑑−2

(𝑧
𝑑−1

− 1) ,

𝑃 (𝑧) = 𝜇 (𝑧) (
1 − 𝑧
𝜂

1 − 𝑧𝑑−1
)

2

,

𝑄 (𝑧) = − 𝜇 (𝑧) [
(𝑑 − 1) (𝑑 − 2)

𝑧2
−
𝑑 − 1

𝑧

× (
2 + (𝑑 − 3) 𝑧

𝑑−1

𝑧 (1 − 𝑧𝑑−1)
+
𝑑 − 4

𝑧
)] ,

(26)

our strategy is to obtain the minimum value of 𝜙
𝐵
/𝑟
+
from

the minimization of the following functional:

Θ (𝛿, 𝑑) ≡ (
𝜙
𝐵

𝑟
+

)

2

Min
=

∫
1

0

(𝜇 (𝑧) 𝐹
󸀠

(𝑧)
2

+ 𝑄 (𝑧) 𝐹
2

(𝑧)) 𝑑𝑧

∫
1

0

𝑃 (𝑧) 𝐹2 (𝑧) 𝑑𝑧

.

(27)

Theminimum of the critical temperature 𝑇
𝑐
is obtained from

the 𝑇 = (𝑑 − 1)𝑟
+
/4𝜋. It reads

𝑇
𝑐
= 𝛾𝜌
𝜂+1

, (28)

and 𝛾 = ((𝑑 − 1)/4𝜋)((𝜙
𝐵
/𝑟
+
)Min)
−(𝜂+1). Here we take trial

function 𝐹(𝑧) = 1 − 𝛼𝑧
2 in (27). It is useful to set 𝜌 = 1.

The values of the critical temperature 𝑇
𝑐
for 𝑑 = 4, 5, by

minimizing the functional (27) with trial function 𝐹(𝑧) and
using (28) (in case 𝜌 = 1) are given by the following.

For 𝑑 = 4, 𝛿 = 1: 𝑇
𝑐
= 0.0844, for 𝛿 = 3/4, 𝑇

𝑐
=

0.1692.
For 𝑑 = 5, 𝛿 = 1: 𝑇

𝑐
= 0.01676, for 𝛿 = 3/4, 𝑇

𝑐
=

0.2503, for 𝛿 = 5/4, 𝑇
𝑐
= 0.0954.

These values are in good agreements with the numerical
values [50] and also coincide to the analytical values given in
[45].

5. Calculating the Critical Exponent

We begin from (22) by writing it near the critical point (CP)
and in limit 𝑇 → 𝑇

𝑐
. The first step is rewriting the solution

in a perturbative scheme with respect to the perturbation
parameter 𝜖 = ⟨𝑂

+
⟩
2, as it was described by Kanno [51]. Near

the CP, the solution of the field 𝜙 is written as

𝜙 (𝑧) = 𝜙
0
+ 𝜖𝜒 (𝑧) , (29)

where 𝜙
0
= 𝜅𝑇
𝑐
(1 − 𝑧

𝜂

). Using (24) and (29) in first order
with respect to the 𝑂(𝜖) we obtain the following ordinary
differential equation:

𝜒
󸀠󸀠

(𝑧) −
𝜂 − 1

𝑧
𝜒
󸀠

(𝑧) = 𝐸 (𝑧) , (30)

where

𝐸 (𝑧) =
𝐶
𝛿
𝑟
2

+
𝑧
−𝛿−2

𝐹
2

(𝑧)

𝜉𝑓 (𝑧)
𝜙
2

0
(𝜙
0
)
󸀠2(1−𝛿)

, 𝐹 (𝑧) |
𝑧→0

≈ 1.

(31)

Since 𝜙(𝑧) = (𝐴(𝑇
𝑐
)
𝜂+1

/𝑇
𝜂

)(1 − 𝑧
𝜂

), 𝐴 = (𝑑 − 1)/4𝜋

writing the solution for 𝜙 in 𝑧 = 0, we have

𝜙 (0) = 𝜙
0
(0) + 𝜖𝜒 (0) . (32)

The general solution for (30) is given by

𝜒 (𝑧) = √𝑧 (𝑐
1
𝐽
1
(𝑥) + 𝑐

2
𝑌
1
(𝑥))

+ √𝑧𝜋𝜂
2−2𝛿

𝑇
𝑐

4−2𝛿

𝜅
4−2𝛿

𝑓 (𝑥) ,

(33)

with

𝑓 (𝑥) = 𝛼𝐽
1
(𝑥) ∫

𝑌
1
(𝑥) (𝑧

𝜂

− 1)
2

𝑧
2𝜂−1/2+𝛿−2𝛿𝜂

𝑧𝑑 − 𝑧
𝑑𝑧

+ 𝛽𝑌
1
(𝑥) ∫

𝐽
1
(𝑥) (𝑧

𝜂

− 1)
2

𝑧
2𝜂−1/2+𝛿−2𝛿𝜂

𝑧𝑑 − 𝑧
𝑑𝑧.

(34)

Here, 𝑥 = 2√(1 − 𝜂)𝑧, {𝐽
𝑛
(𝑥), 𝑌
𝑛
(𝑥)} are Bessel functions of

first and second kinds.
Finding the value of 𝜒(0) from (33), and solving it for

⟨𝑂
+
⟩ = √𝜖, we obtain (we take 𝑇

𝑐
= 1)

⟨𝑂
+
⟩ ∝ 𝑇

𝑑−𝛿−𝜂/2

[1 − 𝑇
𝜂

]
1/2

. (35)

When the power 𝛿 decreases, the value of the ⟨𝑂
+
⟩

increases. Thus we conclude that the effect of the power 𝛿 in
𝑑 = 4model is in the direction of the increase of ⟨𝑂

+
⟩.

However, in the five dimensions, the analysis is a little
bit different. As we observe, in 𝑑 = 5, when the power 𝛿
increases, the value of the ⟨𝑂

+
⟩ increases. Thus, we can say

that the effect of the power 𝛿 in 𝑑 = 5model is in the direction
of the increase of ⟨𝑂

+
⟩.

6. Calculating the Low Temperature DC
Conductivity

In this section, we compute the low-temperature DC conduc-
tivity.We concentrate on the general space time dimension 𝑑,
and we will try to calculate the conductivity 𝜎 as a function
of the rescaled frequency as follows:

𝜔̂ =
𝜔

⟨𝑂
+
⟩
1/Δ

, Δ = 𝑑 − 1. (36)

In this limit, the asymptotic form of the scalar field is

𝜓 (𝑧) =
𝑏
𝑑−1

√2
𝑧
𝑑−1

𝐹 (𝑧) , 𝑏 ≡ ⟨𝑂
+
⟩ . (37)

We follow the method in [18]. Assuming that there
exists an external magnetic field 𝐴(𝑟, 𝑡) = 𝐴(𝑟)𝑒

−𝑖𝜔𝑡.
Note that here, the applied Maxwell field is linear. It is
not related to the nonlinear Maxwell’s field in the bulk
action. In fact, the nonlinearity of the Maxwell field now
is stored in the background metric. As we know, the field
equations have some terms which involve the exponent 𝛿.
This parameter denotes the nonlinearity, which is hidden
in the structure of the background metric and through it.
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Moreover, it diffuses to the dynamics of the scalar field and
the Abelian gauge field 𝑈(1), so to compute the conductivity
the applied external magnetic field is linear and satisfies the
usual linear Maxwell field 𝐹;𝜇

𝜇] = 0, which is nothing but the
linear wave equation.

The linear wave equation for this field reduces to

−
𝑑
2

𝐴

𝑑𝑟
2
+ 𝑉 (𝑟) 𝐴 = 𝜔

2

𝐴. (38)

Equation (38) is written in the Schrodinger’s form
and in terms of the new tortoise coordinate 𝑟 =

−(1/𝑟
+
)Σ
∞

𝑛=0
(𝑧
𝑛(𝑑−1)+1

/(𝑛(𝑑 − 1) + 1)). The horizon 𝑟 = 𝑟
+

is located at 𝑧 = 1 or 𝑟 → −∞. Here the potential is
𝑉 = 2𝑓(𝑟)𝜓

2

(𝑟). The ingoing waves in horizon behave as a
boundary condition (BC) for solving this wave equation (38)
read as

𝐴 ∼ 𝑒
−𝑖𝜔𝑟

∼ (1 − 𝑧)
−𝑖𝜔/(𝑑−1)𝑟

+ . (39)

The electromagnetic wave equation (38), in the coordinate 𝑧,
reads

𝐴
𝑧𝑧
+ (

2

𝑧
+
𝑓
󸀠

2𝑓
)𝐴
𝑧
+ (−

2𝑟
2

+
𝜓(𝑧)
2

𝑧4
+
𝜔
2

𝑟
2

+

𝑧4𝑓
)𝐴 = 0. (40)

By replacing (37), we obtain

𝐴
𝑧𝑧
+ 𝑝
1
(𝑧) 𝐴
𝑧
+ 𝑄
1
(𝑧) 𝐴 = 0,

𝑝
1
(𝑧) = (

2

𝑧
+
𝑓
󸀠

2𝑓
) ,

𝑄
1
(𝑧) = −

𝑟
2

+
𝑏
2(𝑑−1)

𝑧
2(𝑑−1)

𝐹
2

(𝑧)

𝑧4
+
𝜔
2

𝑟
2

+

𝑧4𝑓
.

(41)

To keep the boundary conditions, we put

𝐴 = (1 − 𝑧)
−𝑖𝜔/(𝑑−1)𝑟

+𝑒
−𝑖𝜔𝑧/(𝑑−1)𝑟

+Θ (𝑧) . (42)

Substituting this ansatz in (41), we obtain

Θ
󸀠󸀠

+ 𝑃 (𝑧)Θ
󸀠

+ 𝑄 (𝑧)Θ = 0, (43)

𝑃 (𝑧) =
𝑟
+
(1 − 𝑧) (𝑑 − 1) 𝑝

1
(𝑧) + 2𝑖𝜔𝑧

𝑟
+
(1 − 𝑧) (𝑑 − 1)

, (44)

𝑄 (𝑧) = (𝑖𝑧 (1 − 𝑧) 𝜔𝑟
+
(𝑑 − 1) 𝑝

1
(𝑧)

+ 𝑟
2

+
(𝑑 − 1)

2

(1 − 𝑧)
2

𝑄
1
(𝑧)

+𝜔 (𝑖 (𝑑 − 1) 𝑟
+
− 𝜔𝑧
2

))

× (𝑟
2

+
(𝑑 − 1)

2

(1 − 𝑧)
2

)
−1

.

(45)

By imposing the regularity condition on wave function Θ

at the black hole horizon 𝑧 = 1, we obtain the following
auxiliary boundary condition:

0 = Θ
󸀠

(1) lim
𝑧→1

(
1

2
𝑟
+
(1 − 𝑧) (𝑑 − 1) 𝑝

1
(𝑧) + 𝑖𝜔𝑧)

+ Θ (1) lim
𝑧→1

(𝑖𝑧 (1 − 𝑧) 𝜔𝑟
+
(𝑑 − 1) 𝑝

1
(𝑧)

+ 𝑟
2

+
(𝑑 − 1)

2

(1 − 𝑧)
2

𝑄
1
(𝑧)

+𝜔 (𝑖 (𝑑 − 1) 𝑟
+
− 𝜔𝑧
2

)) .

(46)

Explicitly, by computing the limits, we have

𝑖 (−𝑟
+
+ 𝑖𝜔 + 𝑟

+
𝑑) 𝜔Θ (1) = 0. (47)

One possibility is Θ(1) = 0. Another 𝜔 = 𝑖𝑟
+
(𝑑 − 1),but the

last case from (39) leads to the

𝐴 ∼ 𝑒
−𝑖𝜔𝑟

∼, (1 − 𝑧) (48)

which has no meaning as the ingoing wave toward the
horizon, so we impose Θ(1) = 0. Since we are working in
the low temperature limit, we take the limit 𝑏 → ∞, so we
rescale the coordinate 𝑧 by 𝑧 → 𝑧/𝑏. Also we must put one
suitable trial form for𝐹(𝑧), for the case ofΔ = 𝑑−1 > 3/2, 𝑑 >

2 we put 𝐹(𝑧/𝑏) → 𝐹(0) = 1. We rescale (43), so we obtain

Θ
󸀠󸀠

+ 𝑏𝑃(
𝑧

𝑏
)Θ
󸀠

+ 𝑏
2

𝑄(
𝑧

𝑏
)Θ = 0,

󸀠

= 𝑑/𝑑 (𝑧/𝑏) . (49)

Finally, we obtain

Θ
󸀠󸀠

+
𝑧

𝑟2
+

(1 +
2𝑖𝑟
+
𝜔̂

𝑑 − 1
)Θ
󸀠

+
3𝑖𝜔̂

𝑟
+
(𝑑 − 1)

Θ = 0. (50)

The general solution for (50) reads

Θ (𝑧) = 𝑧e−𝑧
2

(1/2+𝑖𝜔̂𝑟
+

)/𝑟
2

+

× (𝑐
+
𝑀(𝜇, ],

1

2

(1 + 2𝑖𝜔̂𝑟
+
) 𝑧
2

𝑟2
+

)

+𝑐
−
𝑈(𝜇, ],

(1 + 2𝑖𝜔̂𝑟
+
) 𝑧
2

𝑟2
+

))

(51)

𝜇 =
1

2

2𝑑 − 2 + 4𝑖𝜔̂𝑟
+
𝑑 − 7𝑖𝜔̂𝑟

+

(1 + 2𝑖𝜔̂𝑟
+
) (𝑑 − 1)

, ] =
3

2
. (52)

The DC conductivity in the low temperature limit is defined
by

𝜎 (𝜔̂) =
𝑖

𝜔̂

Θ
󸀠

(−𝜔̂
2

)

Θ (−𝜔̂
2

)

. (53)

We need the asymptotic limit of (51). Indeed, we guess that
lim
𝑧→∞

Θ(𝑧) ≈ Θ(−𝜔̂
2

) where here the 𝜔̂ is the quasinormal
modes and locates on the real axis, so we guessRe[𝜎(𝜔̂)] = 0
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except at the poles of Im[𝜎(𝜔̂)] where asRe[𝜎(𝜔̂)] ≈ 𝛿(𝜔̂).
First, by imposing Θ(1) = 0 we have

Θ (𝑧) = 𝑐
−

𝑧e−𝑧
2

(1/2+𝑖𝜔̂𝑟
+

)/𝑟
2

+

𝑈 (𝜇, ], (1 + 2 𝑖𝜔̂ 𝑟
+
) /𝑟2
+
)

× [𝑀(𝜇, ],
(1 + 2𝑖𝜔̂𝑟

+
) 𝑧
2

𝑟2
+

)𝑈(𝜇, ],
1 + 2𝑖𝜔̂𝑟

+

𝑟2
+

)

− 𝑈(𝜇, ],
(1 + 2𝑖𝜔̂𝑟

+
) 𝑧
2

𝑟2
+

)

×𝑀(𝜇, ],
1 + 2𝑖𝜔̂𝑟

+

𝑟2
+

)] .

(54)

Here 𝑀(𝜇, ], 𝑥), 𝑈(𝜇, ], 𝑥) denote the Kummer functions
[52].

The quasinormal modes are the solutions of the following
equation:

𝑈(𝜇, ],
1 + 2𝑖𝜔̂𝑟

+

𝑟2
+

) = 𝑀(𝜇, ],
1 + 2𝑖𝜔̂𝑟

+

𝑟2
+

) , (55)

which has no closed, analytical solution and can be solved just
numerically.

7. Calculating the Zero Temperature
Conductivity

In this section, we compute analytically the conductivity 𝜎(𝜔̂)
in the zero temperature 𝑇 = 0 limit. This case corresponds to
the limiting case 𝑏 → ∞. We begin by writing (38) in the
coordinate 𝑧󸀠 = 𝑧/𝑏

𝐴
𝑧
󸀠

𝑧
󸀠 +

1

2𝑧󸀠
[

[

2 − (𝑑 + 1) (𝑏𝑧
󸀠

)
𝑑−1

1 − (𝑏𝑧󸀠)
𝑑−1

]

]

× 𝐴
𝑧
󸀠 +

𝑟
2

+

(𝑏𝑧󸀠)
4
[

𝑏
2

𝑧
󸀠2

𝜔̂
2

1 − (𝑏𝑧󸀠)
𝑑−1

−(𝑏
2

𝑧
󸀠

)
2(𝑑−1)

𝐹(𝑏𝑧
󸀠

)
2

]𝐴 = 0.

(56)

By taking the limit 𝑏 → ∞ we have

𝐴
𝑧
󸀠

𝑧
󸀠 +

𝑑 + 1

2𝑧󸀠
𝐴
𝑧
󸀠 + 𝑟
2

+
[−

𝜔̂
2

(𝑏𝑧󸀠)
𝑑+1

− 𝑏
4(𝑑−2)

𝑧
󸀠2(𝑑−3)

]𝐴 = 0.

(57)

In (57) we set lim
𝑏→∞

𝐹(𝑏𝑧
󸀠

) = 𝐹(0) = 1. The closed form
of the exact solution for (57) depends on the value of the 𝑑.

Belowwe list the solutions for special dimensions𝑑 = 2,𝑑 = 3

as follows:

𝐴(𝑧
󸀠

) = 𝐶𝑧
󸀠−1/4

𝑁
−√1+16𝑟

2

+

/2

(
2𝑖𝜔̂𝑟
+

𝑏3/2√𝑧󸀠
) , 𝑑 = 2 (58)

𝐴(𝑧
󸀠

) =

𝐻(0, 𝛽, 𝛿, 𝛾, (𝑧
󸀠2

+ 1) / (𝑧
󸀠2

− 1))

√𝑧󸀠

× (𝑐
1
+ 𝑐
2
∫

𝑑𝑧
󸀠

𝑧𝐻 (0, 𝛽, 𝛿, 𝛾, (𝑧󸀠2 + 1) / (𝑧󸀠2 − 1))
) ,

𝑑 = 3.

(59)

Here

𝛽 = −
1

4

4𝑏
8

𝑟
2

+
+ 𝑏
4

+ 4𝑟
2

+
𝜔̂
2

𝑏4
,

𝛿 = −2

𝑟
2

+
(𝑏
8

− 𝜔̂
2

)

𝑏4
,

𝛾 = −
1

4

4𝑟
2

+
𝜔̂
2

− 𝑏
4

+ 4𝑏
8

𝑟
2

+

𝑏4
.

(60)

Here 𝑁](𝑥) is the second kind of the Bessel function and
𝐻(0, 𝛽, 𝛿, 𝛾, 𝑥) denotes the Heun double confluent function
[53], by expending (58), (59) in series in the form

𝐴(𝑧
󸀠

) = 𝐴
0
+ 𝐴
2
(𝑏𝑧
󸀠

)
2

− ⋅ ⋅ ⋅ (61)

The conductivity can be computed via the following simple
formula:

𝜎 (𝜔̂) =
2

𝑖𝜔̂

𝐴
2

𝐴
0

+
𝑖𝜔̂

2
. (62)

So by computing the asymptotic series, the conductivity will
be determined by the analytical expression.

It is appropriate here to present the explicit form of the
conductivity for one case. We choose the case given by (58).
In the zero temperature limit, we treat the horizon size very
tiny, so in application we take√1 + 16𝑟2

+
≈ 1. Also, it is better

we define 𝑥 = 2𝜔̂𝑟
+
/𝑏
3/2√𝑧󸀠, which by the definition of the 𝑧󸀠

reads as 𝑥 = 2𝜔𝑟
+
/𝑏√𝑧. When 𝑏 → ∞, then 𝑥 ≪ 1, so, we

can expand the Bessel function in terms of the infinitesimal
argument 𝑥, and hence rewrite (58) as the following form:

𝐴 (𝑧) = 𝐶
4

√
𝑏

𝑧
𝑁
−] (𝑖𝑥) , ] =

1

2
, 𝑥 =

2𝜔𝑟
+

𝑏√𝑧
. (63)

Remembering the following identities

𝑁
−] (𝑖𝑥) =

𝑖
−]−1

𝐼
−] (𝑥) cosh (]𝑥) − 𝑖

]−1
𝐼]

sinh (]𝑥)
. (64)
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Figure 1: Variation of the log(Im[𝜎(𝜔̂)]) for zero temperature limit
in 𝑑 = 2.

Also, we know that

𝐼
1/2

(𝑥) = √
2

𝜋𝑥
cosh (𝑥) , 𝐼

−(1/2)
(𝑥) = √

2

𝜋𝑥
sinh (𝑥) ,

(65)

so we have

𝑁
−(1/2)

(𝑖𝑥) = √
2

𝑖𝜋𝑥
[
𝑖 cosh (𝑥) cosh (𝑥/2) − sinh (𝑥)

sinh (𝑥/2)
] .

(66)

Also, in limit 𝑥 ≪ 1,we have

𝑖 cosh (𝑥) cosh (𝑥/2) − sinh (𝑥)
sinh (𝑥/2)

=
2𝑖

𝑥
− 2 +

7

6
𝑖𝑥 −

1

4
𝑥
2

+
59

360
𝑖𝑥
3

+ 𝑂 (𝑥
4

) .

(67)

So for the electromagnetic field we have

𝐴 (𝑧) ≈ 𝐶

4

√𝑏

√𝑖𝜋𝑟
+
𝜔̂
[
𝑖√𝑧

𝜔̂𝑟
+

− 2 +
7

3
𝑖
𝜔̂𝑟
+

√𝑧
−
𝜔̂
2

𝑟
2

+

𝑧
] . (68)

Finally, we obtain the conductivity using (62) by the following
simple formula:

𝜎 (𝜔̂) =
1

2𝑖𝜔̂
+
𝑖𝜔̂

2
, (69)

where as we guess Re[𝜎(𝜔̂)] = 0. Figure 1 shows Im[𝜎(𝜔̂)]

as a function of the 𝜔̂ for zero temperature case and in 𝑑 =

2. Equation (69) gives the expression for DC conductivity in
the zero temperature limit in AdS

2
/CFT
1
model. Indeed, it is

comparable with the numerical results of the previous papers
about one dimensional holographic superconductors [54].

8. Conclusion

In this paper, we investigated the analytical properties of
a holographic superconductor with power Maxwell’s field.
We studied the problem in the probe limit. We observed
that it is possible to find the critical temperature 𝑇

𝑐
and the

condensation ⟨𝑂
+
⟩ and the conductivity 𝜎(𝜔) via Sturm-

Liouville variational approach. We concluded that in 𝑑 = 4,
when the power 𝛿 decreases, the value of the ⟨𝑂

+
⟩ increases.

Thus we can say that the effect of the power 𝛿 in 𝑑 = 4model
is in the direction of the increase of ⟨𝑂

+
⟩. In 𝑑 = 5 when the

power 𝛿 increases, the value of the ⟨𝑂
+
⟩ increases. Thus, we

can say that the effect of the power 𝛿 in 𝑑 = 5 model is in
the direction of the increase of ⟨𝑂

+
⟩. Further, we analytically

deduced the low temperature and the zero temperature DC
conductivity 𝜎 as a function of the 𝜔̂ = 𝜔/⟨𝑂

+
⟩
1/Δ. Our

work helps to give a better understanding of some unfamiliar
effects of the holographic superconductors both in different
space dimensions and nonlinearity in Maxwell’s strength
field.
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