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This paper is dedicated to study weighted L’ inequalities for pseudodifferential operators with amplitudes and their commutators
by using the new class of weights A}’ and the new BMO function space BMO,, which are larger than the Muckenhoupt class of
weights A, and classical BMO space BMO, respectively. The obtained results therefore improve substantially some well-known

results.

1. Introduction and the Main Results

For f € C;°(R") a pseudodifferential operator given formally
by

1

T.f ()= 5

”W“(x)y’ﬁ)ei(x*y’&f(y)dyd& (1)

where the amplitude a satisfies certain growth conditions.
The boundedness of pseudodifferential operators has been
studied extensively by many mathematicians; see, for exam-
ple, [1-7] and the references therein. One of the most inter-
esting problems is studying the weighted norm inequalities
for pseudodifferential operators and their commutators with
BMO function; see, for example, [5-9].

In this paper we consider the following classes of symbols

and amplitudes a (in what follows we set (x) = (1 + |x|? Y )

Definition 1. Leta : R x R"x R" — R"andm € R,
p€[0,1] and § € [0,1].

(a) Wesaya € A;rf(; when for each triple of multi-indices
«a, 3, and y there exists a constant C such that

080800 a (x, y.8)| < C(g)™ PO, @)

(b) We say a € L™ A5 when for each triple of multi-
indices e, 3, and y there exists a constant C such that
o8 (.3 8)], < O™ )

Definition 2. Leta : R"xR" - R"andm € R, p € [0,1]
and § € [0,1].

(a) Wesaya € S:,'fa when for each pair of multi-indices «
and f3 there exists a constant C such that

0508 (x, &)| < C(gy™ PP, (4)

(b) Wesaya € LOOSZ1 when for each multi-indices « there
exists a constant C such that

|05 (&) .. < ()™, -

It is easy to see that S5 ¢ Al LS < LT AP,

Spe C LS), and Afls ¢ L™ A7, The classes A7y and
S:,rf(; were studied in [3, 8]. For further information about
these two classes, we refer the reader to, for example, [3, 10].
The class LOOS:," was introduced by [11], and it is the natural
generalization of the class S:,rf(;. This class is much rougher

than that considered in [6, 7]. The amplitude class L Al



in Definition 1 is rough in the x variable, but smooth in the
y variable. This is smaller than the class LOOAZ1 introduced in
[5] but includes the class A::f@.

The aim of this paper is to study the weighted norm
inequalities for pseudodifferential operators T, and their
commutators by using the new BMO functions and the new
class of weights. Firstly, we would like to give brief definitions
on the new class of weights and the new BMO function space
(we refer to Section 2 for details).

The new classes of weights A;O = U9>0A?7 for p > 1, where

Ag, 0 > 0, is the set of those weights satistying

(o) ([ o) zcmaeny  ©

for all ball B = B(xp,7p). We denote that A = U,  AY.
It is easy to see that the new class A} is strictly larger than
the Muckenhoupt class A,,. Indeed, for example, the weight
w(x) = 1+|x|" withy > n(p— 1) belongs to the class A;O, but
it is not in AP’ for p > 1, see, for example, [12].

The new BMO space BMOg with 0 > 0 is defined as a set
of all locally integrable functions b satistying

1

5 | O -bldyscaen), @)

where B = B(xp,rg) and by = (1/|B|) fB b. A norm for

b € BMOy, denoted by [|bllg, is given by the infimum of

the constants satisfying (12). Clearly BMOg ¢ BMOg, for

0, <0, and BMO, = BMO. We define BMO_, = Uy,(BMOj.
Our main result is the following theorem.

Theorem 3. Let a € LY A7s withm < n(p — 1) ora €

L® A5, 8 € [0,1]. If T, is bounded on L* forall 1 < p < oo,
then

(a) T, is bounded on Lp(w)for l<p<ooandw € A;O;

(b) for any b € BMO,,, the commutator [b,T,] bounded
on LP(w) for 1 < p < coandw € A

In particular, the obtained results in (a) and (b) still hold
forw(x) =1+ |x|" withy > n(p - 1).

We would like to specify some applications of Theorem 3.

In [8], the author studied the weighted L inequalities of
T, when the symbol a belongs to the class S(l)ﬁ C LOOA(I),(;
with 8 € (0,1). It was proved that T, is bounded on L?(w)
for1 < p < co,w € A,. Recently, the author in [9] showed
that T, and its commutator with a BMO function [b, T,] are
bounded on LP(w) for 1 < p < ooandw € A;o by the
different approach. Here, by using Theorem 3, we not only
reobtain the boundedness of T, on L?(w) for 1 < p < 0o and
w € A;O but also obtain the new result on the boundedness
of its commutator with BMO_, functions.

Corollary 4. Leta € S(l))(; C LOOA?),;, 0 < & < 1. Then we have
the following:

(i) T, is bounded on Lp(w)for l<p<ooandw € A;O;
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(ii) for each b € BMO,,, the commutator [b,T,] is
bounded on L¥ (w) for 1 < p < coand w € A;O.

In particular, the obtained results in (i) and (ii) still hold for
w(x) =1+ |x|" withy > n(p - 1).

Now we consider the class LS} If a € LS with p €
[0,1] and m < n(p — 1), then the authors in [5] proved that
the pseudodifferential operator T, and its commutators with
BMO functions [b, T',] are bounded on LP(w)forl < p<oo
and w € AP; see [5, Theorems 3.3 and 4.5]. So, Theorem 3
leads us to the following result.

Corollary 5. Leta € LOOSZ1 with p € [0,1] andm < n(p - 1).
Then we have the following:

(i) T, is bounded on L (w) for 1 < p < co and w € A;O;

(ii) for each b € BMO,,, the commutator [b,T,] is
bounded on L¥ (w) for 1 < p < co and w € A;O.

In particular, the obtained results in (i) and (ii) still hold for
w(x) =1+ |x|" withy > n(p - 1).

It was proved in [5, Theorem 3.7] that ifa € L A”' with
0<p<landm < n(p-1),then T, and [b,T,] are bounded
on LP(w) for1 < p < coand w € A, with b € BMO.
Therefore, in the light of Theorem 3, we have the following:

Corollary 6. Leta € L™ Ay with0 < p < Landm < n(p-1).
Then we have the following:

(i) T, is bounded on L (w) for 1 < p < co and w € Ago;

(ii) for each b € BMO,,, the commutator [b,T,] is
bounded on LF(w) for 1 < p < co andw € Ay,

In particular, the obtained results in (i) and (ii) still hold for
w(x) =1+ |x|" withy > n(p - 1).

For smooth amplitudes, we have the following result.

Corollary 7. Leta € Ang_l) with0 < p<1,0<8 < 1. Then
we have the following:

(i) T, is bounded on Lp(w)for l<p<ooandw e A;O;

(ii) for each b € BMO,,, the commutator [b,T,] is
bounded on L¥ (w) for 1 < p < co and w € AY.

In particular, the obtained results in (i) and (ii) still hold for
w(x) =1+ |x|" withy > n(p - 1).

Proof. The remark in [1, page 11] tells us that T', is bounded
on Lf for1 < p < o0o. Thanks to Theorem 3, we conclude
that T, and [b,T,], b € BMO,, are bounded on L?(w) for
l<p<coandwe A} O

The outline of the paper is as follows. In Section 2, we first
recall some definitions of the new class of weights AEO and
the new BMO function spaces BMO,,. Then we also review
some basic properties concerning A‘) and BMO,,. Section 3
represents some kernel estimates for the pseudodifferential
operator T,. The proof of the main result will be given in
Section 4.
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2. Preliminaries

To simplify notation, we will often just use B for B(xg, 1)
and |E| for the measure of E for any measurable subset E C
R". Also given A > 0, we will write AB for the A-dilated ball,
which is the ball with the same center as B and with radius
75 = Arp. For each ball B ¢ R" we set that

Sy(B)=B,  S;(B)=2'B\2/"'B for jeN. (8)
2.1. The New Class of Weights and New BMO Function
Spaces. Recently, in [12], a new class of weights associated
to Schrodinger operators L := —A + V, where the potential

V € RH,,, the reverse Holder class has been introduced.

According to [12], the authors defined the new classes of
weights A}L) = U(,ZOA}L,’6 for p > 1, where AII;’B, 0 > 0, is the set

of those weights satisfying

(L w)l/PUB wl/(‘”))l/p, <C|B| <1 + ﬁ)e )

for all ball B = B(x, r). We denote that Aéo = Up21A§, where
the critical radius function p(-) is defined by

p(x)zsup{r>0:%J Vsl}, x€R". (10)
r’ B(x,r)

In this paper, we consider the particular case when p(-) =
1. In this situation the new classes of weights are defined by
A;O = U920A9 for p > 1, where Ag,@ > 0 is the set of those
weights satisfging

(JB w)l/P<JB w1/(p1)>1/p' <CIBI(1+ rB)e 11)

for all ball B = B(xp, ). We denote that A% = U, AD.

It is easy to see that the new class A} is larger than the
Muckenhoupt class A . The following properties hold for the
new classes A;O; see [12, Proposition 5].

Proposition 8. The following statements hold:
(i) Ay c AP for 1< p<q<oo,

(ii) ifw € A;O with p > 1, then there exists € > 0 such that

w € A}, Consequently, A’ = U, , AL,
Similarly, by adapting the ideas to [13], the new BMO
space BMO, with 6 > 0 is defined as a set of all locally

integrable functions b satisfying

1 0
5 O -baldyscaen), a

where B = B(xp,rg) and by = (1/|B]) JB b. A norm for
b € BMOy, denoted by |bllg, is given by the infimum of
the constants satisfying (12). Clearly BMOy ¢ BMOy for
0, < 0, and BMO,; = BMO. We define BMO_, = Uy, ,BMOj.
The following result can be considered to be a variant of
John-Nirenberg inequality for the spaces BMOy.

Proposition 9. Let 0 > 0, s > 1. If b € BMOy, then for all
balls B

(i)
1 s 1/s 9
<ﬁ JB b (y) - bs dx> < lblg(1+r)s  (13)
(i)
1 1/s .
<w LkB b (y) - bBlst> < Ibllgk(1 +25r5)" (14)
forallk € N.

The proof is similar (even easier) to [13, Lemma 1 and
Proposition 3] and hence we omit details.

2.2. Weighted Estimates for Some Localized Operators. A ball
of the form B(xp, 1) is called a critical ball if ry = 1. We have
the following result.

Proposition 10. There exists a sequence of points xj,j > 1
in R" so that the family of critical balls {Qj}j where Qj :=
B(xj,1), j 2 1 satisfies the following:

() v;Q; =R,
(ii) there exists a constant C such that for any o > 1,
n
2 Xoq, < Co".

Note that the more general version of Proposition 10 is
obtained by [14]. However, in our particular situation, for
convenience, we would like to give a simple proof of this
proposition.

Proof. Let us consider the family of balls {B(x,1/5) : x €
R"}. Using Vitali covering lemma, we can pick the subfamily
of balls {Bj = B(xj, 1/5) : j = 1} so that {Qj}j is pairwise
disjoint and R" ¢ U;Q; where Q; = 5B; = B(x}, 1). This
gives (i).

To prove (ii), pick any x € R". Let J be the set of all
indices j so that x € 0Q;. Note that if x € oQ;, then
0Q; ¢ B(x, 20).Therefore,B(xj, 1/5) ¢ B(x,20)forall j € J.
Since {B(x]-, 1/5)}]‘&3 is pairwise disjoint, Zje] IB(xj, 1/5)| <
|B(x,20)|. This is equivalent to that |J|/5" < Co”. Hence,
|3| < Co”. This completes our proof. O

We consider the following maximal functions for g €
L, (R" and x € R":

1
Mloc,ag (X) = sup J' |g| >
x€Be%RB, B[ JB

(15)

1
M{_g(x)= sup — L lg - gsl>

x€BeRB, |B|

where B, = {B(y,r): y € R" and r < a}.



Also, given a ball Q, we define the following maximal
functions for g € L, (R") and x € Q:

Mpng(x)= su J ,
Q9 xeBeg(Q)anQl BnQ|g|

(16)

§ 1
Mg (x)= sup J - ,
Q9 xeBeg(@) BN Q| JBnq |g gBmQ|

where #(Q) = {B(y,r) : y € Q,r > 0}.
We have the following lemma.

Lemma 11. For 1 < p < 0o, let {Q;}; be a sequence of balls
as in Proposition 10. Then

LRn |Mige,1129 (0w (x) dx

< | 1Ml 0l w0 dx )

2@ o)

forall g € L, (R") and w € A,

Proof. We adapt the argument in [13, Lemma 2] to our
present situation.
By Proposition 10, we have

J;R" |M10c,1/2g (x)|Pw (x) dx
(18)
= CZ J ‘Mloc,l/zg (x)‘pw (x) dx.
k7%

It can be verified that, for x € Qi M ;p9(x) <
Mg, (9X2q,)- Note that since gy, is supported in 2Q,

operators M, and M ng are Hardy-Littlewood and sharp
maximal functions defined in 2Q), viewed as a space of homo-
geneous type with the Euclidean metric and the Lebesgues
measure restricted to 2Qy. Moreover, by definition of Ag,
if w € A, then w € A, (2Qy), where A (2Q;) =
Ups1A45(2Qk), and A,(2Qy) is the class of Muckenhoupt
weights on the spaces of homogeneous type 2Q.. Moreover,
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dueto [12, Lemma 5], [w]Aw(sz) < Cforall k > 1. Therefore,
using Proposition 3.4 in [15] gives

LR” [Mige.129 (X)|Pw (x) dx

s CZ j |Mloc,1/29 (x)|Pw (x)dx
k"%
) C% ij [Maq, (9x20,) ()] w () dx (19)

< C% LQk ‘Mng (gXZQk) (x)|Pw (x)dx

p
+CZw 2Qk)(|2Q |J |g(x)|dx> .

To complete the proof, we need only to check that
2Qk(g)(sz)(x) < CM?O“(g)(x) for x € 2Q,.. We have

§ 1
M (x) = su —_—
s (9) BEEI(ZQI;):Bax |BN2Qy|

IBHZQk |f - anZQk| .

(20)
Ifrg > 4, due to roq, = 2,2Q; C B. Hence, in this situation,
we have

1
|BN2Qy| JBszk |f‘f3n2Qk| |Q | LQ |f szk‘ a1

< Mfoczl (g) (x) :

Otherwise, if rz < 4, it is obvious that |B N 2Q,| = |B|. So we
have

1
AT by, 1~
1
<2 J - 22
|anQk| Bn2Q, |f fBl ( )
This completes our proof. O

Let N > 0. For kx > 1and p > 1, we define the following
functions for g € Lj,.(R") and x € R™:

Ggpf (x)
1/p
-Nk p
R J f@fdz |
Qox;Q is critical g < |2kQ| | |
(23)
where Q = Q.

When « = 1, we write GY instead of G1 . The following

result gives the weighted estimates for G, ,
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Proposition 12. Let p > s > 1 and w € A% 0 > 0. Then we

pls
have

"GKN,sf"Lp(w) S "f"LP(w) (24)

provided that N > 0/s + n/p.

Without loss of generality, we assume that ¥ = 1. Assume
that Q = B(x,, 1). For x € Q, Q ¢ 2B(x, 1). This implies that

Gy f (%)

< -Nk 1 s B (25)
= Ck;f < ‘ZkB (x, 1)| JBk(x,l) lf (Z)| dz) ’

where B, (x,1) = B(x, 2k+1).

Let {Q;} be the family of critical balls given by Proposition
10. Note that if x € Q) Bi(x,1) € Q? where QI; = 2k+2Qj.
These estimates and Holder’s inequalities give

G5 s
00 pls
-Nk N
<2 @J (|2kB(x 1)\Lk f (Z)'dz>
1/p
xw(x)dx)
gcifm
k=0

1/p

pls
x<ZJ (|2kQ]‘J If (z )|dz> w(x)dx)
1/p
PR S w(Qj)( : )P/S
L <;|2"Qj\p“ o

k=

= ciz-Nk ZM(J w—(p/s)’/<p/s>)(P [IeF)

k=0
1/p
x(J . |f(z)|Pw(z)dz> ) .
Qj

Sincew € Ag /s» by definition of the classes A?,, we have

k ~(p/9) 1(pls)
Qi w
Kk
w ( j o
J

(26)

(pI)(pls)

< C|Q | JKOX(p[s)

(27)

This together with (26) gives

AR

1/p
< szk(N9/$)<z J |f (Z)|Pw (2) dZ)
k Q; (28)

j

<CY 2 D £y,
k

< Clfllerw)

This completes our proof.
For a family of balls {Q}, given by Proposition 10, we
define the operator M, s > 1, as

Msf = ;XQ,(MS (fXék) > (29)

where Q; = 8Q; and M,f = M(|f[)"”* with M being the

Hardy-Littlewood maximal function. We have the following
result.

Proposition 13. If p > s> landw € A% 0> 0, then M, is

bounded on L (w).

pls

Proof. We have

Jan |M5f (x)|Pw (x)dx = Z J-Q. |MS (fxék)|pw (x) dx.

j
(30)

For each k, if we consider Q; as a space of homogeneous
type with the Euclidean metric and the Lebesgues measure
restricted to Qy, then w € Ap/s(Qk). Moreover, it can be
verified that

17 (36w, < M lrway 6D

and the constant C is independent of k.
Therefore, by (ii) of Proposition 10,

Jo [P ewar s [ 1y eopueods
(32)
<Clflly,

This completes our proof. O

3. Some Kernel Estimates

Let g, : R" — Rbeasmooth radial function which is equal
to 1 on the unit ball centered at origin and supported on its

concentric double. Set ¢(§) = ¢ (&) — ¢,(2¢) and ¢, (§) =
(p(Z_kE). Then, we have

Yo®)=1 VEeR" (33)
k=0



and supp ¢, € {£: 2kl < €] < Zk“} for all kK > 1. Moreover,
for any multi-index « and N > 0, we have

|08, (©)] < c,27. (34)
Lemma 14. Let a € LY Ajs withm € R, p € [0,1] and
0 € [0,1]. Let a(x, ¥, &) = a(x, y,§)¢,(§) for k > 0.
(a) Foreach? >0,

2| U ai (x, y,8) ¢ F8 dE| < coklmm=pY), (35)

(b) Ifa € LOOA;% withm < n(p — 1) and p,8 € [0,1],

then, for each N > 0, there exist €, € > 050 that for
anyball BC R", y,y € B, and x € S;(B), j = 2 so that

[ o (o8 €099 - a (x5, 470
(36)

< C27(2ry) " min {1, (erB)_N} g

(c) Ifa e LOOA(I),(;, S € [0,1], then there exist €, € > 050
that for any ball B ¢ R", y,y € B, and x € S;(B),
j =2 so that

|J'ak (%, 3,£) €0 g, (x,7,8) y5>d£|

E
< C2*(27ry) " min {1, (2/rp) "} (2475)°
as long as ZkrB < 1; and
[ g (o8 €79 - g (0 7,8) 7Pt
(38)

rB)_n min {1, (2jrB)_N} (ZkrB){’

as long as ZkrB > 1.

< cz‘fe(zf

Proof. We refer to Lemma 3.1 in [5] for the proof of (a).

(b) We first note that since a € L™ AP s> we have

0%ay (x, y.8)] < 2P vk=1,2,...  (39)

Sincex € §;(B), j > 2and y,y € B,wehavex—y =~ x—7.

If|ly-yl| > Z_k,using(a)withﬁ =n+esothatm—-n(p-1)-
pe + € < 0 gives

LHS := H a (%, .)€ gy (x,7,8) ei<"'7’5>d£|

Uak(x 7,8) y£>d£| Uak 0, 7,E) yf%‘

n—e k(n+m —pn—pe)

<Clx-y|

< C(2/rp) " QMo
(40)
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This together with the fact that |y — y| > 27k gives
LHS < C(2/ry) " 2 epe)
<) A S
< Gy (2ry) "2,

where ¢ = —[(m—-n(p—-1))— pe +€] >0.

Ifly-yl < 27%, we have

LHS < H ay (x,2,8) (1-079) e"<"‘y’f>d§|

o[ @) - ap o8 7| 02
:=E, +E,.
We will claim that, for all £ > 0, we have
< C(ZJ ) Sk(m+n=pt+1) ly 7. (43)
Indeed, we have for all integers € > 0,
Ey < |x =y x - yf

J (5,38 (1 - £079) 40 g

< (2111’3)_{z

X

x| J (x =) ay (x,3,8) (1= 079 09 g

|a|=¢
< (erB)_e
X Z Jak (%, 9, 8) (1 _ ei(yﬁﬁ)) a?ei(xfy,g)dg '
||=¢
(44)
Using integration by parts, we get that
E, < ( rB)_e
X Z jag‘ [ak (x, ,€) (1 _é(y%f))] £ el
|a|=2
(45)
We write
Y [a (6 28) (1-079)]
o|=¢
lat] B

= Z a?ak(x,y,f)af(l

07,
la+1Bl=¢
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If 1Bl = 0, |1 - Y| < Cly - 7lI€| < C2"|y - 7. Therefore,

in this situation,

Y |0 fa (x9) (1 - 079 ) g

|or|=t

< QP |, 5] = Gk ioe0 ) 5.
(47)

Otherwise, |8§(1 — 0y < Cly- 7I|ﬁ|. This together with
(39) gives

U 8?ak (x, 9, &) a? (1 _ ei(yﬁi)) €i(x7y’f>d5‘

< Coktmm=plab |, _ 518 .
< Czk(n+m+1—P|a|—|ﬁ|) |y _ 7'
< GNP [
Therefore,
E, < C(2ry) 2mmertl |y 5 (49)

The general statement for noninteger values of € follows by
interpolation of the inequality for i and i + 1, wherei < € <
i+ 1. Therefore, (43) holds for all £ > 0. Now taking £ =n+e¢

so thate =—(m+n- pn— pe+e€) >0, wehave

El < C(ZjT’B)_n_ezk(m+n_Pn_Pe+e) |y _ 7|e(2k |y _ 7|)1—e

—n—€

< C(erB) 27k€, ly - 7|

< cz‘fe(zfrB)‘”z"“'.
(50)

It remains to take care of the term E,. Repeating the pre-
vious arguments we also obtain

E, < (2]'1"}3)7lz

X

Z J a? [ak (.X, > E) — ay (X, 7, E)] e“)"?:f)dg

|a|=¢

(51)

At this stage, using the mean value theorem (applied for each
component of a;) and then using the definition of the class
L®AY's give

osc) sl
52
< (&) 1

for all integer € > 0. Hence, by interpolation again,

Ey < C(2ry) ‘[y=7|20 0 (59)

forall € > 0. Repeating the arguments used to estimate E|, we
conclude that

E, < C27%(2/rg) 27k, (54)

Therefore, LHS < C277(2/r) ™27 . It remains to show
that

. . —-n-N !
LHS < C27(27ry) " 27, (55)
To do this, we repeat the arguments above with € = N +n+e.

Since the proof of this part is analogous to (55), and hence we
omit details here. This completes our proof.

(o) If 7% <y 5> using the argument as in (b), we have
LS 5= || g (3 §) €079 - (0 7,8) 7Pt

< ‘J ag (x, Y E) ei<X7y’£)d£‘ + |J aj (x, 7) E) ei(x’%‘sdg‘
<Clx—y| 27k

j ke €
<ol 2 carny (L),
g g 5:
(56)

Ifrg < ka, we have
LHS < ‘J ak (x) )’> E) (1 - ei(y_7’5)> ei<x_y’f>d£’

[ (@0 (o8 - i (7. 0] 7
:= E; +E,.
The previous arguments in (b) show that
E, +E, < C(2rp) " 2y -5

< C(erB)_n_EZk(_GH)rB

n—e K\ (—e+1) (58)
= C(2 rB) r%(rB )
< 2 (2ry) " (r2) "7
Hence,
[ a6 (o8 €079 (x5, 470
< C2F(2rp) "@Frp)” it 2rp <1,
(59)

U a (%, 9,8) €77 — a (x,7,8) €i<x7?’£>df|

< Cz‘ff(zfrB)_"(z"rB)fer if 2675 > 1.



By taking € = n+ N +¢ and repeating the previous arguments,
we obtain that

[ @ (o8 €9 - a (1 7,8) 7]

< cz‘ff(zfrB)_"_N(z"rB)e if 26rp < 1,
(60)
[ ac (o8 €9 - a (0 7,8) 7]
< Cz‘fe(zf'rB)_”_N(z"rB)fe if 2y > 1.
This completes the proof of (c). O

Since the associated kernel K(x, y) of the operator T', is
given by

K(x,y) = J a(x y,8) 70 dg

1
e (61)
61

-y L Iak (x,9,8) e yf)df

with a;(x,§) as in Lemma 14, from Lemma 14 we deduce
directly the following result.

Lemmal15. Leta € L™ Ay withm < n(p-1) ora € LY A},
8 € [0,1], and let K" (x, y) be the associated kernel of the
operator T,,, the conjugate of T,,.

(a) For any N > 0, we have

. C
|K (x,y)lﬁ—yl_N, x#y. (62)

|x -

(b) For any N > 0, there exists € > 0 so that any ball B C
R", y,7 € B, x € S;(B), j > 2, we have

K" (3, %) - K* (3, )|

L o (63)
< G2 (2/r) " min {1, (2/r) N}.

4. Proof of Theorem 3

Note that, by duality argument, the linear operator T is
bounded on L?(w), 1 < p < co if and only if its conjugate T

is bounded on L? (w'"?). Moreover, by Hélder’s inequality,
it can be verified that w € A} if and only if W't e A?.

Therefore, it suffices to prove (a) and (b) for T, and T;’b =
[b,T,] with b € BMO,,. Before coming to the proof of
Theorem 3, we need the following results.

Lemma16. Leta € L™ Ay withm < n(p-1) ora € LY A,
8 €[0,1], andb € BMOy, 6 > 0. If T, is bounded on L for all
1 < p < 00, then for any p > 1 and N > 0 there exists C > 0
such that for all balls Q = Q(x,, 1),

International Journal of Analysis

(a)
1 . ' N
@JQ|Taf(x)|deC;2£GP (y), (64)
(b)
ﬁ JQ T2'f (k) dx| < Cinf G,7"f (y) Ielles~ (65)

Proof. (a) We split f = f, + f, where f,
j =0, we have

d *
i JoTas @l s g | Al g f sl
=1, +1,.

= fXaq- For each

Using Hélder’s inequality and the fact that T, is bounded on

P, 1< P < 00, we write
1/p 1 » 1/p
(it 7)
[4Q] Jaq

h <C<|Q| J | Zf1|p>

<Ci fG
G 0):

(67)

For the term I, we have, for x € Q,

nnm=kmwuwfmw

= J K (px)f(y)dy (68)
R™4Q

= ZI K" (y,x) f (y)dy

k>3
Applying (a) of Lemma 15, we have

TACEDY|

k>3 Sk

K" (x,y) f(y)dy

J %dy (69)
k=3 Q) |x -y

<
<Cinf GV < Cinf GY .
infG™f(y) <Cinf G, f (y)

This completes the proof of (a).
(b) Taking 1 < r < p, we write

T f = (b-bo)Taf-Ti((b=bgo) f).  (70)

So, we have

ks

TS f ()] dx < @J (b bo) T f] dx

“iais

=1, +1,.

T ((0-bo) 1) 0]

(71)
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We now take care of I,. By Holder’s inequality, we can write By Holder’s inequality and Proposition 9, we give

1/p
I < C||b||e< qQ j IT:;fIP)

SC"w'@((mj | “fllp) +<IQIJ | “lep) )

Jy (601 ~20) F ] 4y

1/p
ok p
=1y + 1y, <| Q|<|2kQ|J |f| )
(72)
where f = f, + f, with f| = fX4Q‘ 1 P p
Due to L” boundedness of T, one has x ‘sz‘ LkQ | B Q| (77)

< -2 o) Cinf GY (73)
- <
1 < <|4Q|J4Q|f|) <Cinf » f ()

To estimate I, using (69) gives I}, < Cinf,¢q G f(y).
The estimate for I, can be proceeded in the same method

1/p
< k2" |2kQ| ||b||9< 2*q] J |f|p>

1/p
Indeed, we write < k2" | J 1717 )
1 |2kQ|
@i | T (6 =) £) (o]
1 N :
< — J T: ((b - bQ) fl) (x)‘ dx From (77) and (76) we obtain that
Q[ Jo (74)
1 J "
+ — T,((b-by) f,)(x)|dx . ) .
QI Jo (b=ba) 12) ) 7o ((b-b0) £2) () < Clbl inf Gy ). @8
1= Iy + 1y,
where f = f, + f,and f, = fX4Q-
To estimate I,;, using Holder’s inequality, we have This completes our proof. O
1 J ((b b Q) ) | )| dx Remark 17. The result in Lemma 16 still holds if we replace
|Q the critical ball Q by 2Q.
1/r
< <L J T, ((b - bQ)fl) (x)‘rdx> Lemma18. Leta € L™ Ay withm < n(p-1) ora € L® A},
IRl Jo 8 € [0,1] andb € BMOy, 0 > 0. If T,, is bounded on L* for all
1 BN 1 < p < 00, then for any p > 1 and N > 0 there exists C > 0
< (— J |((b—bQ)f1) (x)| dx> so that, for all f and x,y € B = B(xg,rg) withrg < 4, we
QI Jo have
(g | 7@ )W ”
<\ V0= X X
14Q| LQ f
1/v
X<LJ \b(x)_erdx) (v=-) [ I w2 =K (n2) £ @)z
[4Q| Jaq p-r R"\2B
(79)
.o AN AN e
< C||b||9}1/f61£ G, (). <C (,irelff;G‘*’Pf (u) + ;relff;Mpf (u)) ;
(75)

For the term I,,, due to (a) of Lemma 15, we can write

T, ((b-bg) f,) (%)
- Z Jsk(Q) K" (x.y) ((b - bQ)f) (y)dy

k=3

(b)

06 [ K @2 K (2) (0 b) f) @) s

(80)
-kN
< Cg;l Lk@ |(b(») ~bq) f ()] dy- < C||b||91nf<1nfGN Of @) + inf B, f (u)).
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Proof. (a) Using (b) of Lemma 15, we write

J |(K* (x,2) - K" (y,2)) f (2)|dz
R™\2B

<CZJ

k>2 Si(B

(K™ (x,2) = K™ (3,2)) f (2)| dz

< CZ2_ke(2kr3)_n min {1, (2frB)_N} L " |f (2)| dz

k>2 k

<CY 2 min {1, (2jr3)_N} ﬁ L,@) |f (2)|dz

(81)

where k; is the smallest integer so that 2k°+1rB > 4.
To estimate I, let {Q;} and {Q;} be families of balls as in

(29). If x € Q;N B, then 2B c @, forall k = 1,2, ..., k,. This
implies that
1 o
w LkB |f (2)|dz < inf M, f (u) (82)

forallk = 1,2, ..., k.
Hence

ko
—ke . = . —
Ilskzz inf M, f (u) < Cinf M, f ).~ (83)

For the term I,, since 2k rg = 4 we have

—ke [~k *N;J
Sk§02 (2 rB) |2kB| oo |f (2)|dz

< Zz"‘e(z""‘oz"OrB)*N - !

Jy @2
2¢7%02%0 B

—ke [ Ak—k -N 1 J
= 22727 Dokg z)|dz
1;0 (2%) 5 Rk B btz |f ()]
—ke -kN
: z)| dz.
go |2k2koB| Lkzkos |f 2
(84)
Note that 2B ¢ Q = 4Q here Q = B(xy, 1) and |Q| = [2B].
So, we have
I, < ZZ‘kez-kN< | J If (z )|dz>
k=0 |2 Q| )

. N
< C},EgG&pf (u).

Hence, we get (a).

International Journal of Analysis

(b) Using Holder’s inequality and (b) of Lemma 15, we
obtain that

JWB (K™ (x,2) = K™ (,2)) ((b - bp) f) (2)| dz

=Y, K 2 -

K™ (3,2)) (b - bg) f) (2)| dz

k>2
<Y 2% min {1, (277, ) N1 L
< kzz mm{ (2/ry) }|2k3|

RS HICIEE
«(B)

1
sCZf"Emin{l,(zfrB)_N}( ! J If (z )|sz> ’

k>2 |2kB|

1 N
x| ——| |b@) -bglfdz) .
<\2’<B| Lk3| @~ bl Z)

Now using Proposition 9, we get that

(86)

J}Rn\zg (K" (6,2) ~ K" (,2)) (b - by) f) (2)| dz

<Cyk(@r) min{L () ol

k>2

1/p
(P,fB‘ |, Ire )|sz> -

At this stage, repeating the same argument as in (a), we
complete the proof of (b). O

We are now in position to prove Theorem 3.

Proof of Theorem 3. (a) Using the standard argument, see, for
example, [13],fix 1 < p< coandw € A;O. Let N > 0 which
will be fixed later. So, by Proposition 8, we can pick 7 > 1 and
v>0sothatw € A},.. By Lemma 11 we have

L" (w)

= CHMlocle inP(w)

reyw@) (s [, o)
k . 2Qk ZQk “

=1, +1,.

(88)

Let us estimate I, first. By Lemma 16 and Remark 17, we have

1 * . N
— T, f| <CinfG, . 89
o) LQk| f1=Cinf G f (») (89)
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Invoking Proposition 12, we conclude that

Yu@) (50 [, 1)
xl,

d
]Rn
<Clly

aslongas N > n/p+v/r. We now take care of I,. For any ball
B(xy,rp) with rgy < 4 and x € B, we write

= [ 1727 0= (2 gl ax

Pw (x)dx

IN

(90)

) P (x)dx

IN

B|

|B| J‘ T, f, (x)|dx

1)
I NCTACEICTARER
:=E, +E,,
where f = f| +f2W1thf1 fXap:
For E,, since T, is bounded on L', we have
B J- T, f, (x)| dx
( J T, f, (x)] dx)

1 c\
<C|— d
<|2B| LB o x>
<CinfM, f (u).
ueB

Due to Lemma 18, we can write

EyS om

” (Jw\zs (K" (a2 -

(mfG4 W)+ 1nerf (u))

-K*(%Z))f(zﬂd2>dydu

(93)
These two estimates of E; and E, tell us that
M} Tof () <C(Ghf () + M, f(x).  (99)

Applying Proposition 12 and the weighted estimates of M,,
we get that

(17 < Cl flurwy (95)

provided that M > n/p + v/r.

11

From (90) and (95), we obtain that

172 fllzr )y < ClA o - (96)

This completes our proof.

(b) Fixed 1 < p < 00,b € BMOy, 0 > 0and w € A;’,O. So,
we can pick7 > 1 and v > 0 so that w € A;/r. Then we have
by Lemma 11

(T2 ) 0w () dx

T2 = |,
=C j loc,4 (T;,bf) (x)‘Pw

*,b P
+Z (@) <|2le LQ ¢ f|> ’

where {Q,} is a family of critical balls given in Lemma 11.
The analogous argument to that in (a) gives

p
Y@ (i L, I7:11) "

< C||b"9"f“LP(w)

(X) dx (97)

It remains to estimate I]R" IMIQC 4(T;’b 1)) Pw(x)dx. For
any ball B(x,, r5) with rz < 4 and x € B, we write

51 s

T3 f () = (T2 f) ;| dx

ENCETSEAEEIPE
2
"Bl

1
"Bl

= 1BI

J ITa (b-bp) f)@ldx g

2 | T (=) £)
(T3 (6= by) )l d

:=E, + E, + Es,

where f = f, + f, with f, = fx,p.
Holder’s inequality and Proposition 9 show that

B2z, 'b‘bBlr/)l/r(mJ' “')

< bl o 5, ITZfI’)W.

For any critical ball Qj such that x € Q i N B. It can be
verified that B ¢ Q = 8Q;. This yields that

(100)

Ey < Clbly < inf M, (T: /) () (1o
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Using Holder’s inequality and Proposition 9 again, we have,
forl <s<r,

1
|B]

IR

< (i L) (& L)

for some y > s

[ @-w o)

E23C<

(102)

< Ibllg x inf M, (f) (7).
y€B
To estimate E;, using Lemma 18, we conclude that

1
E; <

<O ], o € 059K 012

x|b(2) - by| | (2)| dz> dydu (103)

< Clblo (G2, f () + M, (f) (x).
These three estimates of E|, E,, and E; give
Mt (T3 £) Go) < Cllbll (M, (T; ) ()

1G0T () + M, () ().

(104)
This implies that
HMfocA (T:’hf)"LP(w)
< Clbll (15, (T2 )y *+ 1G5 A
M, Dl
(105)

Since M,, G- %", and T, are bounded on L?(w) as long as
N >n+0+mn/p+v/s, we obtain the desired results.
This completes our proof. O
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