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Abstract. 
 Sánchez Cano in his paper “Adomian Decomposition Method for a Class of Nonlinear Problems” in application part pages 8, 9, and 10 had made some mistakes in context; in this paper we correct them.
 

1. Introduction
 Adomian [1, 2] proposed a powerful method for solving nonlinear functional equation. The technique uses a decomposition of the nonlinear operator as a series of functions; each term of this series is a generalized polynomial called Adomian polynomial.
We will see that using the Adomian decomposition method together with some properties of the nested integral [3, 4] the solution of nonlinear ordinary differential equations system is obtained.
2. Correct Equations
 In page 8, he showed that the solution 
	
		
			

				𝑥
			

			

				𝑛
			

			
				(
				𝑡
				)
			

		
	
is given by
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝑥
				(
				𝑡
				)
				=
				𝑥
			

			

				0
			

			
				(
				𝑡
				)
				+
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				+
				⋯
				+
				𝑥
			

			

				𝑛
			

			
				
				(
				𝑡
				)
				+
				⋯
				=
				∝
				+
			

			
				𝑡
				0
			

			
				
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				+
				𝑎
				𝛽
				𝑡
				+
				−
				𝑎
			

			

				2
			

			
				∝
				𝑡
			

			

				2
			

			
				
			
			
				2
				!
				−
				𝑎
			

			

				2
			

			

				1
			

			
				
			
			
				×
				
				Γ
				(
				3
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			

				2
			

			
				
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				−
				𝑎
			

			

				3
			

			
				𝛽
				𝑡
			

			

				3
			

			
				
			
			
				+
				
				𝑎
				3
				!
			

			

				4
			

			
				∝
				𝑡
			

			

				4
			

			
				
			
			
				4
				!
				+
				𝑎
			

			

				4
			

			

				1
			

			
				
			
			
				Γ
				×
				
				(
				5
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			

				4
			

			
				
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				+
				⋯
				.
			

		
	

					By rearranging he obtained
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				
				𝑥
				(
				𝑡
				)
				=
				∝
				1
				−
				(
				𝑎
				𝑡
				)
			

			

				2
			

			
				
			
			
				+
				2
				!
				(
				𝑎
				𝑡
				)
			

			

				4
			

			
				
			
			
				4
				!
				+
				⋯
				(
				−
				1
				)
			

			

				𝑛
			

			
				(
				𝑎
				𝑡
				)
			

			
				2
				𝑛
			

			
				
			
			
				
				
				2
				𝑛
				!
				+
				⋯
				+
				𝛽
				(
				𝑎
				𝑡
				)
				−
				(
				𝑎
				𝑡
				)
			

			

				3
			

			
				
			
			
				+
				3
				!
				(
				𝑎
				𝑡
				)
			

			

				5
			

			
				
			
			
				5
				!
				+
				⋯
				(
				−
				1
				)
			

			

				𝑛
			

			
				(
				𝑎
				𝑡
				)
			

			
				2
				𝑛
				+
				1
			

			
				
			
			
				
				+
				
				(
				2
				𝑛
				+
				1
				)
				!
				+
				⋯
			

			
				𝑡
				0
			

			
				
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
			

			

				0
			

			
				
			
			
				−
				Γ
				(
				1
				)
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
			

			

				2
			

			
				
			
			
				Γ
				(
				3
				)
				+
				⋯
				(
				−
				1
				)
			

			

				𝑛
			

			
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
			

			
				2
				𝑛
			

			
				
			
			
				
				Γ
				(
				2
				𝑛
				+
				1
				)
				+
				⋯
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				.
			

		
	

					And similarly for 
	
		
			

				𝑦
			

			

				𝑛
			

			
				(
				𝑡
				)
			

		
	
 we will have 
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝑦
				(
				𝑡
				)
				=
				𝑦
			

			

				0
			

			
				(
				𝑡
				)
				+
				𝑦
			

			

				1
			

			
				(
				𝑡
				)
				+
				𝑦
			

			

				2
			

			
				(
				𝑡
				)
				+
				⋯
				+
				𝑦
			

			

				𝑛
			

			
				1
				(
				𝑡
				)
				+
				⋯
				=
				𝛽
				−
				∝
				𝑎
				𝑡
				−
				𝑎
			

			
				
			
			
				×
				
				Γ
				(
				2
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				−
				𝑎
			

			

				2
			

			
				𝛽
				𝑡
			

			

				2
			

			
				
			
			
				2
				!
				+
				𝑎
			

			

				3
			

			
				∝
				𝑡
			

			

				3
			

			
				
			
			
				3
				!
				+
				𝑎
			

			

				3
			

			

				1
			

			
				
			
			
				×
				
				Γ
				(
				4
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			

				3
			

			
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				+
				𝑎
			

			

				4
			

			
				𝛽
				𝑡
			

			

				4
			

			
				
			
			
				4
				!
				+
				⋯
				.
			

		
	

					By rearranging he obtained
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				
				𝑦
				(
				𝑡
				)
				=
				𝛽
				1
				−
				(
				𝑎
				𝑡
				)
			

			

				2
			

			
				
			
			
				+
				2
				!
				(
				𝑎
				𝑡
				)
			

			

				4
			

			
				
			
			
				4
				!
				+
				⋯
				(
				−
				1
				)
			

			

				𝑛
			

			
				(
				𝑎
				𝑡
				)
			

			
				2
				𝑛
			

			
				
			
			
				
				
				2
				𝑛
				!
				+
				⋯
				−
				∝
				(
				𝑎
				𝑡
				)
				−
				(
				𝑎
				𝑡
				)
			

			

				3
			

			
				
			
			
				+
				3
				!
				(
				𝑎
				𝑡
				)
			

			

				5
			

			
				
			
			
				5
				!
				+
				⋯
				(
				−
				1
				)
			

			

				𝑛
			

			
				(
				𝑎
				𝑡
				)
			

			
				2
				𝑛
				+
				1
			

			
				
			
			
				
				−
				
				(
				2
				𝑛
				+
				1
				)
				!
				+
				⋯
			

			
				𝑡
				0
			

			
				
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
			

			

				1
			

			
				
			
			
				−
				Γ
				(
				2
				)
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
			

			

				3
			

			
				
			
			
				Γ
				(
				4
				)
				+
				⋯
				(
				−
				1
				)
			

			

				𝑛
			

			
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
			

			
				2
				𝑛
				+
				1
			

			
				
			
			
				
				Γ
				(
				2
				𝑛
				)
				+
				⋯
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				.
			

		
	

					Continuing in this fashion, he concluded the following formulas:
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑛
			

			
				(
				𝑡
				)
				=
				(
				−
				1
				)
			

			

				𝑛
			

			
				
				𝑎
			

			

				𝑛
			

			
				𝑎
				𝑡
			

			

				𝑛
			

			
				
			
			
				𝑛
				!
				+
				𝑎
			

			

				𝑛
			

			

				1
			

			
				
			
			
				
				Γ
				(
				𝑛
				+
				1
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			

				𝑛
			

			
				
				,
				𝑦
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
			

			

				𝑛
			

			
				(
				𝑡
				)
				=
				(
				−
				1
				)
			

			
				𝑛
				+
				1
			

			
				
				𝑎
			

			

				𝑛
			

			
				𝑎
				𝑡
			

			

				𝑛
			

			
				
			
			
				𝑛
				!
				+
				𝑎
			

			

				𝑛
			

			

				1
			

			
				
			
			
				
				Γ
				(
				𝑛
				+
				1
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			

				𝑛
			

			
				
				.
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
			

		
	

					But the correct formulas are given by
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑥
			

			
				2
				𝑛
				−
				1
			

			
				(
				𝑡
				)
				=
				(
				−
				1
				)
			

			
				𝑛
				+
				1
			

			
				
				𝑎
			

			
				2
				𝑛
				−
				1
			

			
				𝛽
				𝑡
			

			
				2
				𝑛
				−
				1
			

			
				
			
			
				
				,
				𝑥
				(
				2
				𝑛
				−
				1
				)
				!
			

			
				2
				𝑛
			

			
				(
				𝑡
				)
				=
				(
				−
				1
				)
			

			

				𝑛
			

			
				
				𝑎
			

			
				2
				𝑛
			

			
				∝
				𝑡
			

			
				2
				𝑛
			

			
				
			
			
				(
				2
				𝑛
				)
				!
				+
				𝑎
			

			

				𝑛
			

			

				1
			

			
				
			
			
				×
				
				Γ
				(
				2
				𝑛
				+
				1
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			
				2
				𝑛
			

			
				
				,
				𝑦
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
			

			
				2
				𝑛
				−
				1
			

			
				(
				𝑡
				)
				=
				(
				−
				1
				)
			

			

				𝑛
			

			
				
				𝑎
			

			
				2
				𝑛
				−
				1
			

			
				∝
				𝑡
			

			
				2
				𝑛
				−
				1
			

			
				
			
			
				(
				2
				𝑛
				−
				1
				)
				!
				+
				𝑎
			

			

				𝑛
			

			

				1
			

			
				
			
			
				×
				
				Γ
				(
				2
				𝑛
				)
			

			
				𝑡
				0
			

			
				(
				𝑡
				−
				𝑢
				)
			

			
				2
				𝑛
				−
				1
			

			
				
				,
				𝑦
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
			

			
				2
				𝑛
			

			
				(
				𝑡
				)
				=
				(
				−
				1
				)
			

			

				𝑛
			

			
				
				𝑎
			

			
				2
				𝑛
			

			
				𝛽
				𝑡
			

			
				2
				𝑛
			

			
				
			
			
				
				.
				(
				2
				𝑛
				)
				!
			

		
	

					Writing (2) and (4) as a single integral, he had
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				
				𝑥
				(
				𝑡
				)
				=
				∝
				c
				o
				s
				(
				𝑎
				𝑡
				)
				+
				𝛽
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
			

			
				𝑡
				0
			

			
				c
				o
				s
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				=
				∝
				c
				o
				s
				(
				𝑎
				𝑡
				)
				+
				𝛽
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
				𝑓
				(
				𝑡
				)
				∗
				c
				o
				s
				(
				𝑎
				𝑡
				)
				.
			

		
	

					Similarly,
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				
				𝑦
				(
				𝑡
				)
				=
				𝛽
				c
				o
				s
				(
				𝑎
				𝑡
				)
				−
				∝
				s
				i
				n
				(
				𝑎
				𝑡
				)
				−
			

			
				𝑡
				0
			

			
				s
				i
				n
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				=
				𝛽
				c
				o
				s
				(
				𝑎
				𝑡
				)
				−
				∝
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
				𝑓
				(
				𝑡
				)
				∗
				s
				i
				n
				(
				𝑎
				𝑡
				)
				.
			

		
	

					In page 9, he uses
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝑑
				𝑥
			

			
				
			
			
				𝑑
				𝑡
				−
				𝑎
				𝑦
				(
				𝑡
				)
				=
				𝑓
				(
				𝑡
				)
				,
				𝑑
				𝑦
			

			
				
			
			
				𝑎
				𝑡
				+
				𝑎
				𝑥
				(
				𝑡
				)
				=
				0
				(
				𝑎
				∈
				𝑅
				,
				𝑎
				≠
				0
				)
				.
			

		
	

					With 
	
		
			
				𝑥
				(
				0
				)
				=
				𝛼
			

		
	
 and 
	
		
			
				𝑦
				(
				0
				)
				=
				𝛽
			

		
	
, he obtained
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝑑
			

			

				2
			

			

				𝑦
			

			
				
			
			
				𝑑
				𝑡
			

			

				2
			

			
				+
				𝑎
			

			

				2
			

			
				𝑦
				(
				𝑡
				)
				=
				𝑓
				(
				𝑡
				)
				,
				𝑦
				(
				0
				)
				=
				𝛼
				,
				́
				𝑦
				(
				0
				)
				=
				𝛽
				.
			

		
	

					In fact, the correct solution is given by
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				𝑑
				𝑥
			

			
				
			
			
				𝑑
				𝑡
				−
				𝑎
				𝑦
				(
				𝑡
				)
				=
				𝑓
				(
				𝑡
				)
				⟶
				𝑑
				𝑥
			

			
				
			
			
				𝑑
				𝑡
				=
				𝑎
				𝑦
				(
				𝑡
				)
				+
				𝑓
				(
				𝑡
				)
				,
				𝑑
				𝑦
			

			
				
			
			
				𝑑
				𝑑
				𝑡
				+
				𝑎
				𝑥
				(
				𝑡
				)
				=
				0
				⟶
			

			

				2
			

			

				𝑦
			

			
				
			
			
				𝑑
				𝑡
			

			

				2
			

			
				+
				𝑎
				𝑑
				𝑥
			

			
				
			
			
				⇓
				𝑑
				𝑑
				𝑡
				=
				0
				,
			

			

				2
			

			

				𝑦
			

			
				
			
			
				𝑑
				𝑡
			

			

				2
			

			
				+
				𝑎
			

			

				2
			

			
				𝑦
				(
				𝑡
				)
				=
				−
				𝑎
				𝑓
				(
				𝑡
				)
				,
				𝑦
				(
				0
				)
				=
				𝛽
				,
				́
				𝑦
				(
				0
				)
				=
				𝛼
				.
			

		
	

					In page 10, he showed two cases for the solutions 
	
		
			
				𝑥
				(
				𝑡
				)
			

		
	
 and 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
 using (2), (4), and 
	
		
			
				𝑓
				(
				𝑡
				)
				=
				c
				o
				s
				(
				𝑡
				)
			

		
	
.
Case 1 (
	
		
			
				𝑎
				≠
				1
			

		
	
). In this case, he obtained the solutions
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				1
				𝑥
				(
				𝑡
				)
				=
				𝛼
				c
				o
				s
				(
				𝑎
				𝑡
				)
				+
				𝛽
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
			

			
				
			
			
				1
				−
				𝑎
			

			

				2
			

			
				𝑎
				s
				i
				n
				(
				𝑡
				)
				,
				𝑦
				(
				𝑡
				)
				=
				𝛽
				c
				o
				s
				(
				𝑎
				𝑡
				)
				−
				𝛼
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
			

			
				
			
			
				1
				+
				𝑎
			

			

				2
			

			
				c
				o
				s
				(
				𝑡
				)
				.
			

		
	
But the correct method is the following:
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				
				𝑥
				(
				𝑡
				)
				=
				∝
				c
				o
				s
				(
				𝑎
				𝑡
				)
				+
				𝛽
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
			

			
				𝑡
				0
			

			
				
				c
				o
				s
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				=
				⟶
			

			
				𝑡
				0
			

			
				=
				1
				c
				o
				s
				(
				𝑎
				(
				𝑡
				−
				𝑢
				)
				)
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
			

			
				
			
			
				2
				
				
			

			
				𝑡
				0
			

			
				
				=
				
				1
				c
				o
				s
				(
				𝑎
				𝑡
				−
				𝑎
				𝑢
				+
				𝑢
				)
				c
				o
				s
				(
				𝑎
				𝑡
				−
				𝑎
				𝑢
				−
				𝑢
				)
				𝑑
				𝑢
			

			
				
			
			
				+
				1
				2
				(
				1
				−
				𝑎
				)
				s
				i
				n
				(
				𝑎
				𝑡
				−
				𝑎
				𝑢
				+
				𝑢
				)
			

			
				
			
			
				
				2
				(
				−
				1
				−
				𝑎
				)
				s
				i
				n
				(
				𝑎
				𝑡
				−
				𝑎
				𝑢
				−
				𝑢
				)
			

			
				𝑡
				0
			

			
				=
				1
			

			
				
			
			
				1
				−
				𝑎
			

			

				2
			

			
				𝑎
				s
				i
				n
				𝑡
				−
			

			
				
			
			
				1
				−
				𝑎
			

			

				2
			

			
				1
				s
				i
				n
				𝑎
				𝑡
				⟶
				𝑥
				(
				𝑡
				)
				=
				∝
				c
				o
				s
				(
				𝑎
				𝑡
				)
				+
				𝛽
				s
				i
				n
				(
				𝑎
				𝑡
				)
				+
			

			
				
			
			
				1
				−
				𝑎
			

			

				2
			

			
				−
				𝑎
				s
				i
				n
				𝑡
			

			
				
			
			
				1
				−
				𝑎
			

			

				2
			

			
				
				𝑎
				s
				i
				n
				𝑎
				𝑡
				,
				𝑥
				(
				𝑡
				)
				=
				𝛼
				c
				o
				s
				𝑎
				𝑡
				+
				𝛽
				−
			

			
				
			
			
				1
				−
				𝑎
			

			

				2
			

			
				
				1
				s
				i
				n
				𝑎
				𝑡
				+
			

			
				
			
			
				1
				−
				𝑎
			

			

				2
			

			
				s
				i
				n
				𝑡
				.
			

		
	

						Similarly,
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				
				𝑎
				𝑦
				(
				𝑡
				)
				=
				𝛽
				−
			

			
				
			
			
				1
				−
				𝑎
			

			

				2
			

			
				
				𝑎
				c
				o
				s
				𝑎
				𝑡
				−
				𝛼
				s
				i
				n
				𝑎
				𝑡
				+
			

			
				
			
			
				1
				−
				𝑎
			

			

				2
			

			
				c
				o
				s
				𝑡
				.
			

		
	

Case 2 (
	
		
			
				𝑎
				=
				1
			

		
	
). He arrived at the formulas 
	
		
			
				𝑥
				(
				𝑡
				)
			

		
	
 and 
	
		
			
				𝑦
				(
				𝑡
				)
			

		
	
 as follows:
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				1
				𝑥
				(
				𝑡
				)
				=
				∝
				c
				o
				s
				(
				𝑡
				)
				+
				𝛽
				s
				i
				n
				(
				𝑡
				)
				+
			

			
				
			
			
				2
				
				1
				𝑡
				c
				o
				s
				𝑡
				,
				𝑦
				(
				𝑡
				)
				=
				∝
				−
			

			
				
			
			
				2
				
				1
				c
				o
				s
				𝑡
				+
				𝛽
				s
				i
				n
				𝑡
				−
			

			
				
			
			
				2
				𝑡
				s
				i
				n
				𝑡
				.
			

		
	

						But the correct formulas are given by
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				
				𝑥
				(
				𝑡
				)
				=
				∝
				c
				o
				s
				(
				𝑡
				)
				+
				𝛽
				s
				i
				n
				(
				𝑡
				)
				+
			

			
				𝑡
				0
			

			
				
				c
				o
				s
				(
				(
				𝑡
				−
				𝑢
				)
				)
				𝑓
				(
				𝑢
				)
				𝑑
				𝑢
				=
				⟶
			

			
				𝑡
				0
			

			
				=
				1
				c
				o
				s
				(
				(
				𝑡
				−
				𝑢
				)
				)
				c
				o
				s
				𝑢
				𝑑
				𝑢
			

			
				
			
			
				2
				
				
			

			
				𝑡
				0
			

			
				
				=
				1
				c
				o
				s
				𝑡
				+
				c
				o
				s
				(
				𝑡
				−
				2
				𝑢
				)
				𝑑
				𝑢
			

			
				
			
			
				2
				
				1
				𝑡
				c
				o
				s
				𝑡
				−
			

			
				
			
			
				2
				
				s
				i
				n
				(
				𝑡
				−
				2
				𝑢
				)
			

			
				𝑡
				0
			

			
				=
				1
			

			
				
			
			
				2
				1
				𝑡
				c
				o
				s
				𝑡
				+
			

			
				
			
			
				2
				1
				s
				i
				n
				𝑡
				⟹
				𝑥
				(
				𝑡
				)
				=
				𝛼
				c
				o
				s
				𝑡
				+
				𝛽
				s
				i
				n
				𝑡
				+
			

			
				
			
			
				2
				1
				𝑡
				c
				o
				s
				𝑡
				+
			

			
				
			
			
				2
				
				1
				s
				i
				n
				𝑡
				⟹
				𝑥
				(
				𝑡
				)
				=
				𝛼
				c
				o
				s
				𝑡
				+
				𝛽
				+
			

			
				
			
			
				2
				
				1
				s
				i
				n
				𝑡
				+
			

			
				
			
			
				2
				𝑡
				c
				o
				s
				𝑡
				.
			

		
	


				Similarly,
						
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				1
				𝑦
				(
				𝑡
				)
				=
				𝛽
				c
				o
				s
				𝑡
				−
				𝛼
				s
				i
				n
				𝑡
				−
			

			
				
			
			
				2
				𝑡
				s
				i
				n
				𝑡
				.
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