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The difference between Einstein’s general relativity and its Cartan extension is analyzed within the scenario of asymptotic safety of
quantum gravity. In particular, we focus on the four-fermion interaction which distinguishes the Einstein-Cartan theory from its
Riemannian limit.

1. Introduction

In the coupling of gravity to Dirac type spinor fields [1], it is
at times surmised that the Einstein-Cartan (EC) theory [2]
is superior to standard General Relativity (GR), inasmuch as
the involved torsion tensor of Cartan [3, 4] can accommodate
the spin of fundamental Fermions of electrons and quarks in
gravity.

However, classically,the effects of spin and torsion cannot
be detected by Lageos or Gravity Probe B [5] and would
be significant only at densities of matter that are very high
but nevertheless smaller than the Planck density at which
quantum gravitational effects are believed to dominate. It was
even claimed [6] that EC theory may avert the problem of
singularities in cosmology, but for a coupling to Dirac fields,
the opposite happens [7–9].

Recently, it has been stressed byWeinberg [10–12] that the
Riemann-Cartan (RC) connection Γ = Γ

{}
− 𝐾, a one-form,

is just a deformation of the Christoffel connection Γ
{} by the

(con-)tortion tensor-valued one-form𝐾 = 𝑖𝐾
𝛼𝛽

𝜎𝛼𝛽/4, at least
from the field theoretical point of view. Although alge-
braically complying with [13], this argument has been refuted
[14] on the basis of the special geometrical interpretation
[15, 16] of Cartan’s torsion.

It is well-known [17, 18] that EC theory coupled to the
Dirac field is effectively GR with an additional four-fermion
(FF) interaction. However, such contact interactions are

perturbatively nonrenormalizable in 𝐷 > 2 without Chern-
Simons (CS) terms [19], which was one of the reasons for
giving up Fermi’s theory of the beta decay.

Since GR with a cosmological constant Λ appears to
be asymptotically safe, in the scenario [20] first devised by
Weinberg [21], one may ask [22] what the situation in EC
theory is, where Cartan’s algebraic equation relates torsion
to spin, that is, to the axial current 𝑗

𝑖
5 in the case of Dirac

fields, on dimensional grounds coupled with gravitational
strength.

2. Dirac Fields in Riemann-Cartan Spacetime

In our notation [13, 23–25], a Dirac field is a bispinor-valued
zero-form 𝜓 for which 𝜓 := 𝜓

†
𝛾0 denotes the Dirac adjoint

and 𝐷𝜓 := 𝑑𝜓 + Γ ∧ 𝜓 is the exterior covariant derivative
with respect to the RC connection one-form Γ

𝛼𝛽
= −Γ

𝛽𝛼,
providing a minimal gravitational coupling.

In the manifestly Hermitian formulation, the Dirac
Lagrangian is given by the four-form

𝐿𝐷 = 𝐿 (𝛾, 𝜓,𝐷𝜓)

=
𝑖

2
{𝜓
∗𝛾 ∧𝐷𝜓 + 𝐷𝜓 ∧

∗𝛾𝜓} + 𝑚𝜓𝜓𝜂,

(1)
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where 𝛾 := 𝛾𝛼𝜗
𝛼 is the Clifford algebra-valued coframe,

obeying𝐷𝛾 = [𝛾,𝐾] = 𝛾𝛼𝑇
𝛼, and

𝑇
𝛼
:= 𝐷𝜗

𝛼
= 𝑑𝜗
𝛼
+ Γ
𝛼
𝛽 ∧ 𝜗
𝛽
=

1

2
𝑇
𝛼
𝑖𝑗𝑑𝑥
𝑖
∧ 𝑑𝑥
𝑗 (2)

is the torsion two-form.
Since 𝐿𝐷 = 𝐿𝐷 = 𝐿

†
𝐷 even in a nonholonomic frame,

the minimal coupling provides us automatically with the
Hermitian charge current and standard axial current three-
forms

𝑗 := 𝜓
∗𝛾𝜓 = 𝑗

𝜇
𝜂𝜇, 𝑗5 := 𝜓

∗𝛾 𝛾5𝜓 = 𝑗
𝜇

5𝜂𝜇, (3)

respectively, which are familiar with quantum electrodynam-
ics (QED) in curved spacetime.

Let us now separate the purely Riemannian part from
spin-contortion pieces:

𝐿𝐷 = 𝐿 (𝛾, 𝜓,𝐷
{}
𝜓) −

𝑖

2
𝜓 (
∗𝛾 ∧𝐾 − 𝐾 ∧

∗𝛾) 𝜓

= 𝐿 (𝛾, 𝜓,𝐷
{}
𝜓) +

1

4
A ∧ 𝑗5.

(4)

Hence, in an RC spacetime, a massive Dirac spinor only
feels the axial torsion one-form

A :=
1

4

∗Tr (𝛾 ∧ 𝐷𝛾) =
∗
(𝜗
𝛼
∧ 𝑇𝛼)

=
1

2
𝑇
[𝛼𝛽𝛾]

𝜂𝛼𝛽𝛾 = A𝑖𝑑𝑥
𝑖
.

(5)

The spin current of the Dirac field is given by the Hermitian
three-form

𝜏𝛼𝛽 :=
𝜕𝐿𝐷

𝜕Γ𝛼𝛽
=

1

8
Ψ (
∗𝛾 𝜎𝛼𝛽 + 𝜎𝛼𝛽

∗𝛾)Ψ

=
1

4
𝜂𝛼𝛽𝛾𝛿Ψ𝛾

𝛿
𝛾5Ψ𝜂
𝛾
= 𝜏𝛼𝛽𝛾𝜂

𝛾
,

(6)

with totally antisymmetric components 𝜏𝛼𝛽𝛾 = 𝜏[𝛼𝛽𝛾]. Equi-
valently, torsion merely couples to the spin-energy poten-
tial 𝜇𝛼 = 𝜗𝛼 ∧

∗
𝑗5 /4 , that is; to a two-form that is prop-

ortional to the axial current 𝑗5 compare [25] for more details.

2.1. Axial Anomaly in Riemann-Cartan Spacetime. In quan-
tum field theory (QFT), however, the axial current is not
conserved, rather there arises in RC spacetime the axial
anomaly

⟨𝑑𝑗5⟩ = 2𝑖𝑚 ⟨𝜓𝛾5𝜓⟩ 𝜂 −
1

96𝜋2
[2𝑅
{}

𝛼𝛽
∧ 𝑅
{}𝛼𝛽

+ 𝑑A ∧ 𝑑A] ,

(7)

for its vacuum expectation value, which involves the topolog-
ical Pontrjagin term quadratic in the curvature. This result
[26], which can easily be transferred to the chiral current 𝑗±,
is based on the Pauli-Villars regularization schem; compare
also [27].

Since the axial torsion A is not a gauge field, it is legi-
timate to absorb [28] its contribution to the anomaly (7) into
the redefined current

𝑗5 := 𝑗5 +
1

96𝜋2
A ∧ 𝑑A, (8)

such that

⟨𝑑𝑗5⟩ = 2𝑖𝑚⟨𝜓𝛾5𝜓⟩𝜂 +
1

48𝜋2
𝑅
{}

𝛼𝛽
∧ 𝑅
{}𝛼𝛽 (9)

is the same result as in the Riemannian spacetime of GR.
One way to avoid such anomalies is to employ curvature

constraints like 𝑅𝛼𝛽 ≡ 0 typical for teleparallel models [29].
Another approach, inspired by the BF schemes [30, 31] of
Topological Quantum Field Theory (TQFT), is to start from
a minimalists SL(5, 𝑅) gauge model which includes only a
“bare” Pontrjagin type four-form as its own counterterm.
However, then a tiny symmetry breaking is mandatory, in
order to recover the classical metrical background of GR.

3. Effective Einstein-Cartan Theory

The Einstein-Cartan Lagrangian

𝐿EC := −
1

2𝜅
𝑅
𝛼𝛽

∧ 𝜂𝛼𝛽 = 𝐿HE +
1

12𝜅
A ∧
∗
A, (10)

where 𝜅 = 8𝜋𝐺𝑁 is the gravitational constant in natural
units, generalizes the metrical Hilbert-Einstein Lagrangian
𝐿HE to an RC spacetime with torsion, where only the axial
torsionA enters algebraically. (Adding torsion squared terms
[32, 33] is not an unambiguous procedure, since the particular
combination𝑇

𝛼
∧
∗
(
(1)

𝑇𝛼 −2
(2)

𝑇𝛼 −(1/2)
(3)

𝑇𝛼) of irreducible
pieces is related to a fourth boundary term derived from the
dual CS term 𝐶𝑇𝑇∗ := 𝜗

𝛼
∧
∗
𝑇𝛼; cf. [34]. In the space of

gravity theories, the nontopological boundary term 𝑑𝐶𝑇𝑇∗

is interrelating GR with its teleparallelism equivalent [35].
Exactly the previous teleparallel “nucleus” leaves its traces
in the controversies [36, 37] about the well posedness of the
classical Cauchy problem and the particle content of the
(broken) Poincaré gauge theory.)

The Einstein-Cartan equation [2]

𝐺𝛼 :=
1

2
𝑅
𝛽𝛾

∧ 𝜂𝛼𝛽𝛾 = 𝜅Σ𝛼, (11)

coupled to the canonical energy-momentum current Σ𝛼 of
matter, is obtained by varying for the coframe 𝜗

𝛼. Likewise,
the EC three-form

𝐺𝛼 :=
1

2
𝑅
𝛽𝛾

∧ 𝜂𝛼𝛽𝛾

= 𝐺
{}
𝛼 +

(−1)
𝑠

12
(𝑒𝛼⌋A ∧

∗
A−

1

3
A ∧ 𝑒𝛼⌋

∗
A)

+
(−1)
𝑠

6
𝜗𝛼 ∧ 𝑑A

(12)

can be decomposed into the Einstein three-form 𝐺
{}
𝛼 = 𝐺

𝛽
𝛼𝜂𝛽

with respect to the Riemannian connection Γ
{} and additional
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axial torsion pieces [17, 18]. It satisfies the first Noether iden-
tity

⌣

𝐷 𝐺𝛼 ≡
1

2
(𝑒𝛼⌋𝑅

𝛽𝛾
) ∧ 𝜂𝛽𝛾𝜇 ∧ 𝑇

𝜇 (13)

with respect to the transposed connection
⌣

Γ

𝛽

𝛼 := Γ
𝛽
𝛼 + 𝑒𝛼⌋𝑇

𝛽;
compare equation (5.4.13) of [13]. (Observe that the three-
form (12) is not covariantly conserved in RC spacetime.
Only for vanishing torsion, it reduces to the conservation
law 𝐷

{}
𝐺
{}
𝛼 ≡ 0 familiar with GR as a consequence of the

contracted second Bianchi identity.)
By varying with respect to the linear connection Γ

𝛼𝛽, we
obtain the second field equation of EC theory, that is, Cartan’s
algebraic relation:

𝜂𝛼𝛽𝛾 ∧ 𝑇
𝛾
= 2𝜅𝜏𝛼𝛽 (14)

between torsion and the canonical spin of matter. Due to (15),
in the case of Dirac fields, this is equivalent to

∗
A =

𝜅

2
𝑗5, (15)

coupled via the “bare” fundamental length ℓ = √𝜅. Then, “on
shell,” EC theory deviates from GR merely via

Δ𝐿̃ := 𝜅 (𝐿EC − 𝐿HE) ≃
𝜅
2

48
𝑗5 ∧
∗
𝑗5 = 4𝑓

2
𝑗5 ∧
∗
𝑗5 .

(16)

4. Asymptotic Safety of EC Theory

For the Hilbert-Einstein Lagrangian

𝐿HEΛ := 𝐿HE +
Λ

𝜅
𝜂 (17)

with cosmological term, one can define the dimensionless
running coupling constants

𝑔𝑁 := 𝜅𝑘
2
, 𝜆 :=

Λ

𝑘2
, (18)

where 𝑘 is the renormalization group (RG) scale in momen-
tum space and Λ the cosmological constant related to dark
energy (DE) of density 𝜌Λ; see also [38].

Asymptotic safety amounts to the requirement that
dimensionless coupling constants remain bounded in the
ultraviolet limit 𝑘 → ∞. In 4D, this is controlled by the
renormalization group equations

𝑘
𝜕

𝜕𝑘
𝑔𝑁 = 𝛽1 (𝑔𝑁, 𝜆) = (2 + 𝑑𝑁) 𝑔𝑁,

𝑘
𝜕

𝜕𝑘
𝜆 = 𝛽2 (𝑔𝑁, 𝜆) ,

(19)

where𝑑𝑁 is the anomalous dimension of the runningNewton
coupling 𝑔𝑁. According to the Asymptotic Safety (AS)
scenario [20], they run into some nontrivial fixed points
𝑔𝑁∗ and 𝜆∗, depending on the specific truncation of the
effective Lagrangian to the celebrated Hilbert-Einstein one

(10) without torsion. This can be extended [39] to high-
order polynomials 𝑅

𝑛 of the Ricci scalar similarly as in the
classically bifurcating 𝑓(𝑅)models [40], but then the issue of
physical ghosts or nonunitarity known [41, 42] from Stelle-
type higher-derivative models needs to be seen.

Quite generally, the dimensionless product

𝜇 =
4

3
𝜅Λ =

1

3
(2𝜅)
2
𝜌Λ ≤

4

3
𝑔𝑁∗𝜆∗ ≃ 0.2. (20)

exhibits a universal bound independent of the particular
truncation.

4.1. The Issue of the Four-Fermion Interaction. Interesting
enough, the EC induced FF interaction (16) with its tiny
“bare” coupling constant

𝑓
2
=

1

192
𝜅
2
= 2
−10

(
𝜇

Λ
)

2

= 2
−8 𝜇

𝜌Λ

(21)

also scales with the gravitational constant 𝜅 but is inversely
compared to the Hilbert-Einstein and cosmological terms.

If the renormalization flow starts to the right from the
non-Gaussian fixed point, the coupling actually diverges
[43] at a finite RG scale. When the contact- or point-like
truncation breaks down, a boson-like description of fermion
bilinears is mandatory, including the 1/𝑘

4 dependence in
the functional integral. Then, the FF interaction becomes
nonlocal [44], and the corresponding dimensionless renor-
malized running coupling 𝑓

2
∗ becomes asymptotically safe or

even free. In a nonlinear 𝜎 model [45], nonrenormalizable
FF interactions may be instrumental for restoring asymptotic
safety.

In view of these problems, the EC theory has been
amended [32, 46] by the pseudocurvature scalar term of
Hojman et al. [47] (the infamous “Holst” term, cf. [34]), or
even nonminimally coupled Dirac fields [48]. Unfortunately,
many of these extensions [49–51] are ignoring a possible
running of the gravitational couplings and therefore appear
not to be conclusive.

Apparently, the search for a Quantum Theory of Gravity
(QG)which is free of anomalies and is leavingEinstein’sGR as
a well-establishedmacroscopic sign post has produced rather
contradictory partial results, to some extent resembling a
Babylonian confusion; compare [52].

Acknowledgments

Valuable comments of Astrid Eichhorn and Friedrich W.
Hehl on a preliminary version are gratefully acknowledged.
Moreover, it is a pleasure to thank Noelia Méndez Córdova,
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