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The dynamics and robust finite-time hybrid projective synchronization of a fractional-order four-dimensional nonlinear system
based on a two-stage Colpitts oscillator is investigated. The study of the fractional order stability of the equilibrium states of
the system is carried out. The bifurcation diagram confirms the occurrence of Hopf bifurcation in the proposed system when
the fractional-order passes a sequence of critical values; the Lyapunov exponent shows the different chaotic sequences of the
system. Further, a fractional nonsingular terminal sliding surface and an appropriate robust fractional sliding mode control law are
proposed for the finite-time hybrid projective synchronization of a fractional-order chaotic two-stage Colpitts oscillator by taking
into account the effects of model uncertainties and the external disturbances. The fractional version of the Lyapunov stability is
used to prove the finite-time existence of the sliding motion. Finally, some numerical simulations are presented to demonstrate the
effectiveness and applicability of the proposed technique.

1. Introduction

Fractional calculus has an about 300-year-old history, but its
applications to physics and engineering are rather recent [1].
Many systems are known to display fractional-order dynam-
ics, such as viscoelastic systems, dielectric polarization, and
electromagnetic waves [2–4], just to name some.

For some decades, there is a growing interest in investi-
gating the chaotic behavior and dynamics of fractional-order
dynamic systems; this can be understood as it has been found
that fractional-order systems possess memory and display
more sophisticated dynamics compared to their integral-
order counterparts, something that is of great significance
in secure communication [5–20]. It has been shown that
several chaotic systems can remain chaoticwhen theirmodels

become fractional [5]. A three-dimensional fractional-order
modified hybrid optical system is presented in [10] where it
was shown that Hopf bifurcation occurs on the proposed sys-
temwhen the fractional order varies and passes a sequence of
critical values. Despite these many examples the bifurcation
of fractional-order nonlinear system has been studied using
solely the Caputo derivative definition and limited to three-
dimensional systems.

On the other hand, in the past two decades, a new
direction of chaos research has emerged to address the more
challenging problem of chaos synchronization due to its
potential applications in laser physics, chemical reactions,
secure communication, biomedicine, and so on [21–23].
The thrust of research within this area aims at achieving a
master-slave synchronization between two chaotic systems by
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choosing various kinds of methods following the pioneering
work of Pecora and Carroll [24]. In [11], based on the stability
theory, a novel fractional-order controller is presented for the
control and synchronization of the fractional-order Lorenz
chaotic system via the fractional derivative. In [12], based
on tracking control and the stability theory of nonlinear
fractional-order systems, Zhou et al. propose the multidrive-
one response synchronization technique which is simple
and theoretically rigorous. In [13], the hybrid projective
synchronization of different dimensional chaotic fractional-
order systems is investigated based on the stability theory
of linear fractional-order systems. Based on the fractional-
order stability theory and control tracking, Zhou and Zhu
investigate the function projective synchronization for the
fractional-order chaotic systems [7]. In [25], based on the
stability theory of the fractional-order system, the authors
studies on projective synchronization of the new fractional-
order chaotic system through designing the suitable nonlin-
ear controller are investigated. All these examples perfectly
clarify the importance of the fractional-order stability theory,
but these works have a common drawback from a practical
point of view: the lack of knowledge of analytical time of
synchronization.

In recent years some researchers have applied finite-time
control and synchronization of fractional-order systems by
means of the fractional-order Lyapunov stability theory. In
[26], the authors design a novel fractional-order nonsingular
sliding mode controller for robust synchronization problem
of a class of fractional-order chaotic systems in the presence
ofmodel uncertainties and external disturbances, the stability
of a novel fractional-order integral type sliding surface is
proven, based on fractional-order Lyapunov stability theory,
a robust sliding control law is derived to guarantee the
occurrence of the sliding motion in finite time. In [27],
using a nonsingular sliding mode surface, the authors study
the finite-time synchronization problem of fractional-order
chaotic/hyperchaotic systems in the presence of both model
uncertainties and external disturbances.These last works will
serve as our handbook in this paper.

It is important to seek bifurcations such as those of
Hopf in systems because they are routes towards chaos in
such systems. Concerning the system with fractional-order,
very little work emphasizes the conditions leading to Hopf
bifurcation. Moreover modified projective synchronization
is a general case of the simple synchronization. But it had
been shown that the finite-time synchronization has very
great applications on a practical point of view. Finally, to
the best of our knowledge there are few works interested in
fractional-order hybrid projective synchronization in finite
time and using a fractional nonsingular terminal sliding
mode surface; the importance of this surface as that used in
[27] is that it supports the robustness of the synchronization
in the presence of the disturbances and uncertainties, and that
it is easily stabilisable with zero and in finite time.

Motivated by the above discussion, at first in the present
work, we propose to tackle the problem of bifurcation of
a four-dimensional fractional-order nonlinear system. The
two-stage well-studied Colpitts oscillator presented in [28]
is a good candidate for the study, due to its broad band in

frequency domain. Secondly we study the finite-time hybrid
projective synchronization problem of fractional-order two-
stage Colpitts oscillator in the presence of both model uncer-
tainties and external disturbances.Themodified nonsingular
terminal sliding mode surface is introduced; its finite-time
stability to zero is proved via the Lyapunov stability. So
on basis of fractional-order Lyapunov stability theory, a
robust control law is designed to force the trajectories of the
synchronization error system onto the sliding surface within
a finite time and remain on it forever. Numerical simulations
demonstrate the applicability and efficiency of the nonlinear
control law and verify the theoretical results of the paper.

The rest of this paper is organized as follows. In Section 2,
the fractional-order system developed around a two-stage
Colpitts oscillator is proposed and its dynamics studied.
The numerical results of the dynamics are presented and
discussed in Section 3, while the next section is devoted to the
synchronization of two two-stage Colpitts oscillators. Finally,
Section 5 concludes this work.

2. The Fractional-Order of a Two-Stage
Colpitts Oscillator

2.1. Dynamics of the System. The proposed four-dimensional
fractional-order system under study described by the set
of (1) is obtained by modifying the integer-order two-stage
Colpitts oscillator proposed in [28]:

𝐷
𝑞
1𝑥1 = 𝜎1 (𝑥4 − 𝛾𝜙 (𝑥2 + 𝑥3)) ,

𝐷
𝑞
2𝑥2 = 𝑥4,

𝐷
𝑞
3𝑥3 = 𝜎2 (𝑥4 − 𝛾𝜙 (𝑥2)) ,

𝐷
𝑞
4𝑥4 = − 𝑥1 − 𝑥2 − 𝑥3 − 𝜀𝑥4.

(1)

Here, the parameters 𝜎1, 𝜎2, 𝛾, and 𝜀 are positive reals, 𝜙(𝑦) =
exp(−𝑦) − 1, and 𝑞 = (𝑞1, 𝑞2, 𝑞3, 𝑞4) is the fractional order.
According to [28], when 𝑞 = (1, 1, 1, 1), the system (1) exhibits
chaotic behavior with the parameter values 𝜎1 = 1.25, 𝜎2 = 1,
𝛾 = 1.5385, and 𝜀 = 1.175.

2.1.1. Stability Analysis

Theorem 1 (see [15, 16]). The following commensurate order
system

𝐶

𝑂𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) , 𝑥 (0) = 𝑥0, (2)

with 0 < 𝑞 ≤ 1, 𝑥 ∈ M𝑛, and 𝐴 ∈ M𝑛𝑥𝑛, is asymptotically
stable if and only if | arg(𝜆)| > 𝑞(𝜋/2) is satisfied for all
eigenvalues 𝜆 of the matrix 𝐴. Moreover, this system is stable if
and only if | arg(𝜆)| ≥ 𝑞(𝜋/2) is satisfied for all eigenvalues 𝜆 of
𝐴 with those critical eigenvalues that satisfy | arg(𝜆)| = 𝑞(𝜋/2)
having geometric multiplicity of one.

Theorem2 (see [17]). Consider the following linear fractional-
order system:

𝐶

𝑂𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) , 𝑤𝑖𝑡ℎ 𝑥 (0) = 𝑥0, (3)
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where 𝑥 ∈ M𝑛, 𝐴 ∈ M𝑛𝑥𝑛, and 𝑞 = (𝑞1 𝑞2 . . . 𝑞𝑛)
𝑇, with

0 < 𝑞𝑖 ≤ 1 and 𝑞𝑖 = 𝑛𝑖/𝑑𝑖, 𝑔𝑐𝑑(𝑛𝑖, 𝑑𝑖) = 1.

Let 𝑀 be the lowest common multiple of the denom-
inators 𝑑𝑖’s. The zero solution of system (3) is globally
asymptotically stable in the Lyapunov sense if all roots 𝜆’s of
the equation

Δ (𝜆) = det (diag (𝜆𝑀𝑞𝑖) − 𝐴) = 0 (4)

satisfy | arg(𝜆)| > 𝜋/2𝑀.

2.1.2. Stability of the Equilibrium Points. In this section we
proceed with commensurate order 𝑞 = 𝑞1 = 𝑞2 =
𝑞3 = 𝑞4. Fractional order of the proposed two-stage Colpitts
oscillator (1), when (𝜎1, 𝜎2, 𝛾, 𝜀) = (1.25, 1, 1.9, 1.175), has one
equilibrium point, 𝑂 = (0, 0, 0, 0). The Jacobian matrix of
system (1), evaluated at the equilibrium point, is

𝐽|𝑂 = (

0 𝜎1𝛾 𝜎1𝛾 𝜎1

0 0 0 1

0 𝜎2𝛾 0 𝜎2

−1 −1 −1 −𝜀

) . (5)

For 𝑞 = (0.96, 0.96, 0.96, 0.96) around and to the equilib-
rium point 𝑂, the equation det(diag(𝜆𝑀𝑞𝑖) − 𝐽|𝑂) = 0 with
𝑖 = 1, 2, 3, 4 and𝑀 = 100 becomes

𝜆
384
+ 𝜀𝜆
288
+ (1 + 𝜎1 + 𝜎2) 𝜆

192

+ (𝜎1𝜎2 + 𝜎1 + 𝜎2) 𝛾𝜆
96
+ 𝜎1𝜎2𝛾

2
= 0.

(6)

Thus, for 𝛾 = 1.1, min𝑖{| arg(𝜆)|} = 0.01596 > 𝜋/200 and for
𝛾 = 1.2, min𝑖{| arg(𝜆)|} = 0.01565 < 𝜋/200.

Therefore, on the basis of Theorem 2, system (1) is
asymptotically stable at equilibrium point 𝑂 for 𝛾 = 1.1 and
unstable for 𝛾 = 1.2.

2.2. Hopf Bifurcation. One of the basic differences between
the dynamical behavior of fractional-order systems and that
of integer-order systems is that the limit set of a trajectory of
integer-order system such as a limit cycle is solution for the
system under consideration, while in the case of fractional-
order systems, such a limit set of a trajectory may not be
solution for this system [18]. In [19], the authors claimed that
there are no periodic orbits in fractional-order systems, and
in [20], an example is given where the solutions of the system
are also not periodic but do converge to periodic signals,
confirming in both cases what has been stipulated in [18].

In the present paper, we consider the final state of trajec-
tory that appears at the Hopf bifurcation (after suppression
of the transitory state). It is also not a periodic solution of the
fractional-order system (1) but attracts nearby solutions.

Let us consider the following four-dimensional fraction-
al-order commensurate system:

𝐷
𝑞
𝑥 = 𝑓 (𝛾, 𝑥) , (7)

where 𝑞 ∈]0, 2[, 𝑥 ∈ IR4, and suppose that𝐸 is an equilibrium
point of this system. In the integer case (𝑞 = 1), the stability

of 𝐸 is related to the sign of Re(𝜆𝑖), 𝑖 = 1, 2, 3, 4, where 𝜆𝑖 are
the eigenvalues of the Jacobian matrix 𝜕𝑓/𝜕𝑥|

𝐸
. If Re(𝜆𝑖) < 0

for all 𝑖 = 1, 2, 3, 4, then 𝐸 is locally asymptotically stable. If
there exists an 𝑖 for which Re(𝜆𝑖) > 0, then 𝐸 is unstable.

To undergo a Hopf bifurcation at the equilibrium point 𝐸
when 𝛾 = 𝛾∗, system (7) with 𝑞 = 1must fulfill the following
conditions:

(i) The Jacobian matrix must have two pairs of complex-
conjugate eigenvalues 𝜆1,2(𝛾) = 𝜃1(𝛾) ± 𝑖𝜂1(𝛾) and
𝜆3,4(𝛾) = 𝜃2(𝛾) ± 𝑖𝜂2(𝛾).

(ii) 𝜃𝑗(𝛾
∗
) = 0, with 𝑗 = 1, 2;

(iii) 𝜂𝑗(𝛾
∗
) ̸= 0, with 𝑗 = 1, 2; and finally

(iv) 𝜕𝜃𝑗/𝜕𝛾|𝛾=𝛾∗ ̸= 0.

In the fractional case, the stability of 𝐸 is related to the sign
of 𝑚𝑖(𝑞, 𝛾) = 𝑞(𝜋/2) − | arg(𝜆𝑖(𝛾))|, with 𝑖 = 1, 2, 3, 4. If
𝑚𝑖(𝑞, 𝛾) < 0 for all 𝑖 = 1, 2, 3, 4, the 𝐸 is locally asymptotically
stable. If there exists any 𝑖 for which 𝑚𝑖(𝑞, 𝛾) > 0, then, the
equilibrium point 𝐸 is unstable. So, the function 𝑚𝑖(𝑞, 𝛾) for
fractional-order systems has a similar effect as the real part
of eigenvalues in integer system. Therefore, we can extend
the Hopf bifurcation condition to the fractional systems by
replacing 𝑅𝑒(𝜆𝑖) with 𝑚𝑖(𝑞, 𝛾) > 0 as follows, compared with
[10]:

(i) 𝑚1,2(𝑞, 𝛾
∗
) = 0,

(ii) 𝜕𝑚/𝜕𝛾|
𝛾=𝛾∗

̸= 0.

2.3. Hopf Bifurcation versus the Parameter𝛽 and the Fractional
Order 𝑞. In this subsection, we consider the parameter values
(𝜎1, 𝜎2, 𝜎3) = (1.25, 1, 1.75) for the search for the Hopf
bifurcation around the equilibrium point 𝑂.

Figure 1(a) depicts the solution (𝑞∗, 𝛾∗) of equation 𝑚(𝑞,
𝛽) = 0, while the black curve on Figure 1(b) recalls that
𝜕𝑚1,2/𝜕𝛾|𝛾=𝛾∗

̸= 0 for all 0 < 𝛾∗ < 2, and for the blue
curve in Figure 1(b) it can be noted that 𝜕𝑚3,4/𝜕𝛾|𝛾=𝛾∗ ̸= 0
for all 0 < 𝛾∗ < 2 except for 𝛾∗ = 1.352. We have
𝜕𝑚/𝜕𝑞|

𝑞=𝑞∗
= 𝜋/2 ̸= 0; thus, the proposed fractional-order

Hopf bifurcation conditions are verified for all pair (𝑞∗, 𝛾∗)
solutions of 𝑚(𝑞, 𝛽) = 0, except for (𝑞∗, 1.352).

3. Numerical Results

For numerical calculation of fractional-order derivatives,
methods defined with (8) to (10) are usually used. The Grün-
wald-Letnikov (GL) method [14] is given in the following
equation:

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) = lim

ℎ→0

ℎ
−𝛼

⌊(𝑡−𝛼)/ℎ⌋

∑

𝑗=0

(−1)
𝑗
(
𝛼

𝑗
)𝑓 (𝑡 − 𝑗ℎ) , (8)

where [⋅] indicates the integer part.
The Riemann-Liouville (RL) definition follows as

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

𝑎

𝑓 (𝜏)

(𝑡 − 𝜏)
𝛼−𝑛+1
𝑑𝜏,

for (𝑛 − 1 < 𝛼 < 𝑛) ,
(9)
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Figure 1: Critical values 𝛾∗ versus the fractional order 𝑞∗. This curve depicts the couples of values for which the Hopf bifurcation occurs in
the system.

where Γ(⋅) is the gamma function. The Caputo definition of
fractional derivatives can also be recalled as

𝑎
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑎

𝑓
(𝑛)
(𝜏)

(𝑡 − 𝜏)
𝛼−𝑛+1
𝑑𝜏,

for (𝑛 − 1 < 𝛼 < 𝑛) .

(10)

Based on the fact that for a wide class of functions
the three definitions—GL (8), RL (9), and Caputo’s (10)—
are equivalent if 𝑓(𝑎) = 0, we can then use relation (11)
derived from the GL definition (8). The new relation for
the explicit numerical approximation of 𝑞th derivative at the
points 𝑘ℎ (𝑘 = 1, 2, . . .) has the following form:

(𝑘−𝐿𝑚/ℎ)
𝐷
𝑞

𝑡
𝑘

𝑓 (𝑡) ≈ ℎ
−𝑞

ℎ

∑

𝑗=0

(−1)
𝑗
(
𝑞

𝑗
)𝑓 (𝑡𝑘 − 𝑗)

= ℎ
−𝑞

ℎ

∑

𝑗=0

𝐶
(𝑞)

𝑗
𝑓 (𝑡𝑘 − 𝑗) ,

(11)

where 𝐿𝑚 is the “memory length,” 𝑡𝑘 = 𝑘ℎ, with ℎ the time
step of calculation and 𝐶(𝑞)

𝑗
(𝑗 = 0, 1, . . . , 𝑘) the binomial co-

efficients. For their calculationwe can use for instance the fol-
lowing expression:

𝐶
(𝑞)

0
= 1, 𝐶

(𝑞)

𝑗
= (1 −

1 + 𝑞

𝑗
)𝐶
(𝑞)

𝑗−1
. (12)

The binomial coefficients 𝐶(𝑞)
𝑗
(𝑗 = 0, 1, . . . , 𝑘) can also be

expressed using a factorial. The gamma function Γ(𝑛) = (𝑛 −
1)! can allow the generalization of the binomial coefficient to
noninteger argument. Thus, relation (12) can be rewritten as
follows:

(−1)
𝑗
(
𝑞

𝑗
) = (−1)

𝑗
Γ (𝑞 + 1)

Γ (1 + 1) Γ (𝑞 − 𝑗 + 1)
=

Γ (𝑗 − 𝑞)

Γ (−𝑞) Γ (𝑗 + 1)
.

(13)

3.1. Bifurcation and Chaos versus the Parameter 𝛾. In this
subsection, the dynamical behavior of system (1) is numeri-
cally investigated bymeans of bifurcation diagram and largest
Lyapunov exponents, which measure the exponential rates
of divergence or convergence of nearby trajectories in phase
space. For 𝛾 taken as control parameter and the following
other parameter values, fractional order 𝑞 = 0.96, 𝜎1 = 1.25,
𝜎2 = 1.00 and 𝜀 = 1.175, the critical Hopf bifurcation value is
localized at 𝛾∗ = 1.150 (see Figure 2(a)) and confirmed by the
largest Lyapunov exponents presented in Figure 2(b). When
𝛾 < 1.150, the equilibrium point 𝑂 is a locally asymptotically
stable focus; the neighbors trajectories converge to 𝑂. This
is supported by the negative sign of the largest Lyapunov
exponents. For 1.150 < 𝛾 < 1.635, system (1) undergoes
a Hopf bifurcation as mentioned above. The fixed point 𝑂
becomes unstable, and a period-one limit cycle appears. A
period-two limit cycle follows for 𝛾 ≈ 1.635, leading to a
new bifurcation at 𝛾 ≈ 1.763, as the system undergoes a
period-four bifurcation.This bifurcations scenario continues
through a period-height limit cycle for 𝛾 ≈ 1.791 up to a
critical value of 𝛾 ≈ 1.820 corresponding to the appearance
of a chaotic attractor. This chaotic behavior is confirmed
by the existence of positive largest Lyapunov exponents.
Figure 3 depicts the phase portraits presenting routes to chaos
according to the abovementioned parameter values.

3.2. Bifurcation and Chaos versus the Fractional Order 𝑞. The
fractional order 𝑞 is taken as control parameter, while 𝛾
is fixed at 𝛾 = 1.9. The critical Hopf bifurcation value is
localized at 𝑞∗ ≈ 0.8557, using the previously proposed con-
ditions. The resulting bifurcation diagram (Figure 4(a)) for
the second variable of the set of (1) is plotted as a function
of the fractional order 𝑞 and corresponding largest Lyapunov
exponents in Figure 4(b).

When 𝑞 < 0.8557, the equilibrium point 𝑂 is a locally
asymptotically stable focus confirmed by the negative sign
of the largest Lyapunov exponents; the neighbors trajectories
converge to this origin. For 𝑞 = 0.8557, system (1) undergoes
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Figure 3: Phase portrait of system (1) for different values of 𝛾, with 𝑞 = 0.96; (a) period-1 for 𝛾 = 1.3, (b) period-2 for 𝛾 = 1.7, (c) period-4
for 𝛾 = 1.77, and (d) chaos for 𝛾 = 1.9.
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Figure 4: Bifurcation diagram expressing the (a) dynamics of the system variable 𝑥
2
and (b) largest Lyapunov exponent, both as a function

of 𝑞, with 𝛾 = 1.9.

a Hopf bifurcation as mentioned above. The fixed point 𝑂
becomes unstable, and a period-1 limit cycle appears for
0.8557 < 𝑞 < 0.9307. As the fractional order parameter
nears the value 𝑞 ≈ 0.9307, a new bifurcation occurs for
period-2 limit cycle. This is followed by a period-4 limit
cycle at 𝑞 ≈ 0.9454. This bifurcation scenario continues
up to a critical value 𝑞 ≈ 0.953 where a chaotic attractor
appears, sustained by the existence of positive largest Lya-
punov exponents. For a periodic steady state, all spikes in the
power spectrum are harmonically related to the fundamental,
whereas a broadband noise like power spectrum is associated
with a chaotic steady state. The periodicity of the attractor
(i.e., total number of frequencies in a wave) is deduced
by counting the number of spikes located at the left-hand
side of the highest spike (the latter is included). Indeed, we
have obtained the complete scenarios to chaos presented in
Figure 5. Specifically, the following scenario was observed
whenmonitoring the control parameter: fixed point behavior
→ period-1 → period-2 → period-4 → chaos.

4. Finite-Time Hybrid Projective
Synchronization of Two Fractional-Order
Two-Stage Colpitts Oscillators

4.1. Analytic Results. This section is devoted to the finite-time
hybrid projective synchronization of the drive and response
commensurate fractional order of a two-stage Colpitts system
using a robust fractional nonsingular terminal sliding mode
controller, for 𝑞 = 0.96.The drive system is defined as follows:

𝐷
𝑞
𝑥1 = 𝜎1 (𝑥4 − 𝛾𝜙 (𝑥2 + 𝑥3)) ,

𝐷
𝑞
𝑥2 = 𝑥4,

𝐷
𝑞
𝑥3 = 𝜎2 (𝑥4 − 𝛾𝜙 (𝑥2)) ,

𝐷
𝑞
𝑥4 = − 𝑥1 − 𝑥2 − 𝑥3 − 𝜀𝑥4.

(14)

The drive system (14) can be written as well as

𝐷
𝑞
𝑥𝑖 = 𝑓𝑖 (𝑡, 𝑥𝑖) , 𝑖 = 1, . . . , 4. (15)

Accordingly, the response system takes the following
form:

𝐷
𝑞
𝑦𝑖 = 𝑓𝑖 (𝑡, 𝑦𝑖) + Δ𝑓𝑖 (𝑡, 𝑦𝑖) + 𝑑𝑖 + 𝑢𝑖, 𝑖 = 1, . . . , 4, (16)

where 𝑢𝑖 ∈ IR4 represents the nonlinear controllers and
Δ𝑓𝑖(𝑡, 𝑦𝑖) and 𝑑𝑖 ∈ IR

4 represent unknownmodel uncertainty
and external disturbances of the system. By subtracting (15)
from (16) and setting

𝑒𝑖 = 𝑎𝑖𝑦𝑖 − 𝑥𝑖, 𝑖 = 1, . . . , 4, (17)

the following set of equations defining the errors is obtained:

𝐷
𝛼
𝑒𝑖 = 𝑎𝑖 (𝑓𝑖 (𝑡, 𝑦𝑖) + Δ𝑓𝑖 (𝑡, 𝑦𝑖) + 𝑑𝑖 + 𝑢𝑖) − 𝑓𝑖 (𝑡, 𝑥𝑖) . (18)

Theorem 3 (see [27]). Let 𝑥 = 0 be an equilibrium point for
the nonautonomous fractional-order system 𝐷𝛼𝑥 = 𝑤(𝑡, 𝑥),
where 𝑤(𝑡, 𝑥) satisfies the Lipschitz condition with Lipschitz
constant 𝑙 > 0 and 𝛼 ∈ (0 1). Assume that there exists a
Lyapunov function 𝑉(𝑡, 𝑥) satisfying

𝛼1‖𝑥‖
𝑑
≤ 𝑉 (𝑡, 𝑥) ≤ 𝛼2 ‖𝑥‖ ,

�̇� (𝑡, 𝑥) ≤ 𝛼3 ‖𝑥‖ ,

(19)

where 𝛼1, 𝛼2, 𝛼3, and 𝑑 are positive constants. Then the
equilibrium point of the system𝐷𝛼𝑥 = 𝑤(𝑡, 𝑥) is Mittag-Leffler
stable.
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Figure 5: Phase portrait of system (1) for different values of 𝑞, with 𝛾 = 1.9 and corresponding power spectra: ((a) and (e)) period-1 for
𝑞 = 0.92, ((b) and (f)) period-2 for 𝑞 = 0.94, ((c) and (g)) period-4 for 𝑞 = 0.947, and ((d) and (h)) chaos for 𝑞 = 0.96.
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Assumption 4. The uncertainty terms Δ𝑓𝑖(𝑡, 𝑦𝑖) and external
disturbance 𝑑𝑖 are bounded by |Δ𝑓𝑖(𝑡, 𝑦𝑖)| ≤ 𝛿𝑖 and |𝑑𝑖| ≤ 𝛽𝑖,
𝑖 = 1, . . . , 4, where 𝛿𝑖 and 𝛽𝑖 are positive constants.

Lemma 5. Assume 𝑐, 𝑏, and 0 < 𝑛 < 1 are real numbers; then
the following inequality holds: (|𝑐| + |𝑏|)𝑛 ≤ |𝑐|𝑛 + |𝑏|𝑛.

4.1.1.Main Results. In this subsection amodified nonsingular
terminal sliding surface is proposed as

𝑆𝑖 (𝑡) = 𝐷
𝑞−1
𝑒𝑖 + 𝐷

𝑞−2
(𝐾𝑖𝑒𝑖 + 𝐾𝑖

󵄨󵄨󵄨󵄨𝑎𝑖𝑒𝑖
󵄨󵄨󵄨󵄨

𝜇 sign (𝑒𝑖)) ,

𝑖 = 1, . . . , 4,

(20)

where 𝐾𝑖 are the sliding surface parameters to be introduced
later and 𝑎𝑖 are the scaling factor to content in synchroniza-
tion error.Thenonsingular terminal sliding surface as defined
in (20) present a major advantage on that proposed in [27],
namely its dependence on scaling factor 𝑎𝑖 no matter the ini-
tial conditions which, allows to improve the synchronization
time between the driven system and response system. For the
existence of the slidingmode it is necessary and sufficient that
𝑆𝑖(𝑡) = 0 and ̇𝑆𝑖(𝑡) = 0 [27]. Therefore, the dynamics of the
proposed nonsingular terminal slidingmode can be obtained
as

𝐷
𝑞
𝑒𝑖 = −𝐷

𝑞−1
(𝐾𝑖𝑒𝑖 + 𝐾𝑖

󵄨󵄨󵄨󵄨𝑎𝑖𝑒𝑖
󵄨󵄨󵄨󵄨

𝜇 sign (𝑒𝑖)) , 𝑖 = 1, . . . , 4.
(21)

Theorem 6. The system (20) is finite time stable and its
trajectories converge to the equilibrium 𝑒(𝑡) = 0 in a finite-
time, 𝑡𝑠1, determined by

𝑡𝑠1 ≤
1

𝐾 (1 − 𝜇)
[ln(1 + ‖𝑒 (0)‖

1−𝜇

|𝑎|
𝜇
)] , (22)

where𝐾 = min(𝐾𝑖) and 𝑎 = min(𝑎𝑖).

Proof. Consider the candidate following positive definite
Lyapunov function:

𝑉1 =

4

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖
󵄨󵄨󵄨󵄨 = ‖𝑒‖ . (23)

The time derivative of the Lyapunov function along the
trajectories of (21) is

�̇�1 =

4

∑

𝑖=1

sign (𝑒𝑖) ̇𝑒𝑖

=

4

∑

𝑖=1

sign (𝑒𝑖) (𝐷
1−𝑞
(𝐷
𝑞
𝑒𝑖))

=

4

∑

𝑖=1

sign (𝑒𝑖) [𝐷
1−𝑞
(−𝐷
𝑞−1
(𝐾𝑖𝑒𝑖 + 𝐾𝑖

󵄨󵄨󵄨󵄨𝑎𝑖𝑒𝑖
󵄨󵄨󵄨󵄨

𝜇 sign (𝑒𝑖)))]

= −

4

∑

𝑖=1

sign (𝑒𝑖) (𝐾𝑖𝑒𝑖 + 𝐾𝑖
󵄨󵄨󵄨󵄨𝑎𝑖𝑒𝑖
󵄨󵄨󵄨󵄨

𝜇 sign (𝑒𝑖))

≤ − 𝐾(

4

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖
󵄨󵄨󵄨󵄨 + |𝑎|

𝜇

4

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖
󵄨󵄨󵄨󵄨

𝜇
) .

(24)

Using Lemma 5, one can obtain

�̇�1 ≤ −𝐾 (‖𝑒‖ + |𝑎|
𝜇
‖𝑒‖
𝜇
) ≤ −𝐾 ‖𝑒‖ . (25)

Hence, according to Theorem 3, the error system (21)
will converge to zero asymptotically. In order to show that
the sliding motion occurs in finite time, we can obtain the
convergence time as follows.

From inequality (25) we have

𝑑 ‖𝑒‖

𝑑𝑡
≤ −𝐾 (‖𝑒‖ + |𝑎|

𝜇
‖𝑒‖
𝜇
) . (26)

What leads us to

𝑑𝑡 ≤ −
1

𝐾 (1 − 𝜇)

𝑑‖𝑒‖
1−𝜇

𝐾(‖𝑒‖
1−𝜇
+ |𝑎|
𝜇
)

. (27)

Taking integral of both sides of (27) from 0 to 𝑡𝑠1 and
letting 𝑒(𝑡𝑆

1

) = 0, we have

𝑡𝑠1 ≤
1

𝐾 (1 − 𝜇)
[ln(1 + ‖𝑒 (0)‖

1−𝜇

|𝑎|
𝜇
)] . (28)

Therefore, the state trajectories of the error system (21) will
converge to 𝑒(𝑡) = 0 in the finite time 𝑡𝑠1 ≤ (1/𝐾(1−𝜇))[ln(1+
(‖𝑒(0)‖

1−𝜇
/|𝑎|
𝜇
))]. This completes the proof.

A control law which forces the error trajectories to go
onto the sliding surface within a finite time and remain on
it forever is designed as follows:

𝑢𝑖 =
1

𝑎𝑖

(𝑓𝑖 (𝑡, 𝑥𝑖) − 𝜀𝑖𝑆𝑖 − (
󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 (𝛿𝑖 + 𝛽𝑖) + 𝜀𝑖

󵄨󵄨󵄨󵄨𝑆𝑖
󵄨󵄨󵄨󵄨

𝜂
) sign (𝑆𝑖)

−𝐷
𝑞−1
(𝐾𝑖𝑒𝑖 + 𝐾𝑖

󵄨󵄨󵄨󵄨𝑎𝑖𝑒𝑖
󵄨󵄨󵄨󵄨

𝜇 sign (𝑒𝑖))) − 𝑓𝑖 (𝑡, 𝑦𝑖) ,
(29)

𝑖 = 1, . . . , 4, where 𝐾𝑖 are the sliding surface parameters to
be introduced later, 𝑎𝑖 are the scaling factor to content in
synchronization error, and 𝛿𝑖 and 𝛽𝑖 are positive constants.

Theorem 7. If the error system (18) is controlled with control
law (29), then the states of the system will move toward the
sliding surface and will approach the sliding surface 𝑆𝑖(𝑡) = 0
in a finite time, 𝑡𝑠2, given by

𝑡𝑠2 ≤
1

𝜀 (1 − 𝜂)
ln (‖𝑆 (0)‖1−𝜂 + 1) . (30)

Proof. Choosing a Lyapunov function in the form of

𝑉2 = ‖𝑆 (𝑡)‖ =

4

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑆𝑖
󵄨󵄨󵄨󵄨 (31)
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and taking the time derivative, one has

�̇�2 =

4

∑

𝑖=1

sign (𝑆𝑖) ̇𝑆𝑖. (32)

Inserting (20) into (32), we have

�̇�2 =

4

∑

𝑖=1

sign (𝑆𝑖) [𝐷
𝑞
𝑒𝑖 + 𝐷

𝑞−1
(𝐾𝑖𝑒𝑖 + 𝐾𝑖

󵄨󵄨󵄨󵄨𝑎𝑖𝑒𝑖
󵄨󵄨󵄨󵄨

𝜇 sign (𝑒𝑖))] .

(33)

Inserting (18) into (33), we have

�̇�2 =

4

∑

𝑖=1

sign (𝑆𝑖)

× [𝑎𝑖 (𝑓𝑖 (𝑡, 𝑦𝑖) + Δ𝑓𝑖 (𝑡, 𝑦𝑖) + 𝑑𝑖 + 𝑢𝑖) − 𝑓𝑖 (𝑡, 𝑥𝑖)

+𝐷
𝑞−1
(𝐾𝑖𝑒𝑖 + 𝐾𝑖

󵄨󵄨󵄨󵄨𝑎𝑖𝑒𝑖
󵄨󵄨󵄨󵄨

𝜇 sign (𝑒𝑖))] .
(34)

Using expression sign2(𝑆𝑖) = 1 into (34), we obtain

�̇�2 ≤

4

∑

𝑖=1

sign (𝑆𝑖) [𝑎𝑖𝑓𝑖 (𝑡, 𝑦𝑖) + 𝑎𝑖𝑢𝑖 − 𝑓𝑖 (𝑡, 𝑥𝑖)

+𝐷
𝑞−1
(𝐾𝑖𝑒𝑖 + 𝐾𝑖

󵄨󵄨󵄨󵄨𝑎𝑖𝑒𝑖
󵄨󵄨󵄨󵄨

𝜇 sign (𝑒𝑖))]

+

4

∑

𝑖=1

(
󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨Δ𝑓𝑖 (𝑡, 𝑦𝑖)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑑𝑖
󵄨󵄨󵄨󵄨) sign

2
(𝑆𝑖) .

(35)

On the basis of Assumption 4, we get

�̇�2 ≤

4

∑

𝑖=1

sign (𝑆𝑖) [𝑎𝑖𝑓𝑖 (𝑡, 𝑦𝑖) + 𝑎𝑖𝑢𝑖 − 𝑓𝑖 (𝑡, 𝑥𝑖)

+𝐷
𝑞−1
(𝐾𝑖𝑒𝑖 + 𝐾𝑖

󵄨󵄨󵄨󵄨𝑎𝑖𝑒𝑖
󵄨󵄨󵄨󵄨

𝜇 sign (𝑒𝑖))]

+

4

∑

𝑖=1

(
󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛿𝑖
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨) sign

2
(𝑆𝑖) ,

(36)

what leads to

�̇�2 ≤

4

∑

𝑖=1

sign (𝑆𝑖) [𝑎𝑖𝑓𝑖 (𝑡, 𝑦𝑖) + 𝑎𝑖𝑢𝑖 − 𝑓𝑖 (𝑡, 𝑥𝑖)

+ (
󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛿𝑖
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨) sign (𝑆𝑖)

+𝐷
𝑞−1
(𝐾𝑖𝑒𝑖 + 𝐾𝑖

󵄨󵄨󵄨󵄨𝑎𝑖𝑒𝑖
󵄨󵄨󵄨󵄨

𝜇 sign (𝑒𝑖))] .
(37)

Introducing (29) into (37), we have

�̇�2 ≤

4

∑

𝑖=1

sign (𝑆𝑖) [−𝜀𝑖𝑆𝑖 − 𝜀𝑖
󵄨󵄨󵄨󵄨𝑆𝑖
󵄨󵄨󵄨󵄨

𝜂 sign (𝑆𝑖)]

�̇�2 ≤

4

∑

𝑖=1

[−𝜀𝑖𝑆𝑖 − 𝜀𝑖
󵄨󵄨󵄨󵄨𝑆𝑖
󵄨󵄨󵄨󵄨

𝜂
] .

(38)

Using Lemma 5, one can obtain

�̇�2 ≤ −𝜀 (‖𝑆 (𝑡)‖ + ‖𝑆 (𝑡)‖
𝜂
) , (39)

where 𝜀 = min(𝜀𝑖).
Hence, according toTheorem 3, the error system (18) will

converge to 𝑆𝑖(𝑡) = 0 asymptotically.
In order to show that the sliding motion occurs in finite

time, we can obtain the convergence time as follows.
From inequality (39), we have

𝑑𝑡 ≤ −
𝑑 ‖𝑆 (𝑡)‖

𝜀 (‖𝑆 (𝑡)‖ + ‖𝑆 (𝑡)‖
𝜂
)
, (40)

what leads us to

𝑑𝑡 ≤ −
1

𝜀 (1 − 𝜂)

𝑑‖𝑆 (𝑡)‖
1−𝜂

(‖𝑆 (𝑡)‖
1−𝜂
+ 1)

. (41)

Taking integral of both sides of (41) from 0 to 𝑡𝑠2 and letting
𝑒(𝑡𝑠2) = 0, we have

𝑡𝑠2 ≤
1

𝜀 (1 − 𝜂)
ln (‖𝑆 (0)‖1−𝜂 + 1) . (42)

Remark 8. According toTheorems 6 and 7, the sliding mode
control law (29) and the sliding surface (20) can make the
response system (16) reach the drive system (15) in the finite-
time 𝑇𝑠 = 𝑡𝑠1 + 𝑡𝑠2.

4.2. Numerical Results. The drive and response system (14)
and (16) are numerically integrated with the parameter values
𝜎1 = 1.25, 𝜎2 = 1.00, 𝛾 = 1.9, 𝜀 = 1.175, and 𝑞 = 0.96; the
uncertainties and external disturbance in (16) are selected by

Δ𝑓1 (𝑡, 𝑦1) + 𝑑1 = 0.1 sin (0.1𝜋𝑦1) + 0.1 cos (0.1𝑡) ,

Δ𝑓2 (𝑡, 𝑦2) + 𝑑2 = 0.1 cos (0.1𝜋𝑦2) + 0.1 sin (0.1𝑡) ,

Δ𝑓3 (𝑡, 𝑦3) + 𝑑3 = 0.1 sin (0.1𝜋𝑦3) + 0.1 cos (0.1𝑡) ,

Δ𝑓4 (𝑡, 𝑦4) + 𝑑4 = 0.1 cos (0.1𝜋𝑦4) + 0.1 sin (0.1𝑡) .

(43)

Control laws (29) use the nonsingular surface defined at
(20) and the rest of functions of (29) are chosen as:

𝑓𝑖 (𝑡, 𝑥) = (

𝑓1 (𝑡, 𝑥1)

𝑓2 (𝑡, 𝑥2)

𝑓3 (𝑡, 𝑥3)

𝑓4 (𝑡, 𝑥4)

) = (

𝜎1 (𝑥4 − 𝛾𝜙 (𝑥2 + 𝑥3))

𝑥4

𝜎2 (𝑥4 − 𝛾𝜙 (𝑥2))

−𝑥1 − 𝑥2 − 𝑥3 − 𝜀𝑥4

),

𝑓𝑖 (𝑡, 𝑦) = (

𝑓1 (𝑡, 𝑦1)

𝑓2 (𝑡, 𝑦2)

𝑓3 (𝑡, 𝑦3)

𝑓4 (𝑡, 𝑦4)

) = (

𝜎1 (𝑦4 − 𝛾𝜙 (𝑦2 + 𝑦3))

𝑦4

𝜎2 (𝑦4 − 𝛾𝜙 (𝑦2))

−𝑦1 − 𝑦2 − 𝑦3 − 𝜀𝑦4

),
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Figure 6: Continued.
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Figure 6: (a) Time evolution of the slidingmode surface, showing the (b) synchronization process between the two coupled chaotic oscillators
starting from different initial condition and (c) synchronization errors obtained for 𝜎
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1
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𝑞−2
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𝜇 sign (𝑒1))
𝐷
𝑞−1
𝑒2 + 𝐷

𝑞−2
(𝐾2𝑒2 + 𝐾2
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𝜇 sign (𝑒2))
𝐷
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) ,

(44)

and the parameters of (29) are selected as follows: 𝑘1 = 𝑘2 =
𝑘3 = 𝑘4 = 0.15, 𝜀1 = 𝜀2 = 𝜀3 = 𝜀4 = 0.5, 𝜂 = 𝜇 = 0.95,
𝑎1 = 𝑎3 = 2, and 𝑎2 = 𝑎4 = −2. The initial conditions are
given as [0.2 0.12 0.15 0.01] for the driver and [−1 2 −
1 1] for the response. The analytics time of synchronization
is 𝑇𝑎 = 61.17 + 29.85, whereas in Figure 6 we show that
the numerical time of synchronization is 𝑇𝑛 = 3.13 + 6.13.
These results confirm our theoretical result. Figure 7 displays
MSQR = √∑4

𝑖=1
𝑒𝑖
2 for the parameters selects as follows:

𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 0.15, 𝜀1 = 𝜀2 = 𝜀3 = 𝜀4 = 0.5,
𝜂 = 𝜇 = 0.95, and 𝑎𝑖 are given in the key. The initial
conditions are as follows: [0.2 0.12 0.75 0.1] for the master
and [0 0 0 0] for the slave. Figure 7 shows us that when 𝑎𝑖
is far from one, the synchronization time turns fast to zero;
this decreasing numerical time of synchronization justifies
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Figure 7: Time evolution of MSQR = √∑4
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𝑖
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the decreasing analytical time of synchronization which is,
respectively, 𝑡𝑎 = 120.55, 𝑡𝑎 = 83.58, 𝑡𝑎 = 53.95, and
𝑡𝑎 = 41.89 for |𝑎𝑖| = 1, |𝑎𝑖| = 2, |𝑎𝑖| = 5, and |𝑎𝑖| = 10.
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5. Conclusion

In this paper the dynamics and synchronization of a proposed
four-dimensional fractional-order two-stage Colpitts oscil-
lator have been investigated using analytical and numerical
methods. The analytic method proved the existence of the
Hopf bifurcation as well as the beach of the control parameter
for which the system is stable. On the basis of fractional
Lyapunov stability theory we determined with success the
conditions under which the synchronization of two systems
is achieved. For numerical simulationwe used the Grünwald-
Letnikov method, the largest Lyapunov exponents, and the
bifurcation diagrams to show the period-doubling bifurca-
tion routes to chaos as well as the Hopf bifurcation. The
numerical analysis validates the conditions of Hopf bifurca-
tion. For the finite-time hybrid projective synchronization
the numerical investigation validates also the analytic condi-
tions which achieve synchronization. Numerical simulations
have been used to show the effectiveness of the proposed
synchronization techniques.
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