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An overview of computational methods to model fracture in brittle and quasi-brittle materials is given. The overview focuses on
continuummodels for fracture. First, numerical difficulties related tomodelling fracture for quasi-brittlematerials will be discussed.
Different techniques to eliminate or circumvent those difficulties will be described subsequently. In that context, regularization
techniques such as nonlocal models, gradient enhanced models, viscous models, cohesive zone models, and smeared crack models
will be discussed. The main focus of this paper will be on computational methods for discrete fracture (discrete cracks). Element
erosion technques, inter-element separation methods, the embedded finite element method (EFEM), the extended finite element
method (XFEM), meshfree methods (MMs), boundary elements (BEMs), isogeometric analysis, and the variational approach to
fracture will be reviewed elucidating advantages and drawbacks of each approach. As tracking the crack path is of major concern
in computational methods that preserve crack path continuity, one section will discuss different crack tracking techniques. Finally,
cracking criteria will be reviewed before the paper ends with future research perspectives.

1. Introduction

The prediction of material failure is of major importance in
engineering and materials Science. In the past two decades,
a huge effort was made to develop novel, efficient, and accu-
rate computational methods for fracture, and an enormous
progress was made.This paper will give an overview on those
advances.The paper focuses on continuummodels for brittle
and quasi-brittle fracture. It will not discuss issues related to
ductile fracture with plastic deformation prior to localization;
see for example, the excellent work of the group of Prof. Li
[1–7].

There are three failure modes see Figure 1. Mode-I failure
is related to crack opening, mode-II failure (sliding) is a pure
shear failure mode, and mode-III failure (tearing) can be
considered as out-of-plane shearing. In many applications,
materials will fail due to a mixed mode failure. Fracture in
brittle materials can be modelled by linear elastic fracture
mechanics (LEFMs). Brittle materials are characterized by
linear elastic material behavior in the bulk and a small
fracture process zone. However, LEFM cannot be used when
the failure process zone is of the order of the size of the

structure. The relative size of the fracture process zone (𝑙)

with respect to the smallest critical dimension of the structure
(𝐷) is important for the choice of the fracture model [8].
For 𝐷/𝑙 > 100, LEFM is valid while for 5 < 𝐷/𝑙 < 100, a
(nonlinear) quasi-brittle fracture approach, should be used
instead; see also the contributions by [9, 10]. Gdoutos [8]
recommends the use of nonlocal damage models for𝐷/𝑙 < 5.
The length of the fracture process zone is of the order of the
characteristic length [11]:
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where 𝐸 is the modulus of elasticity, 𝜗 is the Poisson’s ratio,
𝐺
𝑓
is the fracture energy and 𝑓

𝑡
denotes the tensile strength

of the material. Carpinteri [12] introduced a nondimensional
brittleness number 𝑠

𝐸
= 𝐺

𝑓
/(𝑓

𝑡
𝑏) where 𝑏 is a geometric

measure. He tested pre-notched beams under 3-point bend-
ing.The distance between the notch and the upper boundary
of the beam is 𝑏. If the process zone is small compared to
𝑏, the failure is brittle and LEFM is applicable. Otherwise,
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Figure 1: Different failure modes.

in the absence of plasticity, we may call the failure quasi-
brittle. The stress-strain curve for quasi-brittle materials such
as concrete, ceramics, and rock is characterized by a drop
of the stress after the peak stress is reached. This softening
can be explained by damage mechanics due to the initiation,
growth, and coalescences of microcracks that reduce the
effective cross-sectional area, Figure 2. For more details, the
reader is referred to numerous articles and books on damage
mechanics [13–26].

The use of strain-softening material models leads to
an ill-posed boundary value problem (BVP) [27–31]. The
solution of ill-posed BVPs with computationalmethods leads
to certain difficulties. Bažant and Belytschko [32] showed
that the deformations localize in a set of measure zero; in
1D the localization will occur in a point, in 2D in a line,
and in 3D in a surface. They further showed that the energy
dissipation approaches zero with increasing refinement of the
discretization yielding physically meaningless results.

The difficulties that emerge with the material instabilities
due to the ill-posedness of the BVP can be avoided by regular-
ization techniques such as higher order continuum models,
gradient based models, and polar theories (the most well-
known theory is probably the Cosserat continuum), nonlocal
models, viscous models or cohesive zone models. These
regularization techniques introduce a characteristic length
into the discretization. In other words, the local character of
the deformation is lost, and the fracture is “smeared” over a
certain domain involving several elements. Therefore, a very
fine mesh has to be used in order to resolve the crack. As the
crack introduces a jump in the displacement field, methods
that smear the crack over a certain region are not capable
of representing the correct crack kinematics. Moreover, the
different length scales (of the structure and the characteristic
length) may significantly increase the computational cost.
A lot of effort has been devoted to develop methods that
are capable of capturing the crack and take advantage of
regularization techniques that can be coupled to these strong
discontinuity approaches. Modeling fracture with strong-
discontinuity approaches require two key ingredients:

(1) a method that is capable of capturing the crack
kinematics and

(2) a cracking criterion that determines the orientation
and the length of the crack.

Computational methods that describe the topology of the
crack as continuous surface require also methods to describe
the crack surface and track the crack path. The paper is
structured as follows. In the next section, popular regulariza-
tion techniques are summarized including gradient enhanced
models, non-local models, viscous models, cohesive zone
models, and smeared crack models. Section 3 gives an
overview of the state-of-the-art computational methods for
(discrete) fracture of brittle and quasi-brittle solids. Section 4
is devoted to crack tracking procedures as it is a major
challenge for computational methods preserving crack path
continuity. Section 5 discusses cracking criterion that deter-
mine the transition from the continuum to the discontinuum.
The article finishes with future research directions and some
concluding remarks.

2. Regularization

2.1. Gradient-Enhanced Models. Gradient-enhanced models,
or briefly called gradient models, are typically described
by differential equations that contain higher order spatial
derivatives.The coefficientsmultiplying the terms of different
order have different physical dimensions. It is possible to
deduce the characteristic length from their ratio. Gradient
models can be incorporated into plasticity format, [33, 34],
damage format [22, 35] or in a combination of both [15]. Since
they require higher order spatial derivatives, higher order
elements need to be used. Gradient models are sometimes
referred to asweakly non-localmodels, see Bažant and Jirásek
[14] though some recent models [22] are also classified as
strongly non-local.

2.2. Nonlocal Models. Strongly non-local models are models
of the integral type, see Figure 3. In non-local formulations,
the stress at a given material point does not only depend on
that local strain but also on the strain of the neighboring
points. This effect is obtained by averaging certain internal
variables in a given neighborhood, Figure 3. The size of
this neighborhood is a material parameter, that depends
also on the geometry of the structure of interest. In other
words, changing the dimensions of the problem requires
recalibration of the parameters of the non-local model. They
can be obtained by an inverse analysis. Bažant and Jirásek [14]
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Figure 2: The equivalence principe of continuum damage mechanics.
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Figure 3: Principle of nonlocal constitutive models with the typical bell-shaped domain of influence.

give an excellent overview on non-localmodels of the integral
types and physical motivations (see also Bažant [36]) as well
as suggestions for calibrating material parameters.

2.3. Viscous Models. The introduction of a viscosity can
also restore the well-posedness of the BVP or initial BVP
(IBVP). It can be regarded as introducing higher order time
derivatives, similar to the gradient models. Considering the
dimensions of the viscosity 𝜂 (kg/(ms)), the dimensions of the
Young’smodulus𝐸 (kg/(ms2)) and the dimension of themass
density 󰜚(kg/m3), there is indeed a length scale 𝑙

𝑐ℎ
associated

with the viscosity given by [14]:

𝑙
𝑐ℎ

=
𝜂

√𝐸/󰜚
, (2)

where 𝑐 = √𝐸/󰜚 is the longitudinal propagation velocity
in 1D. However, the well-posedness of the IBVP is only
guaranteed during the time span of the viscosity (𝑡

0
=

𝑙
𝑐ℎ
/𝑐). For visco-plastic models, Etse and Willam [37] have

shown that after discretization, hyperbolicity of the linearized
momentum equation can be lost if a critical time step is
exceeded.

The introduction of a viscosity can sometimes be physi-
cally motivated. The strain rate effect and the corresponding
dynamic strength, increase, for example, can be captured by
viscous damage models [38].

2.4. Cohesive Zone Models. Cohesive zone models (CZMs)
also restore the well-posedness of the (I)BVP. In contrast to
the models described before, CZMs can be combined with
computational methods that maintain the local character of
the crack. In cohesive cracks, a traction-separation model
is applied across the crack surface that links the cohesive
traction transmitted by the discontinuity surface to the
displacement jump, characterized by the separation vector.
CZMs go back to the 60’s and were originally developed
from Dugdale [39] and Barenblatt [40]. They were applied
in metal plasticity to take into account friction along neigh-
boring grains. Hillerborg et al. [41] extended this concept to
model crack growth in concrete. They called their approach
𝑓𝑖𝑐𝑡𝑖𝑡𝑖𝑜𝑢𝑠 𝑐𝑟𝑎𝑐𝑘 𝑚𝑜𝑑𝑒𝑙. The main difference between the
fictitious crackmodel of Hillerborg and the CZM byDugdale
[39] and Barenblatt [40] is that crack initiation and propaga-
tion is not restricted along a predetermined path but cracks
can initiate anywhere in the structure.

The principal idea of cohesive cracks is shown in Figure 4.
The cohesive model is used in the so-called process zone,
sometimes also called cohesive zone.The complex stress state
around the crack tip is lumped into a single surface. The
first approach by Hillerborg et al. [41] was limited to mode-I
fracture. Meanwhile, many models have been developed that
are able to handle mixed mode fracture and other complex
phenomena including irreversible deformations, stress tri-
axiality, and rate dependence [42–47]. Some CZMs include
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Figure 4: Principle of cohesive crack models.

fine scale effects obtained from micromechanical models
or atomistic simulations [48–51]. Note that the methods
developed in [52–54] are different to conventional cohesive
zone models as the interphase zone is a finite size zone and
therefore enables the simulation of complex mixed-mode
fracture and thermomechanical fracture. They also allow the
combination of the Cauchy-Born rule with cohesive strength.

CZMs can be classified into initially rigid models (some-
times also called extrinsic models), Figure 5(d), and initially
elastic models, Figure 5(e). While the initially rigid models
are characterized by a monotonic decrease in the cohesive
traction, initially elastic models exhibit initially a positive
slope, Figure 5(e). As the cohesive traction increases in
initially elastic models, the stresses in the neighboring areas
will increase as well leading to spurious cracking. Cohesive
cracking will extend to a finite zone with infinitely close
cracks with infinitely small crack openings, whichmeans that
localized cracking is in fact forbidden [55].

Initially rigid models cause numerical difficulties when
elastic unloading occurs at an early stage such that the
stiffness for the unloading case tends to infinity. It is believed
that initially rigid models are better suited particularly in
the context of dynamic fracture. A good overview and a
discussion on initially elastic and initially rigid models are
given, for example, in Papoulia et al. [56] and references
therein.

An important material parameter of the CZM is the
fracture energy 𝐺

𝑓
. In the one-dimensional case of pure

mode I-failure, the fracture energy 𝐺
𝑓
= ∫

𝑤max

0

𝑡(𝑤)𝑑𝑤 is the
energy that is dissipated during crack opening. It is related to
the area of the cohesive crack; 𝑡 is the cohesive traction, 𝑤 is
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Figure 5: Typical one-dimensional cohesive models (a) The model
by Dugdale1 for fracture across grain boundaries in metal, (b) a
modified Dugdale model, (c) linear decaying cohesive model, (d)
exponential decaying model, (e) model with positive initial stiffness
for brittle fracture, and (f) non-admissible cohesive model.

the crack opening and 𝑤max is the crack opening at which no
cohesive forces are transmitted; see also Figure 4.

2.5. Smeared Crack Models. Themain idea of smeared crack
models is to spread the energy release along the width of the
localization band usually within a single element so that it
be objective. This is achieved by calibrating the width of the
band such that the dissipated energy is the correct one. This
introduces a characteristic length into the discretization that
depends on the size of the elements.

A milestone in smeared crack models is the crack band
model by Bažant and Oh [57]. It is based on the observation
that the process zone localizes in a single element, the so-
called crack band. Therefore, Bažant and Oh [57] modified
the constitutive model after localization so that the correct
energy is dissipated. Since the width of the numerically
resolved fracture process zone depends on the element size
and tends to zero if the mesh is refined, the crack band
model cannot be considered as real localization limiter. It only
partially regularizes the problem in the sense that the global
characteristics do not exhibit spurious mesh dependence.
When the element size exceeds the size of the process zone,
the stress-strain curve has to be adjusted horizontally as
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Figure 6: Adjustment of the stress-strain curve in the crack band
model, (a) master curve and decomposition of the strains into
prelocalizaton and post-localization parts, (b) horizontal scaling for
an element larger than the physical process zone, and (c) snap back
for too large elements reproduced from Bažant and Jirásek [14].

shown in Figure 6(b). This makes the stress-strain curve
in the post-localization region steeper, and the appropriate
scaling ratio achieves the dissipation energy remains the
same.The crack bandmodel was successfully used for mode-
I fracture. The extension to mixed mode failure and complex
three-dimensional stress states is difficult. Besides, exact scal-
ing leads to a system of non-linear equations that can only be
solved iteratively. Moreover, when the elements are too large
(larger than the physical process zone), the adjusted post-
localization diagramwill develop a snap back, see Figure 6(c).
In turn, when the elements aremuch smaller than the process

zone, the adjusted post-localization diagram becomes less
steep, and the band of cracking elements converges to a set
of measure zero. Thus, the limit corresponds to the solution
of a cohesive crack model [58].

The smeared crack models can be further classified into
rotating and fixed crack models. In the fixed crack model,
the orientation of the crack is not allowed to change. Fixed
crack models can be again classified into single fixed crack
models and multiple fixed crack models. In the latter case,
more than one crack initiates in an element. Often, a second
crack is only allowed to be initiated perpendicular to the first
crack (this should avoid the initiation of too many cracks),
see Figure 7(b).

The orientation of the crack is typically chosen to
be perpendicular to the direction of the principal tensile
strain or principal tensile stress. Since the direction of the
principal tensile strain changes during loading, fixed crack
models result in too stiff system responses. Fixing the crack
orientation leads to stress locking, meaning stresses are
transmitted even over wide open cracks mainly caused due
to shear stresses generated by a rotation of the principal
strain axes after the crack initiation. Therefore, rotating crack
models have been introduced where the crack is rotated
with the principal strain axis; see Figure 7(a). However,
Jirásek and Zimmermann [59] have shown that even rotating
crack models suffer from stress locking caused by the poor
kinematic representation of the discontinuous displacement
field around the macroscopic crack. Unless the direction
of the macroscopic crack that is represented by a band
of cracked elements, is parallel to the element sides, the
directions of the maximum principal strain determined from
the finite element interpolation at individual material points
deviate from the normal to the macroscopic crack. The
lateral principal stress has a nonzero projection on the crack
normal, which generates cohesive forces acting across the
crack even at very late stages of the cracking process when
the crack should be completely stress-free. Therefore, Jirásek
and Zimmermann [60] proposed to combine rotating crack
models with scalar damage models. Since in scalar damage
models, all stress components tend to zero when the crack
opens widely, no spurious stress transfer occurs any more.

Some models combine the rotating and fixed smeared
crack approach [61]. Up to a certain crack opening, the crack
is allowed to rotate. Then, the crack orientation is fixed.
Other interesting contributions can be found, for example, in
[17, 61–65].

Smeared crack models in finite element analysis often
exhibit a so-called mesh alignment sensitivity or mesh ori-
entation bias, see Figure 8; meaning the orientation of the
smeared crack depends on the orientation of the discretiza-
tion. When smeared crack models are used in the context
of meshfree methods with isotropic (circular) support, the
“mesh” orientation bias can be alleviated.

3. Computational Methods for Fracture

3.1. Element Erosion. The easiest way to deal with discrete
fracture is the element erosion algorithm [66–69]. Element
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Figure 7: Principle of (a) rotating crack models, (b) fixed crack
models.

erosion algorithms do not require any representation of the
crack’s topology. Most approaches do not really delete the
elements but set the stresses in the “deleted” elements to zero.
Approaches that indeed remove elements often replace the
deleted elementswith rigidmasses. In order to account for the
correct energy dissipation in the post-localization domain,
concepts from smeared crack models are applied. Song et
al. [70] compared different computational methods for cer-
tain benchmark problems in dynamic fracture. They report
extreme mesh sensitivity for element erosion algorithms
and conclude they are not well suited for dynamic fracture.
However, due to their simplicity, they are incorporated in
commercial software packages such as LS DYNA.

For brittle fracture, Pandolfi and Ortiz [71] derived an
interesting eigenerosion approach. Their idea is based on
the eigenfracture approach by Schmidt et al. [72], where
the eigendeformation is restricted in a binary sense. The
element can be either intact or fractured. In the first case, the

(a)

(b)

Figure 8: Mesh orientation bias for smeared crack models.

element behavior is elastic. Otherwise, the element is eroded.
They showed that in contrast to many other element erosion
approaches [66, 67, 73, 74], the eigenerosion approach con-
verges to Griffith fracture with increasing mesh refinement.

3.2. Interelement-Separation Methods. Standard finite ele-
ments have difficulties to capture the crack kinematics since
they use continuous trial functions that are not particularly
well adapted for solutions with discontinuous displacement
fields. One of the first models capable of modelling cracks
within the FEM are the so-called interelement-separation
methods [46, 47, 75–80]. Interelement seperation methods
weremostly applied to dynamic fracturewith cohesive cracks.
In the approaches by Xu and Needlemen [75, 76], cohesive
surfaces were introduced at the beginning of the simulation.
In contrast, Camacho and Ortiz [46] adaptively introduced
cohesive surfaces at element edges when a certain cracking
criteria is met. In interelement-separation methods, cracks
are only allowed to develop along existing interelement edges.
This endows the method with comparative simplicity, but
can result in an overestimate of the fracture energy when
the actual crack paths are not coincident with element edges.
The results depend not only on the mesh size (and form
of the chosen element), but also on the mesh bias that
can be compensated only by remeshing that is particularly
cumbersome in 3D. It has been noted that the solutions
sometimes depend on mesh refinement; see Falk et al. [81].
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This sensitivity has been mollified by adding randomness to
the strength, as in Zhou and Molinairi [80] and Espinosa
et al. [82]. For dynamic problems, interelement-separation
methods are often used with rigid cohesive zone models.
Special care has to be taken in order to guarantee time
continuity. Time continuity requires temporal convergence
when the time step tends to zero. Violating time continuity
might lead to unstable or oscillatory responses, and the results
severely depend on the chosen time step [56, 83].

Many interesting problems have been studied by
interelement-separation methods [47, 75, 79, 82–84]. They
are most popular for dynamic fracture and problems
involving numerous cracks with complex fracture patterns.

Special crack tip elements for linear fracture problems
were developed in the early 70’s [85–88]. They account for
the crack tip singularity and were applied to stationary
cracks. Recently, such approaches were incorporated in the
smoothed finite element method by Liu et al. [89, 90].
These approacheswere extended to anisotropicmaterials [91],
interface cracks [92], and plastic fracture mechanics [93]. In
[94, 95], these approaches were applied to crack propagation
problems in two dimensions. Adaptive remeshing techniques
were employed. As the crack is aligned to the crack bound-
ary, these methods can also be classified as interelement-
separation methods. One drawback is that only the √𝑟-
term is accounted for in the crack tip element but not the
discontinuity behind the crack tip.

3.3. Embedded Elements (EFEM). In 1987, Ortiz et al. [77]
modified the approximation of the strain field to captureweak
discontinuities in finite elements to improve the resolution
of shear bands. Therefore, they enriched the strain field to
obtain the kinematic relations shown in Figure 9(a). Based
on this idea, Belytschko et al. [96] allowed two parallel weak
discontinuity lines in a single element, Figure 9(b), so that
the element was able to contain a band of localized strain.
Dvorkin et al. [97] were the first who developed a method
that was able to deal successfully with strong discontinuities
in finite elements, the class of embedded elements (EFEM).
The name comes from the fact that the localization zone
is embedded in a single element; see Figure 9(c). This way,
crack growth can be modeled without remeshing. This class
of methods are much more flexible than schemes that allow
discontinuities only at element interfaces, and it eliminates
the need for continuous remeshing. Several different versions
of the EFEMwere developed. All techniques had in common
that the approximation of the displacement fieldwas enriched
with additional parameters to capture the jump in the
displacement field in a single element. These parameters,
in the following called enrichment, were inherent to the
cracked element and the jump in the displacement field
depends only on this enrichment.The differentmethodswere
derived from various principles, starting from the extended
principle of virtual work over Hellinger Reissner to Hu-
Washizu variational principle, using an enhanced assumed
strain (EAS) or B-bar format. One major advantage of the
EFEM (compared to XFEM discussed in the next section)
is that the additional unknowns could be condensed on the

(a)

(b)

𝑆

Ω+0
Ω−0

(c)

Figure 9: Element with (a) one weak discontinuity, (b) two weak
discontinuities, and (c) one strong discontinuity.

element level, so that discontinuities could be captured with
very small changes of the existing code.

The first version of the EFEM is often called statical
optimal symmetric (SOS) since traction continuity is fulfilled,
but it is not possible to capture the correct crack kinematics.
The correct relative rigid body motion of the element is
not guaranteed and it has been shown by Jirásek [98] that
SOS formulations lead to stress locking. The kinematical
optimal symmetric (KOS) version by Lotfi and Shing [99]
ensures the correct crack kinematics but violates the traction
continuity condition. Consequently, the criteria for the onset
of localization written in terms of stresses in the bulk are
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(a)

(b)

Figure 10: (a) Piecewise constant crack opening in embedded
elements and (b) linear crack opening for XFEM.

no longer equivalent to the same criteria written in terms
of the tractions on the discontinuity area; for example, for
the Rankine criterion, the normal traction at the onset of
localization should be equal to the tensile strength and
the shear traction should be zero. This cannot be properly
reproduced by the KOS formulation. The kinematical and
statical optimal nonsymmetric (KSON) version of embedded
elements (see Dvorkin et al. [97], Klisinski et al. [100])
guarantees traction continuity and the appropriate crack
kinematics but leads to a non-symmetric stiffnessmatrix with
all its disadvantages with respect to solving the linearized
system of equations.

The approximation of the displacement field in the EFEM
is given by [101]

uℎ (X) = ∑
𝐼∈S

𝑁
𝐼
(X) ũ

𝐽
+M

(𝑒)

𝑠
(X)

�
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�
, (3)

where ũ
𝐽
are the nodal parameters of the usual approxi-

mation, û is the enrichment, and the superimposed “(𝑒)”

indicates the enrichment on element level.The functionM(𝑒)

𝑠

is given by
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where 𝐻
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is the step function acting on the crack line 𝑆 and
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is the number of nodes of element (𝑒) that belong to the

domain Ω+
0
; see Figure 9(c). The discretization of the strain

field can be written as

𝜖
ℎ

(X) = ∑
𝐼∈S

(∇
0
𝑁
𝐼
(X) ⊗ ũ
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where the superimposed 𝑆 denotes the symmetric part of a
tensor, 𝜂(𝑒)

𝑠
/𝑘 is a regularized Dirac delta function, and 𝜂(𝑒)

𝑠
is

a collocation function defined as
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(6)

with the thickness 𝑘 of the localization band. Considering the
equilibrium equation in elastostatics and with the trial and
test function of the structure of (3), the discrete equations in
matrix form can be written as

[
K
𝑢̃𝑢̃
(𝑒) K

𝑢̃𝑢̂
(𝑒)

K
𝑢̂𝑢̃
(𝑒) K

𝑢̂𝑢̂
(𝑒)

]{
ũ(𝑒)�
û(𝑒)
𝐼

�
} = {

Fext
𝐼

0 } , (7)

with

K(𝑒)
𝑢̃𝑢̃

= ∫
Ω
0

B𝑇CB 𝑑Ω
0
,

K(𝑒)
𝑢̃𝑢̂

= ∫
Ω
0

B𝑇CB̂ 𝑑Ω
0
,

K(𝑒)
𝑢̂𝑢̃

= ∫
Ω
0

B̂𝑇
∗
CB 𝑑Ω

0
,

K(𝑒)
𝑢̂𝑢̂

= ∫
Ω
0

B̂𝑇
∗
CB̂ 𝑑Ω

0
,

(8)

whereC is the elasticity tensor, B is the B operator containing
the derivatives of the shape functions and B̂ is the B operator
of the enrichment that depends on the embedded element
formulation (SOS and KOS or KSON). For the KSON formu-
lation, B̂

∗
̸= B̂, that will result in a non-symmetric stiffness

matrix. For the SOS and KOS formulation, B̂
∗

= B̂. The
elemental enrichment �û(𝑒)

𝐼
� can be condensed on the element

level:
�
û(𝑒)
𝐼

�
= −[K(𝑒)

𝑢̂𝑢̃
]
−1

K(𝑒)
𝑢̂𝑢̂
ũ(𝑒), (9)
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that leads with the expression for �û(𝑒)
𝐼

� to the system of
equations

Ku = f , (10)

with

K = K
𝑢̃𝑢̃

− K
𝑢̃𝑢̂
K−1
𝑢̂𝑢̂
K
𝑢̂𝑢̃
. (11)

The crack in embedded elements is modelled by a set of
crack segments with piecewise constant crack opening, see
Figure 10 though recent versions of the EFEM can handle
linear crack opening [102]. The EFEM has been applied to
many interesting problems [103–106] including piezoelectric
materials [107], geomaterials [108], coupled formulations
[109], finite strains [110], crack branching [111], and dynamic
fracture [112], to name a few.

Oliver et al. [113] compared embedded elements with
the extended finite element method (that will be discussed
in the next section) (XFEM) for several selected examples
and showed that embedded elements can be as accurate as
XFEM. However, examples in LEFM that could be compared
to analytical solutions are missing.

Methods that model the crack as continuous surface and
therefore contain a “physical” crack tip are expected to be
more accurate. However, the requirement to represent the
crack surface is a drawback of those methods, in particular
for complex crack patterns (e.g., in three-dimensions or for
branching cracks). EFEM in principle does not require crack
path continuity [114, 115]. However, some authors report that
the elements then become sensitive to the orientation of the
discontinuity surface with respect to the nodes, and in some
unfavorable situations the response of the element ceases to
be unique [116].

3.4. Extended Finite ElementMethod (XFEM). A very flexible
method that can handle linear and nonlinear crack openings
is the extended finite element method (XFEM) developed
by Belytschko et al. [11, 117, 118]. This method employs the
local partition of unity concept [119–121] and introduces
additional nodal parameters for the elements cut by the crack.
Hence, the additional unknowns cannot be condensed on
the element level as in EFEM. The displacement disconti-
nuity depends only on the additional nodal parameters. The
principle idea of XFEM is shown in Figure 11, simplified
for a crack in one dimension. Though XFEM has origi-
nally been developed for fracture, it has been extended to
numerous applications including two-phase flow [122, 123],
fluid-structure interaction [124, 125], biomechanics [126],
inverse problems [127, 128], multifield problems [129–132],
among others. XFEM has been incorporated meanwhile into
commercial software (XFEM) and has become one of the
most popular methods for fracture. The generalized finite
element method (GFEM) [120, 121, 133–139] is similar to
XFEM.

Thebasic idea of XFEM is to decompose the displacement
field into a continuous part ucont and a discontinuous part
udisc:

uℎ (X) = ucont (X) + udisc (X) . (12)

The continuous part is the standard FE interpolation and
additional information is introduced into the FE interpo-
lation through the local partition of unity approach by
adding an enrichment (udisc). Therefore, additional degrees
of freedom are introduced for the discretization of the test-
and trial functions. Those additional degrees of freedom are
multiplied with the so-called enriched shape functions. They
are the product of the “standard” element shape functions
and enrichment functions that contain information about the
solution. Note that the solution does not need to be known
exactly. For example, a crack results in a discontinuous dis-
placement field. Therefore, a discontinuous function is used
as enrichment function. In linear elastic fracture mechanics
(LEFM), the analytical near crack tip solution is known as
well and can be included in the XFEM approximation. The
approximation of the displacement field for 𝑛

𝑐
cracks with𝑚

𝑡

crack tips reads

uℎ (X) = ∑
𝐼∈S

𝑁
𝐼
(X)u

𝐼
+

𝑛
𝑐

∑
𝑁=1

∑
𝐼∈S
𝑐

𝑁
𝐼
(X) 𝜓(𝑁)

𝐼
a(𝑁)
𝐼

+

𝑚
𝑡

∑
𝑀=1

∑
𝐼∈S
𝑡

𝑁
𝐼
(X)

𝑁
𝐾

∑
𝐾=1

𝜙
(𝑀)

𝐾𝐼
b(𝑀)
𝐾𝐼

,

(13)

where S is the set of nodes in the entire discretization, S
𝑡
is

the set of nodes around the crack tip, andS
𝑐
is the set of nodes

associated to elements completely cut by the crack; 𝜓(𝑁)
𝐼

is
the enrichment function of crack 𝑁; 𝜙(𝑀)

𝐾𝐼
is the enrichment

function for the crack tip𝑀; a
𝐼
and b

𝐾𝐼
are additional degrees

of freedom that needs to be solved for.
For elements completely cut by the crack, the jump func-

tion is often chosen to cause a discontinuous displacement
field

𝜓
(𝑁)

𝐼
= sign [𝑓

(𝑁)

(X)] − sign [𝑓
(𝑁)

(X
𝐼
)] , (14)

with

𝑓
(𝑁)

(X) = sign [n ⋅ (X − X(𝑁))]min (X − X(𝑁))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

X𝑁∈Γ(𝑁)
𝑐

(15)

where n denotes the normal vector to the crack surface and
𝑓(𝑁)(X) is a level set function; see Figure 12. The zero-isobar
𝑓 = 0 describes the position of the crack surface. Often a
shifting is employed, see the second term on the RHS of (14)
and Figure 11, and ensures that the enriched shape function
𝑁
𝐼
(x)𝜓(𝑁)

𝐼
vanishes in the neighboring element. The shifting

also maintains the interpolatory character of the XFEM
approximation or in other words: the nodal parameters u

𝐼

remain the physical displacements.
In LEFM, the crack tip enrichment is choosen according

to the analytical solution:

𝜙
(𝑀)

𝐾𝐼
= [√𝑟 sin(

𝜃

2
) ,√𝑟 cos(𝜃

2
) ,√𝑟 sin(

𝜃

2
) , sin 𝜃,

√𝑟 cos(𝜃

2
) , sin 𝜃] ,

(16)
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𝑁2(X)(𝜓(𝑓(X)) − 𝜓(𝑓(X2)))

Figure 11: Principle of XFEM for strong discontinuities in 1D.

Crack

𝑓 = 0

𝑔 = 0𝑓 > 0

𝑓 < 0

𝜃
𝑟

Figure 12: Representation of the crack surface by level sets 𝑓 and 𝑔.

where 𝑟 and 𝜃 are explained in Figure 12. Early approaches
used a so-called topological enrichment, Figure 13(a). How-
ever, a topological enrichment leads to a deterioration of
the convergence rate as the domain with the accurate tip
enrichment shrinks when the mesh is refined. Therefore, it
is important to use a geometrical enrichment, Figures 13(b)
and 13(c). Note that a geometrical enrichment can drastically
increase the condition number of the system matrix and
requires the use of pre-conditioners [140] or other techniques
[121, 141]. For non-linear materials and cohesive cracks, a
tip enrichment should be used that avoids the crack tip
singularity:

𝜙
(𝑀)

𝐼
= 𝑟

𝑠 sin(
𝜃

2
) , (17)

with 𝑠 ≥ 1. The sin-term ensures the discontinuity in
the displacement field around the crack tip while 𝑟𝑠 guar-
antees that the crack closes at the crack tip. Note that it
is standard to omit the crack tip enrichment for cohesive
cracks. Omitting the crack tip enrichment tremendously

simplifies the integration (only polynomial terms need to be
integrated), the representation of the crack surface and the
entire formulation. In that case, the crack closes at the element
edge, see Figure 17, though more advanced techniques have
been developed to close the crack inside an element [142–144]
(without tip enrichment).

XFEM has been mainly applied to problems involving
crack growth of a single crack or a few cracks. There are
only a few contributions dealing with fracture problems that
involve the growth of numerous (several hundreds of) cracks
[143, 144]. Methodologies have been developed in XFEM
to account for complex crack patterns such as branching
cracks and crack coalescence (within a single element) [145,
146]. However, the formulation becomes cumbersome with
increasing number of cracks and crack branches. Moreover,
thosemethods suffer (in practice) from the absence of reliable
crack branching criteria.

3.4.1. Representing the Crack Surface in XFEM. XFEM is a
method that ensures crack path continuity. Enforcing crack
path continuity is especially challenging in three dimensions.
The crack path can be represented explicitly, usually with
piecewise straight/planar crack segments [147, 148] or with
other techniques such as level sets [149, 150] that trace the
crack path in a more elegant way. In many publications,
XFEM is closely related to level sets though any other
technique can be used to describe the crack’s topology.

Level sets are particularly attractive when a crack tip
enrichment is used as geometry quantities can be calculated
through the level sets. For example, the distance of a material
point to the crack tip is 𝑟 = √𝑓2 + 𝑔2 and 𝜃 = arctan(𝑔/𝑓),
see Figure 12; 𝑔 is a level set orthogonal to 𝑓 (i.e., ∇𝑓⋅∇𝑔 = 0)
and is needed to uniquely identify the position of a material
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Figure 13: (a) Topological enrichment versus (b) and (c) geometri-
cal enrichment.

point with respect to the crack surface. Often, the level-set
function is discretized

𝑓
ℎ

(X) = ∑
𝐼∈S

𝑁
𝐼
(X) 𝑓

𝐼
; 𝑔

ℎ

(X) = ∑
𝐼∈S

𝑁
𝐼
(X) 𝑔

𝐼
, (18)

where commonly the shape functions𝑁
𝐼
(X) of the mechan-

ical variables are used. Therefore, the enrichment can be
expressed in terms of nodal values of both level set functions.
Prabel et al. [151] used a (finer) finite difference scheme
for the discretization of the level set function. However,
the implementation effort is higher when different meshes

Crack

Level set representation
of  the crack

Figure 14: Curved crack and its representation with level set
functions when the level set is discretized with linear triangles.

are employed to discretize the level set and the mechanical
variables. On the other hand, errors in the crack’s geometry
will be introduced for low-order finite elements and curved
cracks, Figure 14. As in most applications, a straight crack
segment is attached in front of an existing crack front; a
low-order finite elements should be sufficient for most crack
propagation problems.

3.4.2. Integration in XFEM. Numerical integration in XFEM
requires special attention, in particular, around the crack
tip when employing non-polynomial enrichment functions.
Laborde et al. [152] reported that several thousand Gauss-
points are required to adequately reduce integration error in
a “brute-force” approach. For step-enriched (or Heaviside-
enriched) elements, a simple sub-triangulation is sufficient.
Ventura [153] proposed an integration scheme for piece-
wise straight cracks that avoid a sub-triangulation. Another
alternative is to increase the number of integration points
[151]. For singularities, Ventura et al. [154], Gracie et al. [155],
Bordas et al. [156], Cheng and Fries [157] proposed efficient
integration schemes. One of the most efficient schemes is
the “almost polar integration” by Nagarajan and Mukherjee
[158]. The almost polar integration is based on mapping a
rectangle onto a triangle and avoids integration of the crack
tip singularity. It was exploited for the first time in the context
of XFEMby Laborde et al. [152] and simultaneously by Béchet
et al. [159].

3.4.3. Blending Elements. Another major concern in XFEM
are the so-called blending elements, Figure 15. Blending
elements are the elements adjacent to the enriched elements.
It was shown by Chessa et al. [160], Stazi et al. [161], and
Fries [162] that those blending elements result in the deteri-
oration of the convergence rate in XFEM. When only a step
enrichment is employed, a simple shifting can avoid problems
due to blending. However, any non-constant enrichment
function causes difficulties. Numerous approaches have been
developed to eliminate drawbacks associated to blending
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Ωblnd

ΩenrΩstd

Figure 15: XFEM discretization with enriched domainΩ
enr, blend-

ing domain Ωblnd, and the total (standard) domainΩstd.

[154, 160, 163]. A very simple and efficient approach was
developed by Fries [162]. The idea is based on the modifi-
cation of the enrichment function. Therefore, he enriched
the nodes in the blending elements. He guaranteed that the
enrichment in the enriched elements remains unchanged but
vanishes in the “standard” elements.

3.4.4. Application to Fracture. Applying XFEM to linear
problems in elastostatics, the final discrete equations for a
single crack are obtained by substituting the test and trial
functions into the weak form of the equilibrium equation
yielding

[
[

[

K𝑢𝑢
𝐼𝐽

K𝑢𝑎
𝐼𝐽

K𝑢𝑏
𝐼𝐽𝐾

K𝑎𝑢
𝐼𝐽

K𝑎𝑎
𝐼𝐽

K𝑎𝑏
𝐼𝐽𝐾

K𝑏𝑢
𝐼𝐽𝐾

K𝑏𝑎
𝐼𝐽𝐾

K𝑏𝑏
𝐼𝐽𝐾

]
]

]

{

{

{

u
𝐽

a
𝐽

b
𝐽𝐾

}

}

}

=
{

{

{

fext
𝐼

fext
𝐼

fext
𝐼𝐾

}

}

}

(19)

or

K
𝐼𝐽
d
𝐽
= fext

𝐼
, (20)

with the stiffness matrix

K
𝐼𝐽
=
[
[

[

K𝑢𝑢
𝐼𝐽

K𝑢𝑎
𝐼𝐽

K𝑢𝑏
𝐼𝐽𝐾

K𝑎𝑢
𝐼𝐽

K𝑎𝑎
𝐼𝐽

K𝑎𝑏
𝐼𝐽𝐾

K𝑏𝑢
𝐼𝐽𝐾

K𝑏𝑎
𝐼𝐽𝐾

K𝑏𝑏
𝐼𝐽𝐾

]
]

]

, (21)

where the superscripts 𝑢, 𝑎 and 𝑏 indicate the “standard”,
“step-enriched” and “tip-enriched” part of the discretization;
d
𝐽
= {u

𝐽
a
𝐽
b
𝐾𝐽
}
𝑇 is the vector with the nodal parameters,

fext
𝐼

= {f𝑢
𝐼
f𝑎
𝐼
f𝑏
𝐾𝐼
}
𝑇

is the external force vector with f𝑏
𝐾𝐼

=

{f𝑏
1𝐼

f𝑏
2𝐼

f𝑏
3𝐼

f𝑏
4𝐼
} and

f𝑢
𝐼
= ∫

Ω

𝑁
𝐼
(X) b 𝑑Ω + ∫

Γ
𝑡

𝑁
𝐼
(X) t 𝑑Γ,

f𝑎
𝐼
= ∫

Ω

𝑁
𝐼
(X) 𝜓

𝐼
b 𝑑Ω + ∫

Γ
𝑡

𝑁
𝐼
(X) 𝜓

𝐼
t 𝑑Γ,

f𝑏
𝐾𝐼

= ∫
Ω

𝑁
𝐼
(X) (𝜙

𝐾𝐼
(X) − 𝜙

𝐾𝐼
(X

𝐼
)) b 𝑑Ω

+ ∫
Γ
𝑡

𝑁
𝐼
(X) (𝜙

𝐾𝐼
(X) − 𝜙

𝐾𝐼
(X

𝐼
)) t 𝑑Γ

(22)

with body forces b and applied tractions t. The stiffness
matrix is

K𝑖𝑗
𝐼𝐽
= ∫

Ω

(B𝑖
𝐼
)
𝑇

CB𝑗
𝐽
𝑑Ω, 𝑖, 𝑗 = 𝑢, 𝑎, 𝑏, (23)

where B𝑖
𝐼
, 𝑖 = 𝑢, 𝑎, 𝑏 is the B operator defined by:

B𝑢
𝐼

= ∇N
𝐼
(X) ,

B𝑎
𝐼

= ∇N
𝐼
(X) 𝜓

𝐼
,

B𝑏
𝐼

= ∇ [N
𝐼
(X) (𝜙𝑙

𝐾𝐼
(X) − 𝜙

𝑙

𝐾𝐼
(X

𝐼
)]) .

(24)

For cohesive cracks without tip enrichment, the terms asso-
ciated to the tip enrichment are omitted facilitating the
implementation of the method.

Although the XFEM approximation is capable of repre-
senting crack geometries that are independent of element
boundaries, it relies on the interaction between the mesh
and the crack geometry to determine the sets of enriched
nodes [164]. This leads to particular crack configurations
that cannot be accurately be represented by (13). Such cases
are shown in Figure 16. As the crack size approaches the
local nodal spacing, the set S

𝑐
of nodes for the Heaviside

or step enrichment is empty, Figure 16(b). Moreover, node
1 for the cracking case in Figure 16(a) or nodes 1 to 4 for
the cracking case in Figure 16(b), respectively, contain two
branch enrichments. Thus, the standard approximation gets
difficulties with this crack configuration since the discon-
tinuous function √𝑟 sin(𝜃/2) extends too far. This problem
always arises when one or more nodal supports contain
the entire crack geometry. Usually, this kind of problem
arises whenever a crack nucleates. Similar difficulties occur
for approximations without any crack tip enrichment; see
Figure 16(d). In order to close the crack within a single
element, the set S

𝑐
is empty as well. One solution is to refine

the mesh locally such that the characteristic element size falls
below that of the crack. An admissible crack configuration is
shown in Figure 17.

More details on XFEM and its applications can be found
in the excellent review papers by Karihaloo and Xiao [165],
Fries and Belytschko [166], Belytschko et al. [167] or the book
fromMohammadi [168].
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Figure 16: (a) and (b) Crack length that approach the local element size cannot be accurately represented by the standard XFEM
approximation. Dots denote single enriched nodes and squares denote double (in our case, the node will contain the enrichment of two-
crack tips) enriched nodes; (c) the dashed line shows the effective crack length; (d) even if no crack tip enrichment is used, in order to close
the crack within a single element, no nodes have to be enriched with a step function.

3.5. Phantom Node Method. An alternative to the standard
XFEM for strong discontinuities was proposed by A. Hansbo
and P. Hansbo [169]. They do not model the crack with
additional degrees of freedom but by overlapping elements;
see Figure 18. In 1D, it was shown by Song et al. [170] that
the crack kinematics of the A. Hansbo and P. Hansbo [169]
version of XFEM can be derived from “standard” XFEM.
However, the Hansbo version of XFEM has some advantages
over standard XFEM.

(i) It avoids the “mixed” terms K𝑢𝑎 and K𝑎𝑢 (orM𝑢𝑎 and
M𝑎𝑢 in dynamics), (19), facilitating the implementa-
tion.

(ii) It leads to a better conditioned system matrix.

(iii) Standard mass lumping schemes such as the row-
sum technique can be used. Note that, efficient mass
lumping schemes have meanwhile been proposed for
XFEM [171, 172] (and XEFG [173]).

(iv) Based on the full interpolation basis of the over-
lapping elements, the Hansbo-XFEM can straight-
forwardly integrate enhanced techniques that are
more difficult to integrate in an enriched XFEM
formulation [174].

(v) The implementation of the Hansbo XFEM is simpler.
It has already been implemented in the commercial
software package ABAQUS. In ABAQUS, it has to
be used in combination with cohesive zone models.
The ABAQUS implementation of the Hansbo-XFEM
can handle numerous cracks (crack propagation) in
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Figure 17: Admissible crack representation.

statics. In contrast, XFEM with tip enrichment has
also been incorporated inABAQUS.However, a crack
propagation algorithm for the tip-enriched XFEM
is yet not available in ABAQUS. A plugin-in (Mor-
feo) that can handle three-dimensional crack growth
in LEFM was recently developed by the company
Cenaero.

On the downside, we notice.

(i) It is difficult to apply the Hansbo XFEM to other
problems besides cracks.

(ii) It is also difficult to incorporate a tip enrichment
for the Hansbo-XFEM. A crack tip element has been
developed for problems in 2D [175]. However, the
extension of such a model to 3D is cumbersome.

TheHansbo version of XFEMwas subsequently developed in
a static setting by Mergheim et al. [176], Areias et al. [148],
Mergheim and Steinmann [177], and in dynamics by Song et
al. [170]who called their approach phantomnodemethod.The
phantom nodemethod is well suited for non-linear problems
with cohesive cracks and problems with numerous cracks,
in particular when the method needs to be implemented
in an existing finite element code. It is less accurate for
problems in LEFM due to the absence of a tip enrichment.
Subsequently, the basic idea of the phantom node method is
briefly summarized.

Consider a body that is cracked as shown in Figure 18
and the corresponding finite element discretization.There are
elements cut by the crack. To have a set of full interpolation
bases, the part of the cracked elements which belongs in the
real domainΩ

0
is extended to the phantom domainΩp.Then,

the displacement in the real domain Ω
0
can be interpolated

by using the degrees of freedom for the nodes in the phantom
domain Ωp. The nodes are called the phantom nodes and

marked by empty circles in Figure 18. The approximation of
the displacement field is then given by [170]:

uℎ (X, 𝑡) = ∑

𝐼∈{W+
0
,W−P }

u
𝐼
(𝑡)𝑁

𝐼
(X)𝐻 (𝑓 (X))

+ ∑

𝐽∈{W−
0
,W+P }

u
𝐽
(𝑡)𝑁

𝐽
(X)𝐻 (−𝑓 (X)) ,

(25)

where 𝑓(X) is the signed distance measured from the crack,
W+

0
,W−

0
,W+

P andW
−

P are nodes belonging toΩ
+

0
,Ω−

0
,Ω+P and

Ω−P, respectively. 𝐻(𝑥) is the Heaviside function. As can be
seen from Figure 18, cracked elements have both real nodes
and phantom nodes. The jump in the displacement field is
realized by simply integrating only over the area from the side
of the real nodes up to the crack, that is,Ω+

0
andΩ−

0
. We note

that there are certain similarities to the visibilitymethod used
originally in meshfree methods [178–181].

3.6. Cohesive Segment Method and Cracking Node Method.
Remmers et al. [182, 183], proposed the cohesive segment
method that has similarities to XFEM. The crack is repre-
sented by a set of overlapping cohesive segments that cross
three entire elements. In contrast to XFEM, no crack path
continuity is required in the Cohesive Segment Method. A
similar approachwas developed by Song andBelytschko [184]
in theCrackingNodeMethod. In theCrackingNodeMethod,
the crack is required to directly pass through the node of an
element. Also the cracking node method does not require
crack path continuity.

3.7. Meshfree Methods. Thanks to the absence of a mesh,
meshfree methods (MMs) offer another alternative to model
fracture. They are particularly well suited for dynamic
fracture and large deformations. Moreover, adaptive h-
refinement can be easily implemented in a meshfree context
[185–187]. Though all methods discussed so far are capable
of capturing discrete cracks, a certain refinement around the
crack front is still needed for accuracy and efficiency reasons
[188]. The meshfree approximation is similar to the FEM
formulation:

uℎ (X) = ∑
𝐽∈S

𝑁
𝐽
(X)u

𝐽
, (26)

where 𝑁
𝐽
(X) denotes the meshfree shape function and

𝑢
𝐽
are the nodal parameters. Most meshfree methods are

not interpolatory complicating the imposition of essential
boundary conditions. Popular meshfree methods include the
smoothed particle hydrodynamics (SPH) method [189], the
element-free galerkin (EFG) method [190], the reproducing
kernel particle method (RKPM) [191], the point interpolation
method (PIM) [192], the meshless local-petrov galerkin
method (MLPG) [193] or the Finite Point Method [194],
among others.
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Figure 18: The principle of the phantom node method in which the hatched area is integrated to build the discrete momentum equation; the
solid circles represent real nodes and the empty ones phantom nodes.

Most meshfree shape functions depend on a weighting or
kernel function, which is denoted by 𝑊

𝐽
(X). Usually, radial

kernel functions are employed where 𝑊
𝐽
(X) = 𝑊(𝑟

0
) is

expressed in terms of 𝑟
0
= ‖X −X

𝐽
‖. The kernel functions are

chosen to have compact support, that is, 𝑊
𝐽
(X) = 0 if ‖X −

X
𝐽
‖ > ℎ

𝐽
, where ℎ

𝐽
is the “interpolation” radius often called

dilation parameter. The kernel function can be expressed in
terms of material coordinates X (Lagrangian kernel) or spa-
tial coordinates x (Eulerian kernel). Formulations based on
Lagrangian kernels are more efficient as the shape functions
can be constructed at the beginning of the simulation while
Eulerian kernels require updating during the course of the
simulation. More details on meshfree methods can be found
in the literature, for example, in several review articles and
books [195–202]. Before discussing different possibilities to
incorporate fracture into MMs, the shape functions of the
EFG-method will be given as it is helpful for the explanations
in the subsequent sections. They are constructed as follows:

𝑁
𝐽
(X) = p𝑇 (X) ⋅ A(X)−1 ⋅D (X

𝐽
) ,

A (X) = ∑
𝐽

p (X
𝐽
) p𝑇 (X

𝐽
)𝑊 (𝑟

𝐽
; ℎ) ,

D (X
𝐽
) = ∑

𝐽

p (X
𝐽
)𝑊 (𝑟

𝐽
; ℎ
𝐽
) ,

(27)

where p is the polynomial basis. Usually, a linear polynomial
basis is choosen, given in 2D by

p = [1, 𝑋, 𝑌] . (28)

3.7.1. “Natural” Fracture. Due to the absence of a mesh,
fracture in meshfree methods can occur naturally [38, 203,
204]. In contrast to element erosion, there is no need to
erode particles. Fracture occurs when particles move outside
the domain of influence of neighboring particles. Libersky
et al. [203] presented impressive results of dynamic fracture
and fragmentation predicting fragment distributions quite
accurately. Dilts [205] presented an algorithm to detect
fracture surfaces within the SPHmethod in 2D. He extended
the approach later to three dimensions [206] and solved
impressive impact problems. However, care has to be taken
as fracture can occur artificially as shown for example, by
Rabczuk et al. [207]. This is mostly the case when Eulerian
kernels are employed. Formulations based on Lagrangian
kernels do not suffer from numerical fracture. However,
as the neighbor list does not change during the course of
the simulation, fracture cannot be modeled “naturally” any
more. Moreover, the Lagrangian kernel has to be consistently
updated for problems involving large deformations. A very
efficient algorithm to treat dynamic fracture and fragmenta-
tion in meshfree methods based on Lagrangian kernels was
proposed byMaurel and Combescure [208] and Combescure
et al. [209]. In their work, connectivities between neighboring
particles were broken when their distance exceeds a given
threshold. They solved complex problems including fluid-
structure interaction and fragmentation [210, 211]. Another
effective and simple method to treat fracture in meshfree
methods is the material point method (MPM) [212]. The
advantage of theMPMovermost SPHmethods for fracture is
their computational efficiency [213].While thosemethods are
quite attractive tomodel dynamic fracture and fragmentation
involving an enormous amount of cracks, they are not well
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suited for static fracture with few cracks due to their less
accurate representation of the crack kinematics.

3.7.2. Visibility Method. The visibility method is the first
approach that introduces a discrete crack into the meshfree
discretization. In the visibility method, the crack boundary is
considered to be opaque. Thus, the displacement discontinu-
ity is modeled by excluding the particles on the opposite side
of the crack in the approximation of the displacement field,
see Figure 19:

uℎ (X) = ∑

𝐼∈S+

𝑁
𝐼
(X) u

𝐼
. (29)

This is identical to setting the shape function across the crack
to zero as shown in Figure 19. The jump in the displacement
is then computed by

[[u (X)]] = ( ∑

𝐼∈S+

𝑁
𝐼
(X) u

𝐼
) − ( ∑

𝐼∈S−

𝑁
𝐼
(X)u

𝐼
) . (30)

Difficulties arise for particles close to the crack tip since
undesired interior discontinuities occur (Figure 20) due to
the abrupt cut of the shape function, see Figure 19. Neverthe-
less, Krysl and Belytschko [214] showed convergence for the
visibility method. For linear complete EFG shape functions,
they even showed that the convergence rate is not affected
by the discontinuity. The length and size of the (undesired)
discontinuities depend on the nodal spacing near the crack
boundary. If the nodal spacing approaches zero, the length of
the discontinuities tends to zero. With this argument and the
theory of nonconforming finite elements, convergence of the
discontinuous displacement field can be shown.

It should also be noted that the visibility criterion leads
to discontinuities in shape functions near nonconvex bound-
aries such as kinks, crack edges, and holes, as shown in
Figure 20 in two dimensions.

An efficient implementation of the visibility method in
2D is given, for example, in [215].

3.8. The Diffraction Method. The diffraction method is an
improvement of the visibility method. It eliminates the
undesired interior discontinuities; see Figure 21 (see also
Figure 19). The diffraction method is also suitable for non-
convex crack boundaries. It is motivated by the way light
diffracts around a sharp corner, but the equations used in
constructing the domain of influence and theweight function
bear almost no relationship to the equation of diffraction.The
method is only applicable to radial basis kernel functionswith
a single parameter ℎ

𝐼0
.

The idea of the diffraction method is not only to treat
the crack as opaque but also to evaluate the length of
the ray ℎ

0
by a path which passes around the corner of

the discontinuity. A typical weight function is shown in
Figure 19. It should be noted that the shape function of the
diffraction method is quite complex with several areas of
rapidly varying derivatives that complicates quadrature of the
discrete Galerkin form [200]. Moreover, the extension of the

diffraction method into three dimensions is complex. Nev-
ertheless, several authors have presented implementations of
the diffraction method in 3D [216, 217].

3.9.TheTransparencyMethod. Thetransparencymethodwas
developed as an alternative to the diffraction method by
Organ et al. [178]. The transparency method is easier extend-
able into three dimensions than the diffractionmethod. In the
transparency method, the crack is made transparent near the
crack tip.The degree of transparency is related to the distance
from the crack tip to the point of intersection; see Figure 19.

An additional requirement is usually imposed for parti-
cles close to the crack. Since the angle between the crack and
the ray from the node to the crack tip is small, a sharp gradient
in the weight function across the line ahead of the crack is
introduced. In order to reduce this effect, Organ et al. [178]
imposed that all nodes have a minimum distance from the
crack surface, that is, the normal distance to the crack surface
must be larger than 𝛾ℎwith 0 < 𝛾 < 1; they suggested 𝛾 = 1/4.

3.10. The “See Through” and “Continuous Line” Method.
The “see-through” method was proposed by Terry [218]
for constructing continuous approximations near nonconvex
boundaries.Therefore, the boundary was considered as com-
pletely transparent such that the discontinuity is removed.
Though the “see-through” method works well for capturing
features such as interior holes, it is not well suited to model
cracks.

In the continuous linemethod fromKrysl and Belytschko
[214] and Duarte and Oden [219], the crack is completely
transparent at the crack tip. In other words, particles with a
partially cut domain of influence can see through the crack.
This drastically shortens the crack. If no special techniques
are introduced, the crack also does not close at the crack tip
that leads to inaccurate solutions. Crack closure at the crack
tip can be enforced with Lagrangemultiplier or by decreasing
the domain of influence of nodes close to the crack tip.

Belytschko and Fleming [220] suggest to combine differ-
ent methods depending on the convexity of the crack bound-
ary for example, to use the visibility for convex boundaries,
and other methods for non-convex crack boundaries. They
suggest a criterion based on the angle of the wedge that can be
written in terms of the surface normal; see Figure 22. When
n𝐴 ⋅ n𝐵 ≤ 𝛽 with 𝛽 = 0∘ as a cutoff value, the boundary can
be considered as convex, otherwise non-convex. The cutoff
value of 𝛽 = 0

∘ corresponds to the wedge angle of 𝜔 = 90∘ in
Figure 22.

3.11. Extended Meshfree Methods. Enrichment in meshfree
methods was used before the development of XFEM. A good
overview paper on enrichedmeshfreemethods in the context
of LEFM is given by Fleming et al. [221], see also the review
articles by Belytschko et al. [200], Nguyen et al. [201], and
Huerta et al. [202].The enrichment schemes are classified into
intrinsic enrichment and extrinsic enrichment. An intrinsic
enrichment introduces enrichment functions as additional
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Figure 19: Principle of the visibility, diffraction, and transparencymethods with corresponding shape functions, from Belytschko et al. [200].

functions to the polynomial basis compare to (28) as the
following:

p = [1,𝑋, 𝑌,√𝑟 sin(
𝜃

2
) ,√𝑟 cos(𝜃

2
) ,√𝑟 sin(

𝜃

2
) , sin 𝜃,

√𝑟 cos(𝜃

2
) , sin 𝜃] .

(31)

This concept was later also used in the intrinsic XFEM
[222]. The major drawback of this approach is its higher
computational cost as the enrichment needs to be employed

everywhere to avoid artificial discontinuities. Techniques and
blending enriched approximations to “standard” approxima-
tions have been used but they introduce additional complex-
ity. Duflot and Nguyen-Dang [223] proposed an alternative
intrinsic enrichment by enriching the kernel functions.Their
approach does not require blending techniques and is com-
putationally cheaper. However, it is also less accurate. The
extrinsic enrichment can be categorized into extrinsic MLS
enrichment and extrinsic PU enrichment. The extrinsic MLS
enrichment introduces enrichment parameters that can be
interpreted as stress-intensity factors (SIFs), at least when
the enrichment is introduced globally. Hence, the SIFs can
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Figure 20: (a) Undesired introduced discontinuities by the visibility
method, (b) Difficulties with the visibility method for concave
boundaries and kinks.

be obtained directly from the numerical analysis without
computing the J-integral or interaction integral. However, it
was shown by Zamani et al. [224, 225] that such approaches
are less accurate. The extrinsic PU enrichment is comparable
to an XFEMenrichment. It is believed that it is the best choice
in terms of accuracy, efficiency, and flexibility.

An extended element-free Galerkin (XEFG) method
based on vector level sets was first proposed by Ventura et
al. [226] in the context of LEFM. It was later extended to
nonlinear materials and cohesive cracks by Rabczuk and Zi
[227], Rabczuk et al. [228]. In contrast to XFEM, due to the
heavily overlapping shape functions, a crack tip enrichment
has to be employed to ensure crack closure at the crack
tip though alternative methods have been developed that
avoid the use of tip enrichments [229, 230]. However, those
approaches are cumbersome in three dimensions.

3.12. Cracking Particles Method. While all previous meshfree
approaches for fracture require crack path continuity, the
cracking particles method [231–235] does not represent
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𝑥𝑐

𝑠2(𝑥)

𝑥

(b)

Figure 21: The diffraction method.

the crack as continuous surface. This makes the method
particularly useful for 3D applications including complex
crack patterns such as crack branching and crack coalescence.
In contrast to methods that enforce crack path continuity,
crack branching and crack coalescence are a (more) natural
outcome of the analysis in the cracking particles method.

Tomodel cracks in the cracking particlesmethod, the dis-
placement is decomposed into continuous and discontinuous
parts:

u (X) = ucont (X) + uenr (X) , (32)

where X are the material coordinates, ucont denotes the
continuous displacement, anduenr denotes the discontinuous
part.

The crack is modelled by a set of discrete cracks as shown
in Figure 23. These discrete cracks are restricted to lie on the
particles, that is, each crack plane (or line in 2D) always passes



ISRN Applied Mathematics 19

𝐴

𝐵
𝜔

n

n

Figure 22: Domain of influence near a wedge-shaped non-convex
boundary. The boundary is enforced if n𝐴 ⋅ n𝐵 ≤ 𝛽.

(a)

(b)

Figure 23: Schematic on the right shows a crackmodel for the crack
on the left.

through a particle. Since the crack geometry is described by
the set of cracked particles, a representation for the geometry
of the crack is not needed.

The approximation of the displacement field in the
cracking particles method is given by

uℎ (X) = ∑
𝐼∈N

𝑁
𝐼
(X) u

𝐼
+ ∑
𝐼∈N
𝑐

𝑁
𝐼
(X) 𝑠 (𝑓

𝐼
(X)) q

𝐼
, (33)

(a)

(b)

Figure 24: (a) Spurious cracking and (b) improved crack pattern.

whereN is the total set of nodes in the model andN
𝑐
is the

set of cracked nodes; 𝑠(𝑓
𝐼
(X)) is the step function. In general,

different shape functions can be used for the continuous and
discontinuous part of the displacement field.

The jump in the displacement across the crack depends
only on the discontinuous part of the displacement field
uenr(X) and hence the enrichment parameters q

𝐼
. It can be

shown from (33) that

�u (X)� = 2 ∑
𝐼∈N
𝑐

𝑁
𝐼
(X) q

𝐼
. (34)

The factor 2 comes from the fact that the step function is used
that is −1 on one side of the crack and +1 on the other side of
the crack.

The cracking particlesmethodmight suffer from spurious
crack patterns [236, 237]. However, they can be eliminated by
a set of simple crack injection rules [184]. Firstly, one has to
distinguish between crack propagation and crack initiation.
Since the crack is not considered as continuous surface, crack
propagation is assumed when no cracked node is detected in
the vicinity (in a circle [sphere in 3D] with radius 𝑟 = 𝛼ℎ,
𝛼 ≥ 1.5) of a sampling point, where cracking is detected.
For propagating cracks, spurious cracks as shown in Figure 24
are avoided by introducing a prevention zone, Figure 25. For
example, for particle 𝐿, the crack prevention zone is given
through the angle 𝛼:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
n ⋅

x − x
𝐿

󵄩󵄩󵄩󵄩x − x
𝐿

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< cos(Π

2
− 𝛼) . (35)

For branching cracks, it is often observed that the orientation
of neighboring cracks severely differ, see node𝐾 in Figure 25.
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Figure 25: Crack prevention: nodes 𝐽 and𝐾 are located in the crack
prevention zone; node 𝐼 is located in the crack propagation zone.

Therefore, cracks are also allowed in the prevention zone
when the following criterion is fulfilled:

n
𝐿
⋅ n
𝐾
< cos𝛽, (36)

with 𝛼 = 2Π/9 and 𝛽 = Π/3. Similar criteria are used
within the cracking particles method in H. X. Wang and S.
X. Wang [238]. Zhang [237] reported that cracking rules can
be avoided by the use of rotating crack segments.

Recently, the cracking particles method has been pre-
sented without enrichment to model fracture in continua
[235] and structures [239]. This results in less degrees of
freedom and facilitates diagonalizing the mass matrix when
the method is used in explicit dynamics.

3.13. Boundary Element Method. In the Boundary Element
Method (BEM), the weak form is formulated in boundary
integral form. It reduces therefore the dimension of the
problem, for example, a three-dimensional problem reduces
to two dimensions. However, the BEM is only applicable
to problems where Green’s functions can be computed
restricting the application range of the method. Due to
the dimension-reduction, the remeshing procedure is fairly
simple as the crack is part of the boundary. Interesting
applications of the BEM to fracture can be found, for example,
in [240–257].

3.14. Isogeometric Analysis for Fracture. Isogeometric analysis
(IGA) [258] was developed to unify CAD and CAE. Ver-
hoosel et al. [130] were the first who incorporated fracture
in isogeometric analysis based on T-splines. Therefore, they
used the concept of knot insertion to introduce discontinu-
ities in the displacement approximation. This method suffers
from similar problems as interelement-separation methods.
Moreover, for complex crack patterns with slightly deviating
angles between the crack branches, it is expected that the
mesh will be extremely distorted. De Luycker et al. [259],

Ghorashi et al. [260] and recently Tambat and Subbarayan
[261] combined XFEM with isogeometric analysis (XIGA)
allowing crack growth without remeshing also in the context
of IGA.

3.15.The Variational Approach to Fracture. Variational meth-
ods in fracturemechanics are a relatively new development in
the field. The underlying theory was laid down by Francfort
and Marigo [262], who proposed the idea that cracks should
propagate along a path of least energy.The goal of variational
methods is to circumvent several importantweaknesses of the
classical theory emanating from the work of Griffith in 1920.

In classical fracture mechanics, crack propagation is
assumed to occur under thermodynamic equilibrium. In
particular for crack formation occurring under constant load,
the externalwork done by the applied loading is equal to twice
the energy in the bulk, so that the total energy of the system
may be expressed as 𝑈 = −𝑊

𝐿
+ 𝑈

𝐸
+ 𝑈

𝑆
= −𝑈

𝐸
+ 𝑈

𝑆
, where

𝑈
𝑆
is a postulated quantity known as the surface (dissipation)

energy of the crack system. Thermodynamic equilibrium
with respect to crack growth then requires that 𝑑𝑈/𝑑𝑎 =

0, where 𝑎 is the crack length. The previous expression
provides the critical condition for fracture. The simplest
case to consider is an infinite solid with a straight crack of
length 2𝑎 and subjected to far-end tractions of magnitude
𝜎 directed perpendicular to the crack. For this problem, the
exact solutions for the stresses and strains are available due
to Inglis, so that an analytic form of 𝑈

𝐸
may be obtained,

equal to 𝜋𝑎2𝜎2
𝐿
/𝐸 for the case of plane stress. We now assume

that the surface energy to be 𝑈
𝑆

= 4𝛾𝑎, where 𝛾 is the
surface energy per unit area, which is considered a material
property. Enforcement of thermodynamic equilibrium yields
the expression for the critical applied stress required for crack
propagation: 𝜎

𝑓
√𝑎 = √2𝐸𝛾/𝜋. According to the classical

theory, the existing crack will not propagate for 𝜎 < 𝜎
𝑓
and

will do so for 𝜎 = 𝜎
𝑓
.

Despite improvements made by subsequent authors to
account for nonlinearity and inelasticity, the original form of
the fracture criterion remained, that is, 𝜎

𝑓
√𝑎 = constant.

As pointed out in [262], this inverse proportionality of the
critical stress to the square root of the initial crack length
means that classical fracture mechanics is unable to predict
crack initiation, since for a body without an initial crack
(𝑎 = 0), 𝜎

𝑓
becomes infinite. Other important weaknesses

of the classical theory listed in [262] are its inadequacy for
predicting the direction of the crack path, and its inability
to handle crack jumps (brutal cracking). The former arises
from the fact that Griffith’s criterion gives only one constraint,
whereas the description of the crack tip propagation requires
a number of functions equal to the dimensionality of the
problem. The latter weakness stems from the classical theory
being silent on what happens when 𝜎 > 𝜎

𝑓
(unstable

cracking). Griffith’s criterion is also incapable of predicting
when a crack will branch, so that additional criteria are
required in order to evaluate the possibility of this kind of
response.

In order to address the above mentioned weaknesses
of classical fracture mechanics, Francfort and Marigo [262]
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proposed an alternative formulation of brittle fracture based
on energy minimization concepts. For a body denoted by Ω

inD-dimensional space, energy (similar to the surface energy
concept of Griffith) is assigned to the crack system Γ ∈ Ω and
expressed as

𝐸
𝑠
(Γ) = ∫

Γ

𝑘 (𝑥) 𝑑H
𝑁−1

(𝑥) , (37)

where H𝑁−1 denotes the (𝑁 − 1)-D Hausdorff measure.
The function 𝑘(𝑥) represents the energy required to create
an infinitesimal crack at the point 𝑥 and is strictly positive
and bounded away from zero. The above definition is rather
accommodating in terms of crack geometries, and in addition
to the usual “sharp” crack surfaces of classical fracture
mechanics, it also admits entities like point clouds and edge
cracks. However, cracks having 𝑁-D Hausdorff measure
(termed as “fat” cracks in [262]) are not allowed, for example
a crack with computable area in a 2D or volume in 3D, since
these will require an infinite amount of energy to propagate.
The bulk energy is defined as

𝐸
𝑑
(Γ, 𝑈) = inf

V∈C(Γ,𝑈)
∫
Ω\Γ

𝑊(𝑥, 𝜖 (V, (𝑥))) 𝑑𝑥, (38)

in which C(Γ, 𝑈) is the set of kinematically admissible
displacement fields. The total energy of the body is the sum
of these two terms:

𝐸 (Γ, 𝑈) = 𝐸
𝑑
(Γ, 𝑈) + 𝐸

𝑠
(Γ) . (39)

The problem then is to find the mapping Γ(𝑡) such that at
some given time 𝑡 > 0, the crack geometry Γ(𝑡) is the one
that minimizes 𝐸(𝑈, Γ(𝑡)) and furthermore contains all Γ(𝑠)
for 𝑠 < 𝑡 (condition of irreversibility). The authors warn
that the use of global energy minimization to drive the crack
evolution is not based on thermodynamic principles, but is
adapted as “. . . a rather convenient postulate which provides
useful insight into a variety of behaviors” [262]. They show
also that this new formulation is free of the earlier identified
weaknesses of the classical theory.

Numerical experiments on the proposed formulation
were carried out by Bourdin et al. [263], who pointed to the
similarity of the new formulation to models of image seg-
mentation obtained by minimization of the Mumford-Shah
functional. This meant that the inapplicability of standard
numerical methods, owing to the fact that the formulation
allowed for jump sets of the displacement field (representing
the cracks) whose locus was unknown a priori. Twomethods
of solution were demonstrated, based on the mathematical
concept of Γ-convergence. In one of these methods, a second
field was included in the energy functional in addition to
the primary displacement field. This auxiliary scalar field
acted as a regularizer for the jump sets of the displacement
field, and took on values of 0 on the crack and 1 away
from it. The regularizing variable was referred to by later
researchers as the phase field, and it allowed for the treatment
of the global energy minimization as a standard variational
problem for which classical FEM is up to the task, albeit
with the restriction that the characteristic length of the mesh

should tend to zero faster than the characteristic length of the
regularization so as not to overestimate the surface energy of
the crack. Due to the inclusion of a second field, a coupled
system of equations must now be solved consisting of the
original equilibrium/linear momentum equations and the
evolution PDE of the phase field.

A phase field model for mode III dynamic fracture was
devised by Karma et al. [264], which made use of a phase
field evolution equation based on the standard two-minimum
Ginzburg-Landau form, that is,

𝜏𝜕
𝑡
𝜙 (x, 𝑡) = 𝐷

𝜙
∇
2

𝜙 −
𝑑

𝑑𝜙
(
1

4
𝜙
2

(1 − 𝜙
2

))

−
𝜇

2
𝑔
󸀠

(𝜙) (𝜖 : 𝜖 − 𝜖
2

𝑐
) ,

(40)

where 𝑔 is a function obeying the constraints 𝑔(0) = 0,
𝑔(1) = 1, and 𝑔󸀠(0) = 𝑔󸀠(1) = 0. The KKL phase
field model was subsequently utilized by Hakim and Karma
[265] to analyze the laws of quasistatic crack tip motion.
Among other things, they showed that for kinked cracks in
anisotropic media, force-balance gives predictions that are
significantly different from those obtained using the principle
of maximum energy release rate, and that the predictions
obtained from force-balance hold even when fracture is
modeled as irreversible. It should bementioned that up to this
point, phase field implementations featured isotropic damage
wherein fracture occurred both in tension and compression.
This sometimes resulted in unphysical response, such as
sample interpenetration in the crack branching simulation in
Bourdin et al. [263].

Thermodynamically consistent phase field models of
fracture were developed byMiehe et al. [266, 267], along with
corresponding incremental variational principles andnumer-
ical implementation within a finite element framework.Their
implementation of the phase field was also slightly different
from that of previous authors whereas Bourdin et al. [263]
and subsequent papers utilized the convention that the phase
field took values of 0 at cracks and 1 at unbroken states (hence
a pseudomaterial density function) andMiehe et al. reversed
the convention by assigning to the phase field values of 1 and
0 for fully cracked and fully unbroken states respectively. As
a consequence, the functional associated with the phase field
may now be seen to represent the crack surface itself. They
then derived the evolution equation for the phase field based
on the assumption that the solution is negative exponential in
nature. Furthermore, they extended the application of phase
fields to fracture simulations involving viscous overforce
response via a time-regularized three-field formulation, and
showed that the coupled system (linear momentum + phase
field evolution) could be solved either monolithically or via a
robust staggered-update scheme [266, 267].

An important addition of Miehe et al. [266, 267] to the
existing theory was the modelling of anisotropic degradation
by using an additive decomposition of the stored energy of
the undamaged solid, to come up with an anisotropic energy
function of the form

Ψ (𝜖, 𝜙) = [𝑔 (𝜙) + 𝑘]Ψ
+

0
(𝜖) + Ψ

−

0
(𝜖) , (41)
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where the positive and negative parts of the energies are
defined by

Ψ
±

0
(𝜖) =

𝜆

2
⟨𝜖
1
+ 𝜖

2
+ 𝜖

3
⟩
2

±
+ 𝜇 (⟨𝜖

1
⟩
2

±
+ ⟨𝜖

2
⟩
2

±
+ ⟨𝜖

3
⟩
2

±
) ,

(42)

and ⟨𝑥⟩
±
are ramp functions defined as ⟨𝑥⟩

±
= (1/2)[|𝑥| ±

𝑥]. The energy decomposition allows for the case where
fracture occurs in tension only as opposed to both tension
and compression, and effectively fixes the sample inter-
penetration issue encountered by Bourdin in crack branching
simulations. Following the reversed convention on the phase
field, the constraints on 𝑔(𝜙) are 𝑔(0) = 1, 𝑔(1) = 0, and
𝑔
󸀠(1) = 0. To maintain numerical stability, a small positive

constant 𝑘 is included in the formulation so that the material
retains some residual stiffness even when it attains a fully
damaged state.

One challenge with the use of phase field models for
fracture is the computational expense associated with mesh
size requirements, since the use of a mesh having a charac-
teristic length that is not small enough compared to the crack
regularization parameter yields erroneous results with regard
to the energy. Based on numerical experiments utilizing the
stationary phase field equation, Miehe et al. [266, 267] found
that the characteristic length of the mesh should be no more
than half the value of the regularization parameter, at least
presumably in the vicinity of the regularized crack. In an
effort to reduce computational expense, Kuhn and Müller
[268, 269] (see also their work in [270]) introduced specially
engineered FEM shape functions of an exponential nature to
discretize the phase field.These shape functions have the form

𝑁
𝑒

1
(𝜉, 𝛿) = 1 −

exp (−𝛿 (1 + 𝜉) /4) − 1

exp (𝛿/2) − 1
,

𝑁
𝑒

2
(𝜉, 𝛿) =

exp (−𝛿 (1 + 𝜉) /4) − 1

exp (𝛿/2) − 1
,

(43)

in 1D for the 2-node line element. 2D shape functions for
the 4-node quadrilateral are obtained as a tensor products
of the above, with certain tweaks. The shape functions are
parametrized by 𝛿 which is the ratio between the element
size and phase field regularization parameter. Their results
showed that with the special element shape functions, accu-
rate prediction of surface energy associated with the phase
field is possible with a much lower level of refinement
compared to standard FEM shape functions. The drawback
to their approach is that some information regarding crack
orientation is necessary for the proper construction of the
exponential shape functions, so that numerical examples
were confined to cases, where the general direction of the
crack path is known a priori.

4. Tracking the Crack Path

Methods that ensure crack path continuity such as XFEM
require the representation of the crack surface and algorithms
to track the crack path. While those tasks are relatively easy

to implement in two dimensions, their implementation in 3D
is challenging.

The topology of the crack surface is commonly repre-
sented either explicitly by piece-wise planar crack segments
or implicitly by level set functions. Meshfree methods and
the phantom node method usually use the former method
while many XFEM-implementations are based on an implicit
representation of the crack surface using level sets.

There are three major approaches to track the evolving
crack surface:

(i) local methods,
(ii) global methods,
(iii) level set method.

A review article of those methods including implementation
details in the context of partition of unity methods is given by
Rabczuk et al. [271].

4.1. Local Methods. With local crack tracking algorithms,
the alignment of the crack surfaces is enforced with respect
to its neighborhood. Local crack tracking algorithms are
usually characterized by recursively “cutting” elements (or
background cells in meshfree methods) and are especially
effective in three dimensions. Local methods have difficulties
to ensure a continuous crack surface in 3D. Jäger et al. [272]
report, for this reason, they are not well suited to model
curved cracks. However, adaptive refinement and smoothing
techniques allow also the representation of curved surfaces
(modelled by piece-wise planar crack segments) [186, 232].
Local methods were pursued in XFEM, for example, by
Gasser and Holzapfel [273, 274] and Areias and Belytschko
[147] or in the context of meshfree methods by Rabczuk and
Belytschko [186, 232], Krysl and Belytschko [275], among
others.

4.2. Global Methods. In global methods, a linear heat con-
duction problem is solved each load step for the mechanical
problem that needs to fulfill the condition

a ⋅ n
0
= b ⋅ n

0
= 0, (44)

where a and b are two vector fields, and n
0
denotes the

vector of the normal to the crack surface. The family of
surfaces, enveloping both vector fields a and b are described
by a temperature-like function 𝑇(X) when the following
conditions hold

a ⋅ ∇
0
𝑇 = ∇

0
𝑇 ⋅ a = 0 in Ω

0
,

b ⋅ ∇
0
𝑇 = ∇

0
𝑇 ⋅ b = 0 in Ω

0
.

(45)

Equation (45) can be rephrased as an anisotropic heat
conduction problem [101, 276, 277]. The drawback of this
method is that the heat conduction problem has to be solved
at every time step making global methods computationally
expensive.

Feist and Hofstetter [114] proposed the domain crack
tracking algorithm, a slight variant of the global method. In
their algorithm, the scalar field 𝑇 is not constructed globally
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but only for a subset of the domain that is affected by the
crack. Jäger et al. [272] report that global algorithm are well
suited to track curved cracks but less suitable for straight
cracks.

4.3. Level Set Method. The level set method was originally
developed to track interfaces that propagate orthogonal to
their surface. To update the interface, the Hamilton-Jacobi
equation was solved with respect to the level set. It makes
the method particularly attractive for problems in fluid
mechanics. However, the original level set method is not well
suited to track crack surfaces for three reasons as noted, for
example, by Ventura et al. [278] and Duflot [279].

(i) The zero isobar of the level set must be updated
behind the crack front to account for the fact once a
material point is cracked, it remains cracked.

(ii) The crack surface is an open surface that extends dur-
ing the crack propagation. It requires the introduction
of another level set function (orthogonal to the level
set function describing the crack surface) in order to
uniquely determine the position of a material point
with respect to the crack surface. When the crack
propagates, this level set function needs to be updated
as well. Moreover, both level set functions must
be periodically reinitialized to the signed-distance
functions to preserve stability [280, 281].

(iii) The level set functions are not updated with the speed
of the interface in the normal direction, and hence the
Hamilton-Jacobi equation cannot be used. Instead,
the level set function propagates with the speed of the
crack front.

Crack propagation with level sets can be modelled by differ-
ent techniques that can be classified into four groups [279].
In the first group, the level set is updated by the solution
of differential equations. The second group is defined on
algebraic relations between the coordinates of a given point,
the coordinates of the crack front, and the crack advance
vector, see for example, Stolarska et al. [282]. This method
is not easily extendable into three dimensions. The Vector
level set method [226, 278] is defined in terms of geometric
transformations. In the vector level set method, the distance
to the crack surface is stored in addition to the signed distance
function. This facilitates the implementation since there is
no need to solve a PDE to update the level set. The last
class of methods are based on algebraic and trigonometric
equations involving the initial value of the level set functions
and the crack advance vector. Some of them also require
the description of the crack front. They are well suited
for three-dimensional applications. Duflot [279] suggested a
mixed method defined with differential and non-differential
equations.He also gives an excellent state-of-the-art overview
on level set techniques for cracks.

A very efficient and elegant crack propagation and track
cracking algorithm in the context of XFEM was recently
presented by Fries and Baydoun [283] and in the context of
meshfree methods by Zhuang et al. [284, 285].

5. Fracture Criteria

The fracture criterion is needed to determine whether or not
a crack will propagate or nucleate. Moreover, the fracture
criterion should provide the orientation and the “length”
of the crack as well as whether or not cracks branch or
join. Methods that ensure crack path continuity need to
distinguish between crack nucleation and crack propagation.
Detecting branching cracks in dynamic problems is particu-
larly difficult in those methods.The fracture criterion is often
met at several quadrature points in front of the crack tip, and
reliable criteria to branch cracks in practice are still missing.
The best results are obtained when the crack branches are
known in advance.

In most applications, the “length” of the crack is con-
trolled. Usually, it is correlated to the underlying discretiza-
tion. To the best knowledge of the author, all of the methods
assume a straight/planar extension of an existing crack
surface.

In the following section, different cracking criteria to
obtain the orientation of a newly (nucleated or propagated)
crack segment are reviewed.

5.1. Fracture Mechanics-Based Criteria. Besides approaches
based on configurational forces [286–289] there are four
major cracking criteria in LEFM.

(i) Maximum hoop stress criterion or maximum princi-
pal stress criterion.

(ii) Minimum strain energy density criterion, Sih [290].
(iii) Maximum energy release rate criterion, Wu [291].
(iv) The zero 𝐾

𝐼𝐼
criterion (Vanishing in-plane SIF (𝐾

𝐼𝐼
)

in shear mode for infinitesimally small crack exten-
sion), Goldstein and Salganik [292].

The first two criteria predict the direction of the crack tra-
jectory from the stress state prior to the crack extension. The
last two criteria require stress analysis for virtually extended
cracks in various directions to find the appropriate crack-
growth direction. Duflot and Hung [223] report for medium
mixed-mode problems, all criteria yield almost identical
results. However, according to Shen and Stephansson [293],
only the maximum energy release rate criterion allows to
predict secondary cracks in compressed specimens.The crack
is propagated in an angle of 𝜃

𝑐
from the crack tip. Note that

LEFM can only deal with crack propagation but not with
crack nucleation. It also can not handle crack branching.

In themaximumhoop stress ormaximumprincipal stress
criterion, the maximum circumferential stress 𝜎

𝜃𝜃
, often

called hoop stress, in the polar coordinate system around the
crack tip corresponds to the maximum principal stress and is
given for a crack propagating with constant velocity V

𝑐
by:

𝜎
𝜃𝜃

=
𝐾
𝐼

√2𝜋𝑟
𝑓
𝐼

ℎ
(𝜃, V

𝑐
) +

𝐾
𝐼𝐼

√2𝜋𝑟
𝑓
𝐼𝐼

ℎ
(𝜃, V

𝑐
) , (46)

where the functions 𝑓𝐼
ℎ
and 𝑓𝐼𝐼

ℎ
represent the angular varia-

tion of the stress for different values of the crack-tip speed
V
𝑐
. When the maximum hoop stress is larger equal a critical



24 ISRN Applied Mathematics

hoop stress 𝜎𝑐
𝜃𝜃

then the crack is propagated in the direction
perpendicular to the maximum hoop stress. For pure mode 𝐼
fracture, 𝜎𝑐

𝜃𝜃
is given by

𝜎
𝑐

𝜃𝜃
=

𝐾𝑐
𝐼

√2𝜋𝑟
, (47)

with the fracture toughness 𝐾𝑐
𝐼
.

In LEFM, the local direction of the crack growth is
determined by the condition that the local shear stress is zero
that leads to the condition:

𝐾
𝐼
sin 𝜃

𝑐
+ 𝐾

𝐼𝐼
(3 cos 𝜃

𝑐
− 1) = 0, (48)

that results in the crack propagation angle

𝜃
𝑐
= 2 arctan(

𝐾
𝐼
− √𝐾2

𝐼
+ 8𝐾2

𝐼𝐼

4𝐾
𝐼𝐼

). (49)

The minimum strain energy density criterion is based on
a critical strain-energy-density factor 𝑆𝑐

𝑟
. The basic assump-

tion is that fracture occurs when the interior minimum of the
strain-energy-density factor 𝑆 reached 𝑆

𝑐

𝑟
. The strain energy

density factor 𝑆 represents the strength of the elastic energy
field in the vicinity of the crack tip which is singular of the
order 𝑟−1.The factor 𝑆𝑐

𝑟
is assumed to be a material parameter

and can be used as a measure of the fracture toughness under
mixed mode conditions. For pure mode I fracture, 𝑆𝑐

𝑟
can be

directly expressed in terms of𝐾𝑐
𝐼
:

𝑆
𝑐

𝑟
= (𝜅 − 1)

𝜋2(𝐾𝑐
𝐼
)
2

8𝐺
, (50)

where 𝐺 denotes the shear modulus and 𝜅 is the kosolov
constant. For general mixed mode fracture, 𝑆𝑐

𝑟
is:

𝑆
𝑐

𝑟
= 𝑎

11
𝐾
2

𝐼
+ 2𝑎

12
𝐾
𝐼
𝐾
𝐼𝐼
+ 𝑎

22
𝐾
2

𝐼𝐼
∀𝜃 = 𝜃

0
, (51)

with −𝜋 < 𝜃
0
< 𝜋 and

𝑎
11

=
(1 + cos 𝜃) (𝜅 − cos 𝜃)

16𝐺
,

𝑎
12

=
(2 cos 𝜃 − 𝜅 + 1) sin 𝜃

16𝐺
,

𝑎
22

=
(𝜅 + 1) (1 − cos 𝜃) + (1 + cos 𝜃) (3 cos 𝜃 − 1)

16𝐺
.

(52)

The parameters 𝑎
𝑖𝑗

are obtained from the strain-energy
density function. For further details see Sih [290]. Note
that the minimum strain energy-density criterion is a local
criterion since fracture occurs when the energy density in
a volume element near the crack tip reaches a critical value
while the classical fracture mechanics theory is based on
global energy balance.

Crack

Crack extension

Figure 26: Crack propagation with the energy release rate criterion.

In the maximum energy release rate criterion, the crack
propagates in the direction defined by the angle 𝛼 = 𝛼

𝑐
(𝜎),

where 𝛼
𝑐
satisfies the condition:

𝜕G

𝜕𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼=𝛼
𝑐

= 0,

𝜕2G

𝜕𝛼2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼=𝛼
𝑐

≤ 0,

(53)

where 𝛼 is defined in Figure 26 and G denotes the energy
release rate. Crack propagation occurs at a stress state 𝜎 =

𝜎
𝑐
when G(𝜎

𝑐
, 𝛼
𝑐
(𝜎
𝑐
)) = G

𝑔
, where G

𝑔
is a material

parameter. According toWu [291], the energy release rate can
be decomposed into an antiplane (antiplane shear load) part
G
𝐴
and a plane (plane load) partG

𝑃
:

G (𝜎, 𝛼) = G
𝑃
(𝜎, 𝛼) +G

𝐴
(𝜎, 𝛼) . (54)

For the antiplane shear load,G
𝐴
is given by

G
𝐴
(𝜎, 𝛼) =

𝜋

2
𝜎
2

23
(
1 − 𝛼

1 + 𝛼

𝛼

) . (55)

For plane strain conditions:

G
𝑃
(𝜎, 𝛼) =

1 − ]

2
𝜎
2

23
(𝐾

2

𝐼
+ 𝐾

2

𝐼𝐼
) . (56)

5.2. Rankine Criterion. For a Rankine material, a crack is
introduced when the principal tensile stress reaches the
uniaxial tensile strength. The crack is initiated perpendicular
to the direction of the principal tensile stress. Usually, some
kind of smoothing technique is applied that either averages
the crack normal or the stress tensor, [176, 228, 273, 294,
295]. This is done in order to improve the reliability of the
computed stresses in front of the crack tip. For example,Wells
and Sluys [294] and Mergheim et al. [176] use an averaged
stress tensor of the form:

𝜎
𝑚
= ∫

Ω
𝑐

𝑤𝜎 𝑑Ω, (57)

where Ω
𝑐
is a certain domain around the crack tip and 𝑤 is a

weighting function:

𝑤 =
1

(2𝜋)
3/2

𝑙3
exp(− 𝑟2

2𝑙2
) , (58)
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where 𝑙 determines how fast the weight function decays from
the crack tip. Gasser and Holzapfel [273] and Rabczuk et al.
[228] smooth the crack normal instead of the stress tensor.
The Rankine criterion is applicable to brittle materials and
works well for mode I-fracture.

5.3. Loss of Material Stability. Fracture is caused by a mate-
rial instability. A classical definition of material stability is
based on the so-called Legendre-Hadamard condition, which
establishes that for any non zero vectors 𝑛 and ℎ the following
pointwise inequality must hold

𝑒 = minn,h (n ⊗ h) : A : (n ⊗ h) > 0, (59)

where A = C𝑡 + 𝜎 ⊗ 𝛿,C𝑡 is the constitutive tangent
operator and 𝑒 is the so-called ellipticity indicator. For a linear
comparison solid, if non-propagating singular surfaces do
not occur, the Legendre-Hadamard condition is identical to
the strong-ellipticity condition, used for example, in Simo et
al. [58]. In case (59) is no longer fulfilled, the material loses
stability and n defines the direction of propagation, and h is
the polarization of the wave. This condition ensures that the
speed of propagating waves in a solid remains real. Equality
in expression (59) is the necessary condition for stationary
waves. Belytschko et al. [31] give a textbook description for
obtaining condition (59) by means of a stability analysis
of the momentum equation when a perturbation of the
form u = h exp(𝑖𝜔𝑡 + 𝑘n ⋅ x) is applied. The Legendre-
Hadamard condition is occasionally called strong ellipticity
of the constitutive relation (see Marsden and Hughes [296]).
In the dynamical case, the Legendre-Hadamard condition
implies the hyperbolicity of the IBVP. For a rate-dependent
material, we refer to it as loss of material stability. The reader
is referred to Šilhavý [25] or Ogden [297] for details about the
concepts mentioned above.

Loss of hyperbolicity (or loss of ellipticity or loss of
material stability, resp.) is determined by minimizing 𝑒 with
respect to n and h; if 𝑒 is negative for any combination of n
and h, the material has lost stability at that material point.
In 2D, 𝑒 can be expressed as a function of the two angles 𝜃
and 𝜙, where n = [cos(𝜃) sin(𝜃)] and h = [cos(𝜙) sin(𝜙)].
Therefore, based on expression in (59), let us define for a given
material point of a solid at a given time,

Q=n ⋅ A ⋅ n, (60)

where Q is the acoustic tensor with components
𝑄
𝑖𝑘
=𝑛

𝑗
𝑛
𝑙
𝐴
𝑖𝑗𝑘𝑙

. We say that a material point is stable
whenever the minimum eigenvalue of Q is strictly positive,
and unstable otherwise. It can be shown that this condition
is equivalent to condition (59).

One difficulty is that the analysis of the acoustic tensor for
isotropic materials generally will yield two directions n from
which one direction has to be chosen. At times the loss of
material stability criterion becomes ambiguous; an example
of the minimum eigenvector of Q as a function of the angle
𝜃 is shown in Figure 28; simplified for a two-dimensional
example. For uniaxial tension, two angles are obtained, but
they correspond to the same plane. In other stress states, four
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Figure 27:Minimum eigenvalue of the acoustic tensor as a function
of the two angles for one material point.

angles corresponding to two planes are sometimes obtained.
A typical eigenvalue landscape as function of the crack angles
in three dimension is shown in Figure 27 for one material
point and isotropic 𝐽

2
-plasticity with strain softening.

In [232], we chose the direction of themaximumdisplace-
ment gradient by maximizing

𝑔 = max⏟⏟⏟⏟⏟⏟⏟
𝑙

(n𝑇
𝑙
⋅ (∇u ⋅ h

𝑙
)) , 𝑙 = 1, 2, (61)

where the normals n
𝑙
correspond to minima of Q, (60); h is

the corresponding eigenvector of Q. Oliver et al. [298] have
shown that an anisotropic continuum model will lead to a
unique angle 𝜃 in the material stability analysis.

Since the normal n = [cos𝛼 cos𝜑, cos𝛼 sin𝜑, sin𝛼]

depends on two angles in three dimensions, the proce-
dure of finding the minimum eigenvalue of Q can become
computationally expensive. A bisection method can reduce
computational cost. Another efficient way to compute the
eigenvalues of the acoustic tensor is given by Ortiz et al. [77].

5.4. Rank-One Stability Criterion. Belytschko et al. [299]
suggest to check the rank-one stability criterion

.

F : A :
.

F ≤ 0 ∀
.

F (62)

before carrying out a material stability analysis at every
quadrature point. They point out that it is a stricter but
computational cheaper criterion than the loss-of material
stability criterion. However, the rank-one stability criterion
does not provide the orientation of the crack.
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Figure 28: Minimum eigenvalue of the acoustic tensor Q versus
different angles of the orientation of n for (a) uniaxial tension (b)
an arbitrarily directed load.

5.5. Energy Criteria. The orientation of the crack can be
obtained by global energy minimization. For different ori-
entations of the crack, the global energy is computed, and
the crack is propagated in the direction where the global
energy has its minimum. This global fracture criterion can
be expressed as:

I = ∫
Ω

𝑊(u) 𝑑Ω + ∫
Γ

G
𝑡
𝑑Γ, (63)

where G
𝑡
is the surface toughness that characterizes the

surface energy necessary to create the new crack surface.
Such criteria were used in the context of XFEM

by Meschke and Dummerstorf [300], Dummerstorf and
Meschke [301]. It was presented in a two-dimensional setting
for cohesive and cohesionless cracks. As pointed out by
the authors, an extension to 3D is cumbersome. Miehe and
Gürses [289] presented a similar method in the context
of an r-adaptive interelement-separation method in two
dimension. The crack orientation as well as the crack length
is introduced as additional unknowns in the variational
formulation.

5.6. Computation of the Crack “Length”. Asmentioned above,
the easiest way is to control the “length” of the crack. In the

context of XFEM, Belytschko et al. [302] suggested to take
advantage of the level set method to obtain the new position
of the crack tip. The key assumption is that the hyperbolicity
indicator 𝑒 = h ⋅Q ⋅ hmust vanish at the crack tip:

𝜕𝑒

𝜕𝑡
+ V

𝑐

⋅ ∇𝑒 = 0 with V
𝑐

= V
𝑐s, (64)

where V𝑐 is the crack speed, s gives its direction which
must fulfill the condition n ⋅ s = 0. To obtain the crack
length, (64) has to be solved for V𝑐. Due to the hyperbolic
character of the differential equation, the standard Bubnov
Galerkin formulation leads to instabilities and stabilization
techniques such as upwinding, Petrov-Galerkin, Galerkin
least squares, streamline upwind Petrov Galerkin, or finite
increment calculus Stabilization is needed as pointed out for
example, in [285].

6. Future Perspectives and Conclusion

Numerous computational methods for fracture have been
developed in the past two decades. Advances in partition of
unity methods have provided effective and reliable tools to
analyze fracture for numerous applications. Improvements
were made particularly concerning the accuracy (through
enrichment) and the efficiency (no remeshing). Someof those
methods are already available in commercial CAE software
packages and can be used for commercial applications as
pointed out previously.Most of the partition of unitymethods
for fracture are well suited for static fracture when amoderate
number of cracks occur. Many applications (of partition of
unity methods) focus on crack propagation, mainly for prop-
agation of single crack surfaces without branching cracks and
crack coalescence. While the majority of the computational
methods discussed above are capable of handling complex
phenomena such as branching cracks, reliable criteria to
branch a crack in practical FE-simulations are still missing.
Those fracture criteria can be categorized in local criteria and
global criteria. Local criteria are based on the stress state in
the vicinity of the crack tip while global criteria are based
on energy minimization. Both criteria should in principle
predict complex fracture pattern naturally. For example, it is
known that the ellipticity indicator 𝑒 should be zero at the
crack tip, and if one could find the locations where 𝑒 = 0, the
positions of the new crack tip are obtained naturally. Besides
some efforts to seaming-less model the transition from
continuum to discontinuum, the combination of the fracture
criterion and the computational method remains a challenge.
A very interesting approach is the variational approach to
fracture [262] as the crack path is the natural outcome
of the analysis. It also circumvents the implementation of
complex crack tracking algorithms and the need to describe
the topology of the crack surface. Moreover, the analysis of
coupled problems seems to be simpler as the enrichment
in XFEM can become quite cumbersome. However, most
implementations of the (already computational expensive)
variational approach to fracture require a high resolution of
the crack (with several elements) increasing computational
cost further. Combining the advantages of partition of unity
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methods for cracks (such as XFEM) and the variational
approach to fracture does not seem to be easy, but it could
lead to a new efficient and reliable pathway tomodel complex
fracture patterns.

While—as stated above—the majority of the applica-
tions of computational methods for fracture focus on crack
propagation problems, far less studies are concerned with
crack nucleation. Methods as XFEM seem not well suited
for dynamic fracture and fragmentation involving the nucle-
ation, growth, and coalescence of an enormous number of
cracks. An alternative pathway to dynamic fracture offer
methods such as the distinct element method (DEM) [303,
304], discontinuous deformation analysis (DDA) [305, 306],
the particle flow code (PFC) [307] or peridynamics [308]; in
brief discrete methods (not discussed in this paper) that are
not based on continuum approaches.

The exact prediction of complex fracture patterns is
nearly impossible for many applications due to its stochastic
nature. The onset of crack nucleation and in fact also the
direction in crack propagation depends on numerous factors
such as the micro-structure of the material (imperfections,
voids, microcracks, etc.) or loading conditions, that are not
known exactly. The author has made the experience that
results are particularly sensitive with respect to boundary
conditions for example. Most of the novel computational
methods for fracture are based on deterministic approaches.
There are far less contributions on statistical computational
methods for fracture [309–314]. The development of efficient
and reliable stochastic computational methods is one of the
key challenges in the future. Two pathways can be followed:

(i) deterministic methods in a stochastic setting and
(ii) full stochastic methods.
The first approach seems simpler as no modifications of

the existing computational methods are needed. Sampling
methods belong to the first category while variance reduction
methods for example belong to the second category. One
major challenge will be the design of computational efficient
methods.

The key objective of computational methods is their
application to “real-world” problems, for example, in order
to support the design of new products. The choice of the
method depends on the application. Most effort in the past
was devoted to develop new methods. However, there has
been minimal effort to assess those methods. In view of
the growing number of computational methods for frac-
ture, it would be of high practical relevance to provide a
framework to quantitatively assess the quality of existing
computational methods with respect to their accuracy, reli-
ability, and robustness for a specific application. For example,
computational methods (and constitutive models) have a
number of uncertain input parameters such as the dilation
parameter inmeshfreemethods. It is of utmost importance to
quantitatively determine the sensitivity of the uncertain input
parameters with respect to a quantity of interest (the output).
It will also help to quantify the predictive capabilities of the
computational methods.

One major application of computational methods for
fracture is their use in the design of newmaterials. Obtaining
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Figure 29: Schematic of a (a) hierarchical, (b) semiconcurrent, and
(c) concurrent multiscale methods [315].

a fundamental understanding of how materials fail was/is a
main research direction in materials science. In failure, the
response of a structure is driven by fine scale features (nano-
or micro-structure of the material). For an accurate predic-
tion of material failure, it is important to account for fine
scale features in the process zone. Therefore, an important
future research direction is the development of multiscale
methods for fracture. While numerous multiscale methods
(see e.g., [316, 317]) were developed for intact materials, far
fewer methods are applicable for fracture simulations though
the effort is rapidly increasing.
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Multiscale methods can be categorized into hierarchical,
semiconcurrent, and concurrent methods [318]. In hierarchi-
cal multiscale methods, information is passed from the fine-
scale to the coarse scale but not vice versa. Computational
homogenization [319] is a classical hierarchical upscaling
technique.However, hierarchicalmultiscale approaches seem
less suitable to model fracture. One basic assumption for the
application of homogenization theories is the existence of
disparate length scales [320]:LCr ≪ LRVE ≪ LSpec, where
LCr,LRVE andLSpec are the crack length, the representative
volume element (RVE) and specimen-size, respectively. For
problems involving fracture, the first condition is violated as
LCr is of the order of LRVE. Moreover, periodic boundary
conditions (PBCs) often used at the fine-scale, cannot be used
when a crack touches a boundary as the displacement jump
in that boundary violates the PBC. Nevertheless, fine-scale
features can also be incorporated “hierarchically” through
enrichment. For example, Gracie et al. [321, 322], Belytschko
and Gracie [323] developed special enrichment functions for
dislocations.

The basic idea of semiconcurrent multiscale methods
is illustrated in Figure 29(b). In semi-concurrent multiscale
methods, information is passed from the fine-scale to the
coarse-scale and vice versa. Semi-concurrent multiscale
methods are of the same computational efficiency as concur-
rent multiscale methods [324]. The key advantage of semi-
concurrent multiscale methods over concurrent multiscale
methods is their flexibility, that is, their ability to couple
two different software packages, for example, MD software
to FE software. Parallelization is generally simple as well. A
popular semi-concurrent multiscale method is the FE2 [325]
originally developed for intact materials. Kouznetsova [319]
was the first who extended thismethod to problems involving
material failure, see also Kouznetsova et al. [326] or recent
contribution byNguyen et al. [327], Verhoosel et al. [328], and
Belytschko et al. [299].

Numerous concurrent multiscale methods [329–332]
have been developed that can be classified into “interface”
couplingmethods and “Handshake” couplingmethods. Inter-
face coupling methods seem to be less effective for dynamic
applications as avoiding spurious wave reflections at the
“artificial” interface seem to be more problematic. Some of
the concurrent multiscale methods have been extended to
modeling fracture [318, 333–335].

Future challenges will lie in the development of efficient
methods to transfer length scales when fracture occurs, to
adaptively choose the discretization and the model based
on error estimation, and to bridge disparate time scale.
To overcome the high computational cost will be another
challenge, in particular, when these methods will be applied
to “real-world” applications, for example, in computational
materials design.
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[41] A.Hillerborg,M.Modéer, and P. E. Petersson, “Analysis of crack
formation and crack growth in concrete by means of fracture
mechanics and finite elements,” Cement and Concrete Research,
vol. 6, no. 6, pp. 773–781, 1976.

[42] K. Keller, S. Weihe, T. Siegmund, and B. Kröplin, “Generalized
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[171] T. Menouillard, J. Réthoré, A. Combescure, and H. Bung,
“Efficient explicit time stepping for the extended finite element
method (X-FEM),” International Journal for NumericalMethods
in Engineering, vol. 68, no. 9, pp. 911–939, 2006.

[172] T. Menouillard, J. Réthoré, N. Moës, A. Combescure, and H.
Bung, “Mass lumping strategies for X-FEM explicit dynamics:
application to crack propagation,” International Journal for
Numerical Methods in Engineering, vol. 74, no. 3, pp. 447–474,
2008.

[173] H. Talebi, C. Samaniego, E. Samaniego, and T. Rabczuk, “On
the numerical stability and masslumping schemes for explicit
enriched meshfree methods,” International Journal for Numeri-
cal Methods in Engineering, vol. 89, pp. 1009–1027, 2012.

[174] T. Chau-Dinh, G. Zi, P. S. Lee, T. Rabczuk, and J. H. Song,
“Phantom-nodemethod for shell models with arbitrary cracks,”
Computers and Structures, vol. 92-93, pp. 242–256, 2012.

[175] T. Rabczuk, G. Zi, A. Gerstenberger, and W. A. Wall, “A new
crack tip element for the phantom-node method with arbitrary
cohesive cracks,” International Journal for NumericalMethods in
Engineering, vol. 75, no. 5, pp. 577–599, 2008.

[176] J. Mergheim, E. Kuhl, and P. Steinmann, “A finite element
method for the computational modelling of cohesive cracks,”
International Journal for Numerical Methods in Engineering, vol.
63, no. 2, pp. 276–289, 2005.

[177] J. Mergheim and P. Steinmann, “A geometrically nonlinear FE
approach for the simulation of strong andweak discontinuities,”
Computer Methods in Applied Mechanics and Engineering, vol.
195, no. 37–40, pp. 5037–5052, 2006.

[178] D. Organ,M. Fleming, T. Terry, and T. Belytschko, “Continuous
meshless approximations for nonconvex bodies by diffraction
and transparency,” Computational Mechanics, vol. 18, no. 3, pp.
225–235, 1996.

[179] T. Belytschko, D. Organ, and M. Tabbara, “Numerical sim-
ulations of mixed mode dynamic fracture in concrete using
element-free Galerkin methods,” in Proceedings of the Interna-
tional Conference on Environmental Systems (ICES ’95), 1995.

[180] T. Belytschko, Y. Y. Lu, L. Gu, and M. Tabbara, “Element-free
galerkinmethods for static and dynamic fracture,” International
Journal of Solids and Structures, vol. 32, no. 17-18, pp. 2547–2570,
1995.

[181] T. Belytschko, Y. Y. Lu, and L. Gu, “Crack propagation by
element-free Galerkin methods,” Engineering Fracture Mechan-
ics, vol. 51, no. 2, pp. 295–315, 1995.



34 ISRN Applied Mathematics

[182] J. J. C. Remmers, R. De Borst, and A. Needleman, “A cohesive
segments method for the simulation of crack growth,” Compu-
tational Mechanics, vol. 31, no. 1-2, pp. 69–77, 2003.

[183] J. J. C. Remmers, R. de Borst, and A. Needleman, “The
simulation of dynamic crack propagation using the cohesive
segments method,” Journal of the Mechanics and Physics of
Solids, vol. 56, no. 1, pp. 70–92, 2008.

[184] J.-H. Song and T. Belytschko, “Cracking node method for
dynamic fracture with finite elements,” International Journal for
Numerical Methods in Engineering, vol. 77, no. 3, pp. 360–385,
2009.

[185] Y. You, J. S. Chen, and H. Lu, “Filters, reproducing kernel, and
adaptive meshfree method,” Computational Mechanics, vol. 31,
no. 3-4, pp. 316–326, 2003.

[186] T. Rabczuk and T. Belytschko, “Adaptivity for structured mesh-
free particle methods in 2D and 3D,” International Journal for
Numerical Methods in Engineering, vol. 63, no. 11, pp. 1559–1582,
2005.

[187] T. Rabczuk and E. Samaniego, “Discontinuous modelling of
shear bands using adaptive meshfree methods,” Computer
Methods in AppliedMechanics and Engineering, vol. 197, no. 6–8,
pp. 641–658, 2008.

[188] T.-P. Fries, A. Byfut, A. Alizada, K. W. Cheng, and A. Schröder,
“Hanging nodes and XFEM,” International Journal for Numeri-
cal Methods in Engineering, vol. 86, no. 4-5, pp. 404–430, 2011.

[189] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrody-
namics:theory and applications to non-spherical stars,”Monthly
Notices of the Royal Astronomical Society, vol. 181, pp. 375–389,
1977.

[190] T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin
methods,” International Journal for Numerical Methods in Engi-
neering, vol. 37, no. 2, pp. 229–256, 1994.

[191] W. K. Liu, S. Jun, and Y. F. Zhang, “Reproducing kernel
particle methods,” International Journal for Numerical Methods
in Fluids, vol. 20, no. 8-9, pp. 1081–1106, 1995.

[192] G. R. Liu and Y. T. Gu, “A point interpolation method for
two-dimensional solids,” International Journal For Numerical
Methods in Engineering, vol. 50, pp. 937–951, 2001.

[193] S. N. Atluri, The Meshless Local Petrov-Galerkin (MLPG)
Method, Tech Science Press, 2002.
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[272] P. Jäger, P. Steinmann, and E. Kuhl, “On local tracking algo-
rithms for the simulation of three-dimensional discontinuities,”
Computational Mechanics, vol. 42, no. 3, pp. 395–406, 2008.

[273] T. C. Gasser and G. A. Holzapfel, “Modeling 3D crack prop-
agation in unreinforced concrete using PUFEM,” Computer
Methods in Applied Mechanics and Engineering, vol. 194, no. 25-
26, pp. 2859–2896, 2005.

[274] T. C. Gasser and G. A. Holzapfel, “3D Crack propagation
in unreinforced concrete. A two-step algorithm for tracking
3D crack paths,” Computer Methods in Applied Mechanics and
Engineering, vol. 195, no. 37–40, pp. 5198–5219, 2006.

[275] P. Krysl and T. Belytschko, “The element free Galerkin method
for dynamic propagation of arbitrary 3-D cracks,” International
Journal for Numerical Methods in Engineering, vol. 44, no. 6, pp.
767–800, 1999.

[276] J. Oliver, A. E. Huespe, E. Samaniego, and E. W. V. Chaves,
“Continuum approach to the numerical simulation of material
failure in concrete,” International Journal for Numerical and
Analytical Methods in Geomechanics, vol. 28, no. 7-8, pp. 609–
632, 2004.
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