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is paper refers to the algorithmic transformation of a meander to its uniquely de�ned compression. We obtain this directly from
meandric permutations, thus creating representations of large classes of meanders of different orders. We prove basic properties,
give arithmetic results, and produce generating procedures.

1. Introduction

A closed meander of order 𝑛𝑛 is a closed self-avoiding curve
crossing an in�nite hori�ontal line 2𝑛𝑛 times [1]. In this paper,
we obtain the compression as the determination of a unique
simplemeander, directly from its permutation.emeanders
as planar permutations were introduced by Rosenstiehl [2]
and they have been studied with nested sets [3, 4].

More speci�cally, in Section 2, we de�ne the �ow of a
meander consisted by its traces and corresponding blocks. In
Section 3, we create a speci�c form of meanders: the simple
ones, we study the properties of their numbers of cuttings
and cutting degree and we use them in order to introduce
the compression. In Section 4, we determine the �ow of the
meandric permutations andwe achieve also numerical results
for the classi�cation of the meanders of the compressions
according to their order. Finally, in Section 5, we establish
the compression of meanders directly from their meandric
permutations divided in suitable blocks. us, we change
their interpretation and produce a simpli�ed procedure for
generating the compressions.

e following de�nitions and notation are necessary for
the rest of the paper [3].

A set 𝑆𝑆 of disjoint pairs of [2𝑛𝑛𝑛 such that ⋃{𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎{𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎
[2𝑛𝑛𝑛 and for any {𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎 𝑎𝑎 we never have 𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎𝑎 𝑎
𝑑𝑑 is called nested set of pairs on [2𝑛𝑛𝑛. Each pair of a nested
set consists of an odd and an even number. We denote the
set of all nested sets of pairs on [2𝑛𝑛𝑛 by𝑁𝑁2𝑛𝑛. Two nested sets

𝑆𝑆1, 𝑆𝑆2 ∈ 𝑁𝑁2𝑛𝑛 de�ne a permutation 𝜎𝜎 on [2𝑛𝑛𝑛, such that 𝜎𝜎𝜎𝜎𝜎𝜎 𝜎
1) = 𝑗𝑗 iff {2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖     1 and𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎   iff {2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   2, for
every 𝑖𝑖𝑖𝑖𝑖𝑖𝑖  . e sets 𝑆𝑆1, 𝑆𝑆2 are 𝑘𝑘-matching if and only if 𝜎𝜎
has 𝑘𝑘 cycles. In the case where 𝑘𝑘 𝑘𝑘 , 𝑆𝑆1, 𝑆𝑆2 are simply called
matching. is de�nition is equivalent to the one given in [3].

We call short pair of 𝑆𝑆 any pair of consecutive numbers
that belongs to 𝑆𝑆, and outer pair of 𝑆𝑆 any pair {𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎 𝑎𝑎 such
that there is no pair {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   with 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐      . Each nested
set of pairs contains at least one outer and one short pair.

2. Meanders

A meander of order 𝑛𝑛 is equivalently de�ned [3] as a cyclic
permutation

𝜇𝜇 𝜇 𝜇𝜇 (1) 𝜇𝜇 (2)⋯𝜇𝜇 (2𝑛𝑛) (1)

on [2𝑛𝑛𝑛, for which the following properties hold true: 𝜇𝜇𝜇𝜇𝜇𝜇
1, and the sets

𝑈𝑈 𝑈 󶁁󶁁󶁁󶁁𝜇𝜇 (𝑖𝑖) , 𝜇𝜇 (𝑖𝑖 𝑖 𝑖)󶁑󶁑 ∶ 𝑖𝑖𝑖𝑖𝑖   𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖   󶁑󶁑 ,

𝐿𝐿 𝐿 󶁁󶁁󶁁󶁁𝜇𝜇 (𝑖𝑖) , 𝜇𝜇 (𝑖𝑖 𝑖 𝑖)󶁑󶁑 ∶ 𝑖𝑖𝑖𝑖𝑖   𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 󶁑󶁑
(2)

are both nested and matching.
We take all numbers mod2𝑛𝑛. It is clear that 𝜇𝜇𝜇𝜇𝜇𝜇 is odd

if and only if 𝑖𝑖 is odd. In the corresponding geometrical
representation, the nested arcs correspond to nested pairs.
A pair of nested sets 𝑈𝑈, 𝐿𝐿 should be matching, in order to
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F 1: A meander of order 14.

generate a meander. For example, the meander of Figure 1 is
of order 14, with

𝜇𝜇 𝜇 𝜇 𝜇𝜇 𝜇𝜇 𝜇 𝜇 𝜇𝜇 𝜇𝜇 𝜇𝜇 𝜇𝜇 𝜇𝜇 𝜇𝜇 𝜇𝜇 𝜇𝜇

81716   9 10 15181  9 20 76232454     ,

𝑈𝑈 𝑈 {{1, 28} , {2, 27} , {3, 12} , {4, 5} , {6, 7} , {8, 11} , {9, 10} ,

{13, 26} , {14, 21} , {15, 18} , {16, 17} , {19, 20} , {22, 25} ,

{23, 24}} ,

𝐿𝐿 𝐿 {{1, 4} , {2, 3} , {5, 24} , {6, 23} , {7, 20} , {8, 17} , {9, 16} ,

{10, 15} , {11, 14} , {12, 13} , {18, 19} , {21, 22} , {25, 26} ,

{27, 28}} .
(3)

e set of all the meanders of order 𝑛𝑛 is denoted by
ℳ2𝑛𝑛. Let 𝜇𝜇 𝜇 𝜇2𝑛𝑛 be a meander crossing a horizontal
line. Following [5], for any 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖 we consider the
vertical line, which shall be called the 𝑖𝑖-line, passing through
the middle point of the segment (𝑖𝑖𝑖 𝑖𝑖 𝑖 𝑖𝑖 of the horizontal
line. e numbers of those arcs of the meandric curve which
are intersected by the 𝑖𝑖-line and lie above and beneath the
horizontal line of 𝜇𝜇, are called the numbers of cuttings 𝜃𝜃𝜃𝜃𝜃𝜃 and
𝜃𝜃′(𝑖𝑖𝑖, respectively [6].

e sum 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀    ′(𝑖𝑖𝑖 of the number of those arcs
of the meandric curve which are intersected by the 𝑖𝑖-line is
called the cutting degree of the meander at 𝑖𝑖. We notice that
𝜃𝜃𝜃𝜃𝜃𝜃 and 𝜃𝜃′(𝑖𝑖𝑖 are of the same parity; hence, 𝜀𝜀𝜀𝜀𝜀𝜀 is always even
[5].

emeandric curve always has points of intersectionwith
the 𝑖𝑖-line, which we call traces. Obviously, the number of the
traces is equal to 𝜀𝜀𝜀𝜀𝜀𝜀. Starting below the horizontal line, we
label the traces with the numbers 1, 2, 3,… , 𝜀𝜀𝜀𝜀𝜀𝜀, knowing
that 𝜃𝜃𝜃𝜃𝜃𝜃 (resp., 𝜃𝜃′(𝑖𝑖𝑖) of them are lying above (resp., beneath)
the horizontal line. From now on, we will consider that the

traces are identical to their corresponding labels. For the
meander of Figure 1 and for 𝑖𝑖 𝑖𝑖𝑖 , we have 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃  ,
𝜃𝜃′(14)=6  , and 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀  .

Beginning from trace 1 and moving clockwise upon the
meandric curve, following its “natural �ow,” we obtain a
shuffle of the permutation of the traces and the meandric
permutation, see Figure 2 where the circled elements are the
traces.

In the general case, we have the shuffle

𝑡𝑡𝑖𝑖 = 𝜏𝜏𝑖𝑖 (1) 𝐵𝐵
𝑖𝑖
1𝜏𝜏𝑖𝑖 (2) 𝐵𝐵

𝑖𝑖
2 ⋯𝜏𝜏𝑖𝑖 (𝜀𝜀 (𝑖𝑖)) 𝐵𝐵

𝑖𝑖
𝜀𝜀𝜀𝜀𝜀𝜀 (4)

with 𝜏𝜏𝑖𝑖(1)=1  , 𝜏𝜏𝑖𝑖(2),… , 𝜏𝜏𝑖𝑖(𝜀𝜀𝜀𝜀𝜀𝜀𝜀 being the traces of the
meander at 𝑖𝑖 and 𝐵𝐵𝑖𝑖1, 𝐵𝐵

𝑖𝑖
2,… , 𝐵𝐵𝑖𝑖𝜀𝜀𝜀𝜀𝜀𝜀 the parts of consecutive

elements of the meandric permutation 𝜇𝜇, lying between
consecutive traces, called blocks of the meander; that is, the
block 𝐵𝐵𝑖𝑖𝑘𝑘, 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 , is the set of the consecutive elements of
the permutation 𝜇𝜇, which are lying between the traces 𝜏𝜏𝑖𝑖(𝑘𝑘𝑘
and 𝜏𝜏𝑖𝑖(𝑘𝑘 𝑘𝑘𝑘 . ese two traces are called the “entrance” trace
and the “exit” trace of the block, respectively, while the shuffle
𝑡𝑡𝑖𝑖 is called �o� of the meander from the trace (1) of the 𝑖𝑖-line,
or for simplicity 𝑖𝑖-�o�.

For every 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 , 𝜏𝜏𝑖𝑖(𝑘𝑘𝑘𝑘𝑘
𝑖𝑖
𝑘𝑘𝜏𝜏𝑖𝑖(𝑘𝑘 𝑘𝑘𝑘  corresponds to the

part of the meandric curve starting from the trace 𝜏𝜏𝑖𝑖(𝑘𝑘𝑘 and
ending at the trace 𝜏𝜏𝑖𝑖(𝑘𝑘 𝑘𝑘𝑘 , which we denote by 𝑐𝑐𝑖𝑖𝑘𝑘. If 𝑘𝑘 is
odd (resp., even), then this curve lies on the le (resp., right)
of the 𝑖𝑖-line. In Figure 1, we denote the curve 𝑐𝑐𝑖𝑖𝑘𝑘 by (𝑘𝑘𝑘.

3. Simple Meanders and Compression

Let 𝜇𝜇 𝜇 𝜇2𝑛𝑛 and its �ow 𝑡𝑡𝑖𝑖 = 𝜏𝜏𝑖𝑖(1)𝐵𝐵
𝑖𝑖
1𝜏𝜏𝑖𝑖(2)𝐵𝐵

𝑖𝑖
2 ⋯𝜏𝜏𝑖𝑖(𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀

𝑖𝑖
𝜀𝜀𝜀𝜀𝜀𝜀.

To each block 𝐵𝐵𝑖𝑖𝑘𝑘, 𝑘𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 , we correspond a number 𝑏𝑏𝑖𝑖𝑘𝑘 such
that

𝑏𝑏𝑖𝑖𝑘𝑘 = 󶁆󶁆
1, if 󶙢󶙢𝐵𝐵𝑖𝑖𝑘𝑘󶙢󶙢 is odd,
2, if 󶙢󶙢𝐵𝐵𝑖𝑖𝑘𝑘󶙢󶙢 is even.

(5)
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F 3: A meander of order 9, simple at 𝑖𝑖 𝑖 𝑖.

e set 𝐵𝐵𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵𝑖𝑖1, 𝐵𝐵
𝑖𝑖
1,… , 𝐵𝐵𝑖𝑖𝜀𝜀𝜀𝜀𝜀𝜀} can be partitioned

into three classes 𝐵𝐵1(𝑖𝑖𝑖, 𝐵𝐵2(𝑖𝑖𝑖, and 𝐵𝐵
′
2(𝑖𝑖𝑖, where the set 𝐵𝐵1(𝑖𝑖𝑖

consists of the blocks 𝐵𝐵𝑖𝑖𝑘𝑘 with 𝑏𝑏
𝑖𝑖
𝑘𝑘 = 1 and the set 𝐵𝐵2(𝑖𝑖𝑖 consists

of the blocks 𝐵𝐵𝑖𝑖𝑘𝑘 with 𝑏𝑏𝑖𝑖𝑘𝑘 = 2 and 𝜃𝜃′(𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖(𝑘𝑘𝑘𝑘𝑘𝑘 𝑖𝑖(𝑘𝑘 𝑘 𝑘𝑘,
while the set 𝐵𝐵′2(𝑖𝑖𝑖 consists of the blocks 𝐵𝐵

𝑖𝑖
𝑘𝑘 with 𝑏𝑏

𝑖𝑖
𝑘𝑘 = 2 and

𝜏𝜏𝑖𝑖(𝑘𝑘𝑘𝑘𝑘𝑘 𝑖𝑖(𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘 
′(𝑖𝑖𝑖.

A meander 𝜇𝜇 𝜇 𝜇2𝑛𝑛 is called simple at 𝑖𝑖 (i.e., simple
referring to the 𝑖𝑖-line) if |𝐵𝐵𝑖𝑖𝑘𝑘| ≤ 2, 𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘. Hence, every
block of the sets 𝐵𝐵1(𝑖𝑖𝑖 (resp., 𝐵𝐵2(𝑖𝑖𝑖, 𝐵𝐵

′
2(𝑖𝑖𝑖) has exactly one

element (resp., two elements). We notice that the following
necessary and sufficient condition holds true.

A meander is simple at 𝑖𝑖 if and only if every triple of
consecutive terms of its permutation contains elements from
both of the sets {1, 2,… , 𝑖𝑖𝑖 and {𝑖𝑖 𝑖𝑖𝑖  𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   .

For example, the meander of Figure 3 is simple at 𝑖𝑖 𝑖 𝑖.
We note that a meander can be simple at more than one

point. For example, the meander 𝜇𝜇 𝜇𝜇  𝜇 𝜇 𝜇 𝜇 𝜇 is simple at
𝑖𝑖 𝑖 𝑖 and 𝑖𝑖 𝑖 𝑖.

Let 𝜇𝜇 𝜇 𝜇2𝑛𝑛 be a meander that is not simple at 𝑛𝑛. Further
on, we will study every meander according to its 𝑛𝑛-line, so for
simplicity we omit the index 𝑛𝑛 from the notation. Let 𝐵𝐵𝐵𝐵𝐵𝐵 𝐵
{𝐵𝐵1, 𝐵𝐵2,… , 𝐵𝐵2𝜈𝜈} be its already de�ned set of blocks, where
2𝜈𝜈 𝜈𝜈𝜈𝜈𝜈𝜈𝜈  and the blocks 𝐵𝐵𝑘𝑘, for 𝑘𝑘 𝑘 𝑘𝑘1 ={ 1, 3,… , 2𝜈𝜈 𝜈 𝜈𝜈
(resp., 𝑘𝑘 𝑘 𝑘𝑘2 ={ 2, 4,… , 2𝜈𝜈𝜈), are the ones placed at the le
(resp., right) of the 𝑛𝑛-line. Each block 𝐵𝐵𝑘𝑘 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵 lies between
the trace 𝜏𝜏𝜏𝜏𝜏𝜏 and the trace 𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏   of the �ow 𝑡𝑡.

We denote by 𝛾𝛾𝑘𝑘, 𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘, the closed interval of [2𝜈𝜈𝜈
with ends the traces 𝜏𝜏𝜏𝜏𝜏𝜏, 𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏  . Given a pair of blocks
𝐵𝐵𝑘𝑘, 𝐵𝐵𝜆𝜆 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵, 𝑘𝑘𝑘𝑘𝑘𝑘   𝑘𝑘1 or 𝑘𝑘𝑘𝑘𝑘𝑘   𝑘𝑘2, with 𝛾𝛾𝜆𝜆 ⊂ 𝛾𝛾𝑘𝑘, then the
block 𝐵𝐵𝜆𝜆 is called internal of the block 𝐵𝐵𝑘𝑘, and the block 𝐵𝐵𝑘𝑘 is

called external to the block 𝐵𝐵𝜆𝜆. We can easily deduce that the
number of the internal blocks of a block 𝐵𝐵𝑘𝑘 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵 is equal to
(1/2)(|𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏      .

If we replace the blocks 𝐵𝐵𝑘𝑘, 𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘, of the meander 𝜇𝜇
by blocks having one element (resp., two elements) whenever
𝑏𝑏𝑘𝑘 = 1 (resp., 𝑏𝑏𝑘𝑘 = 2), then we obtain a meander 𝜇𝜇
of order 𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑏𝑏𝑘𝑘 (since its blocks have one
or two elements, corresponding to crossing points with the
horizontal line) and simple at 𝑢𝑢 𝑢𝑢 𝑘𝑘𝑘𝑘𝑘1 𝑏𝑏𝑘𝑘 (counting the
points of intersection with the horizontal line to the le of
the 𝑛𝑛-line).

e result of the above replacement is the set of blocks
𝐵𝐵𝐵𝐵𝐵𝐵 𝐵 𝐵𝐵𝐵1, 𝐵𝐵2,… , 𝐵𝐵2𝜈𝜈}, where 𝐵𝐵𝑘𝑘 = 𝐵𝐵𝑢𝑢𝑘𝑘 for simplicity. e
set𝐵𝐵𝐵𝐵𝐵𝐵 is partitioned into the classes𝐵𝐵1(𝑢𝑢𝑢,𝐵𝐵2(𝑢𝑢𝑢, and𝐵𝐵

′
2(𝑢𝑢𝑢

corresponding to the classes𝐵𝐵1(𝑛𝑛𝑛,𝐵𝐵2(𝑛𝑛𝑛, and𝐵𝐵
′
2(𝑛𝑛𝑛 of the set

𝐵𝐵𝐵𝐵𝐵𝐵.
When we put a dash upon any existing notation, we refer

to the elements of the deduced simple meander 𝜇𝜇. We easily
obtain that

(i) 𝑢𝑢𝑢𝑢𝑢  are of the same parity,

(ii) 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀  , 𝜃𝜃𝜃𝜃𝜃𝜃𝜃  𝜃𝜃𝜃𝜃𝜃𝜃, 𝜃𝜃
′
(𝑢𝑢𝑢𝑢𝑢𝑢  ′(𝑛𝑛𝑛, 𝑏𝑏𝑘𝑘 = 𝑏𝑏𝑘𝑘,

(iii) if 𝐵𝐵𝑘𝑘 ∈ 𝐵𝐵2(𝑛𝑛𝑛 (resp. 𝐵𝐵𝑘𝑘 ∈ 𝐵𝐵
′
2(𝑛𝑛𝑛) and |𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏

1, then its corresponding block 𝐵𝐵𝑘𝑘 ∈ 𝐵𝐵2(𝑢𝑢𝑢 (resp.,
𝐵𝐵𝑘𝑘 ∈ 𝐵𝐵

′
2(𝑢𝑢𝑢) contains one short pair of 𝐿𝐿 (resp., 𝑈𝑈). If

𝐵𝐵𝑘𝑘 ∈ 𝐵𝐵1(𝑛𝑛𝑛, then its corresponding block 𝐵𝐵𝑘𝑘 ∈ 𝐵𝐵1(𝑢𝑢𝑢
is the pair {𝜏𝜏𝜏𝜏𝜏𝜏, 𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏  .

e pair (𝜇𝜇𝜇𝜇𝜇𝜇  is called central compression or simply
compression of the meander 𝜇𝜇. e simple at 𝑢𝑢 meander 𝜇𝜇
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µ = 1 28 27 2 3 12 13 26 25 22 21 14 11 8 17 16 9 10 15 18 19 20 7 6 23 24 5 4

(10) (9) (8) (7)

(4) (5) (6) (3) (2) (1)

1 | 28 27 | 2 3 12 13 | 26 25 22 21 | 14 11 8 | 17 16 | 9 10 | 15 18 19 20 | 7 6 | 23 24 | 5 4

5 4 1 | 28 27 | 2 3 12 13 | 26 25 22 21 | 14 11 8 | 17 16 | 9 10 | 15 18 19 20 | 7 6 | 23 24 |

F 4

has as same invariants with the meander 𝜇𝜇 the traces and the
�ow of curves. For example, the compression of the meander
𝜇𝜇 of Figure 1 is the pair (𝜇𝜇𝜇 𝜇𝜇𝜇, where 𝜇𝜇 is the meander of
Figure 3 and 𝑢𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢.

4. The Flow 𝑡𝑡

e traces and the blocks of the �ow 𝑡𝑡 of a meander 𝜇𝜇 can
be found from its permutation with the help of the subsets
𝑈𝑈𝑈𝑈𝑈𝑈 𝑈 𝑈𝑈 and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿  𝐿𝐿, containing the pairs {𝜇𝜇𝜇𝜇𝜇𝜇𝜇 𝜇𝜇𝜇𝜇𝜇 𝜇𝜇 𝜇𝜇
satisfying the relation

min 󶁁󶁁𝜇𝜇 (𝑖𝑖) , 𝜇𝜇 (𝑖𝑖𝑖𝑖  )󶁑󶁑 ≤ 𝑛𝑛 𝑛 𝑛𝑛𝑛 󶁁󶁁𝜇𝜇 (𝑖𝑖) , 𝜇𝜇 (𝑖𝑖𝑖𝑖  )󶁑󶁑 . (6)

ese pairs have one element belonging to the set
{1,2, … ,𝑛𝑛𝑛  and the other belonging to the set {𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛   
2,… ,2𝑛𝑛𝑛 , with |𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈  𝑈𝑈𝑈𝑈𝑈𝑈 and |𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  ′(𝑛𝑛𝑛.

According to the absolute value |𝜇𝜇𝜇𝜇𝜇𝜇 𝜇 𝜇𝜇𝜇𝜇𝜇 𝜇𝜇 𝜇𝜇, we place
the elements of 𝐿𝐿𝐿𝐿𝐿𝐿 in decreasing order, while of 𝑈𝑈𝑈𝑈𝑈𝑈 in
increasing order. If 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈 𝑈𝑈, then we correspond the
numbers 𝜃𝜃′(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛   𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 to the ordered pairs of𝑈𝑈𝑈𝑈𝑈𝑈,
and the numbers 1,2, … ,𝜃𝜃 ′(𝑛𝑛𝑛 to the ordered pairs of 𝐿𝐿𝐿𝐿𝐿𝐿.
If 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿   (resp., 𝑈𝑈𝑈𝑈𝑈𝑈𝑈  𝑈), then we correspond to the
ordered pairs of 𝑈𝑈𝑈𝑈𝑈𝑈 (resp., 𝐿𝐿𝐿𝐿𝐿𝐿) the numbers 1,2, … ,2𝜈𝜈 .
It is obvious that the previous numbers coincide with their
corresponding traces.

In order to start the 𝑛𝑛-�ow 𝑡𝑡 from the �rst trace, we choose
the pair {𝜇𝜇𝜇𝜇𝜇𝜇𝜇 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇which corresponds to the trace 𝜏𝜏𝜏𝜏𝜏𝜏
1. If𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 , then this pair is the outer pair of𝐿𝐿𝐿𝐿𝐿𝐿with 𝜇𝜇𝜇𝜇𝜇𝜇
1) odd and less than 𝜇𝜇𝜇𝜇𝜇𝜇. If 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  , then this is the pair of
𝑈𝑈𝑈𝑈𝑈𝑈 with the smallest value of |𝜇𝜇𝜇𝜇𝜇𝜇 𝜇 𝜇𝜇𝜇𝜇𝜇 𝜇𝜇 𝜇𝜇.

For example, for the meander of Figure 1, we have that

𝑈𝑈(14) = {{1,28 } , {2,2 7} , {13,2 6} , {14,21 }} ,

𝐿𝐿 (14) = {{5,2 4} , {6,2 3} , {7,2 0} , {8,1 7} , {9,1 6} , {10,1 5}} .
(7)

Hence, we choose the pair {5,2 4} of 𝐿𝐿𝐿𝐿𝐿𝐿 to correspond to
the trace 𝜏𝜏𝜏𝜏𝜏𝜏𝜏  .

Since the permutation 𝜇𝜇 is cyclic, we do not change the
notation, that is,

𝜇𝜇 𝜇 𝜇𝜇 (𝑧𝑧𝑧𝑧  )⋯𝜇𝜇 (1) 𝜇𝜇 (2)⋯𝜇𝜇 (𝑧𝑧) , (8)

which also de�nes a partition of [2𝑛𝑛𝑛with classes including its
consecutive elements, which belong, respectively, to the sets
{1,2, … ,𝑛𝑛𝑛  and {𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛       . is partition gives the
2𝜈𝜈 classes of the set 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  𝐵𝐵1, 𝐵𝐵2,… , 𝐵𝐵2𝜈𝜈}.

�ractically, at �rst we partition the permutation of the
meander into classes including the consecutive terms of 𝜇𝜇,
which are less or equal to (resp., greater than) 𝑛𝑛.us, we have
the partition of 𝜇𝜇 into blocks, putting at the beginning the last
remaining elements and marking the traces.

For example, for the meander of Figure 1 we have
Figure 4.

e placement of the traces follows the change of parity
of the elements of the permutation, if we have an odd (resp.,
even) element followed by an even (resp., odd) element, then
their intermediate trace is lying above (resp., beneath) the
hori�ontal line. From the above partition, we obtain the �ow�
see Figure 2.

e meanders of the compression of the set ℳ2𝑛𝑛 are
partitioned into classes, with elements belonging to the sets
ℳ2,ℳ4,… ,ℳ2𝑛𝑛.

In the methods of generating planar permutations [7], we
can also include the way to �nd the blocks of meanders, their
corresponding numbers 𝑏𝑏𝑘𝑘, and consequently the orders of
the meanders of their compressions.

ese meanders can be used as generators for the reverse
problem of “decompression.” We can use them to extend a
meander 𝜇𝜇 𝜇 𝜇2𝑛𝑛 simple at 𝑢𝑢 to all possible meanders 𝜇𝜇 𝜇
ℳ2𝑛𝑛, with 𝑛𝑛 𝑛 𝑛𝑛.

Table 1 presents the cardinalities of those classes for 𝑛𝑛𝑛
2, 3,… ,1 0, without taking into account the corresponding 𝑢𝑢-
line.

e �eros of the �rst (resp., second) column verify the fact
that if the order 𝑛𝑛 of the meander is even (resp., odd), then
there do not exist meanders of order 𝑛𝑛 with compression of
order 1 (resp., 2). We can easily prove that the values of the
�rst column express that there exist |ℳ(𝑛𝑛𝑛𝑛𝑛𝑛𝑛|

2 meanders of
order 𝑛𝑛 with compression of order 1. For meanders of larger
order, we should try to calculate the number of different
blocks of given orders.

5. Determining the Compression

We shall �nd the compression of ameander 𝜇𝜇with the help of
its 𝑛𝑛-�ow 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡 𝐵𝐵1𝜏𝜏𝜏𝜏𝜏𝐵𝐵2 ⋯𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝐵𝐵2𝜈𝜈. We recall that each
block 𝐵𝐵𝑘𝑘 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵 consists of one or two elements. Obviously,
the elements of 𝐵𝐵𝑘𝑘 belong to the sets {1,2, … ,𝑢𝑢𝑢  (resp., {𝑢𝑢 𝑢
1,𝑢𝑢  𝑢 𝑢𝑢𝑢𝑢  𝑢𝑛𝑛𝑛), when 𝑘𝑘 𝑘 𝑘𝑘1 (resp., 𝑘𝑘 𝑘 𝑘𝑘2). e relative
position of these points de�nes a relation of preceding for the
blocks of the set 𝐵𝐵𝐵𝐵𝐵𝐵; hence, the block 𝐵𝐵𝑝𝑝 precedes the block
𝐵𝐵𝑞𝑞 (𝐵𝐵𝑝𝑝 ≺ 𝐵𝐵𝑞𝑞), iffmin𝐵𝐵𝑝𝑝 < min𝐵𝐵𝑞𝑞.
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T 1: e partition of the setℳ2𝑛𝑛 into the classesℳ2𝑛𝑛.

2𝑛𝑛 𝑛 𝑛𝑛𝑛 2 4 6 8 10 12 14 16 18 20 Total
4 0 2 2
6 4 0 4 8
8 0 18 16 8 42
10 64 0 144 24 30 262
12 0 392 616 480 268 72 1828
14 1764 0 6084 1760 3218 712 282 13820
16 0 13122 28000 27412 25040 12340 4220 820 110954
18 68644 0 304704 115200 261380 99664 66224 14512 3130 933458
20 0 578888 1491968 1684384 1980960 1315572 737944 284028 68892 10224 8152860
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is relation is de�ned by the following conditions.

(a) If 𝐵𝐵𝑝𝑝 ∈ 𝐵𝐵1(𝑛𝑛𝑛, 𝐵𝐵𝑞𝑞 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵, with 𝛾𝛾𝑞𝑞 ⊂ 𝛾𝛾𝑝𝑝 and 𝑝𝑝𝑝 𝑝𝑝𝑝  𝑝𝑝1
(resp., 𝑝𝑝𝑝 𝑝𝑝𝑝  𝑝𝑝2), then 𝐵𝐵𝑝𝑝 ≺ 𝐵𝐵𝑞𝑞 (resp., 𝐵𝐵𝑞𝑞 ≺ 𝐵𝐵𝑝𝑝), since
the block 𝐵𝐵𝑞𝑞 is internal of the block 𝐵𝐵𝑝𝑝.

(b) If 𝐵𝐵𝑝𝑝 ∈ 𝐵𝐵2(𝑛𝑛𝑛 𝑛 𝑛𝑛
′
2(𝑛𝑛𝑛, 𝐵𝐵𝑞𝑞 ∈ 𝐵𝐵1(𝑛𝑛𝑛, with 𝛾𝛾𝑞𝑞 ∩ 𝛾𝛾𝑝𝑝 = ∅

and 𝑝𝑝𝑝 𝑝𝑝𝑝  𝑝𝑝1 (resp., 𝑝𝑝𝑝 𝑝𝑝𝑝  𝑝𝑝2), then 𝐵𝐵𝑝𝑝 ≺ 𝐵𝐵𝑞𝑞 (resp.,
𝐵𝐵𝑞𝑞 ≺ 𝐵𝐵𝑝𝑝), since this is imposed by the nature of the
meander.

(c) If 𝐵𝐵𝑝𝑝, 𝐵𝐵𝑞𝑞 ∈ 𝐵𝐵2(𝑛𝑛𝑛 𝑛 𝑛𝑛′2(𝑛𝑛𝑛, with 𝛾𝛾𝑞𝑞 ⊂ 𝛾𝛾𝑝𝑝 and 𝑝𝑝𝑝 𝑝𝑝𝑝
𝐼𝐼1 or 𝑝𝑝𝑝 𝑝𝑝𝑝  𝑝𝑝2, then 𝐵𝐵𝑝𝑝 ≺ 𝐵𝐵𝑞𝑞, since the block 𝐵𝐵𝑞𝑞 is
internal of the block 𝐵𝐵𝑝𝑝.

(d) If 𝐵𝐵𝑝𝑝, 𝐵𝐵𝑞𝑞 ∈ 𝐵𝐵2(𝑛𝑛𝑛, with 𝛾𝛾𝑞𝑞 ∩ 𝛾𝛾𝑝𝑝 = ∅,min 𝛾𝛾𝑞𝑞 < min 𝛾𝛾𝑝𝑝
and 𝑝𝑝𝑝 𝑝𝑝𝑝  𝑝𝑝1 (resp., 𝑝𝑝𝑝 𝑝𝑝𝑝  𝑝𝑝2), then 𝐵𝐵𝑝𝑝 ≺ 𝐵𝐵𝑞𝑞 (resp.,
𝐵𝐵𝑞𝑞 ≺ 𝐵𝐵𝑝𝑝), since this is imposed by the nature of the
meander. e case where 𝐵𝐵𝑝𝑝, 𝐵𝐵𝑞𝑞 ∈ 𝐵𝐵

′
2(𝑛𝑛𝑛 is similar.

� Obviously, the above results do not cover the cases of
two blocks, the one belonging to the set𝐵𝐵2(𝑛𝑛𝑛, and the
other to the set 𝐵𝐵′2(𝑛𝑛𝑛, where none of them is internal
to the other. In order to obtain a unique solution, we
have to make the following choice.

(e) If 𝐵𝐵𝑝𝑝 ∈ 𝐵𝐵2(𝑛𝑛𝑛, 𝐵𝐵𝑞𝑞 ∈ 𝐵𝐵
′
2(𝑛𝑛𝑛, withmin󵰔󵰔𝐵𝐵𝑝𝑝 < min󵰓󵰓𝐵𝐵𝑞𝑞 and

𝑝𝑝𝑝 𝑝𝑝𝑝  𝑝𝑝1 or 𝑝𝑝𝑝 𝑝𝑝𝑝  𝑝𝑝2, then 𝐵𝐵𝑝𝑝 ≺ 𝐵𝐵𝑞𝑞 (resp., 𝐵𝐵𝑞𝑞 ≺ 𝐵𝐵𝑝𝑝),
where󵰓󵰓𝐵𝐵𝑘𝑘 = 𝑏𝑏𝑘𝑘𝑘𝑏𝑏𝑘𝑘𝑘𝑘, 𝑏𝑏𝑘𝑘𝑘 is the �rst element of 𝐵𝐵𝑘𝑘, 𝑏𝑏𝑘𝑘𝑘𝑘
is the last element of 𝐵𝐵𝑘𝑘 and 𝜔𝜔𝜔  𝜔𝜔𝜔𝑘𝑘|.

From the above conditions (a)–(e), we obtain an ordering
for the blocks of the set 𝐵𝐵𝐵𝐵𝐵𝐵, concerning their relation of
preceding, that is, 𝐵𝐵𝑟𝑟𝑟𝑟𝑟, 𝐵𝐵𝑟𝑟𝑟𝑟𝑟,… , 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟.

For example, applying the above conditions for the
meander of Figure 1, we obtain that 𝐵𝐵1 ≺ 𝐵𝐵3 ≺ 𝐵𝐵9 ≺ 𝐵𝐵5 ≺ 𝐵𝐵7
and 𝐵𝐵8 ≺ 𝐵𝐵6 ≺ 𝐵𝐵4 ≺ 𝐵𝐵10 ≺ 𝐵𝐵2. Indeed, 𝐵𝐵1 ≺ 𝐵𝐵3, 𝐵𝐵5, 𝐵𝐵7, 𝐵𝐵9
due to the condition (a), 𝐵𝐵3 ≺ 𝐵𝐵5 due to the condition (b),
𝐵𝐵3 ≺ 𝐵𝐵9 due to the condition (e), 𝐵𝐵5 ≺ 𝐵𝐵7 due to the
condition (a), and �nally 𝐵𝐵9 ≺ 𝐵𝐵5 due to the condition (b).
Similarly, we obtain the ordering for the rest of the blocks.
Hence, 𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟          .

In the general case, the ordering is deduced from a
Hamiltonian path of the directed graphs with vertices the
elements of the set 𝐼𝐼1 (resp., 𝐼𝐼2) and arcs the pairs (𝑝𝑝𝑝 𝑝𝑝𝑝𝑝  𝑝𝑝21
(resp., (𝑝𝑝𝑝 𝑝𝑝𝑝𝑝  𝑝𝑝22) such that 𝐵𝐵𝑝𝑝 ≺ 𝐵𝐵𝑞𝑞.

We note that𝐵𝐵𝑝𝑝 ≺ 𝐵𝐵𝑞𝑞 iff 𝑟𝑟
−1(𝑝𝑝𝑝𝑝𝑝𝑝  −1(𝑞𝑞𝑞, given that 𝑟𝑟−1(𝑘𝑘𝑘

de�nes the position of the block 𝐵𝐵𝑘𝑘 at the total order of 𝐵𝐵𝐵𝐵𝐵𝐵.
For our example, we have that 𝑟𝑟−1 = 1 10 2 8 4 7 5 6 2 9.

�ractically, the whole procedure of �nding the compres�
sion can be presented in a table, where the second row refers
to the �ow 𝑡𝑡, which includes all the elements necessary for the
conditions (a)–(e), while from their application we deduce
in the third row the total order of the set 𝐵𝐵𝐵𝐵𝐵𝐵. e last
row refers to the �ow 𝑡𝑡 by assigning the numbers of the set
[2𝑛𝑛𝑛 to their corresponding blocks of 𝐵𝐵𝐵𝐵𝐵𝐵, according to the
following remarks for the blocks 𝐵𝐵𝑘𝑘 = 𝑏𝑏𝑘𝑘𝑘𝑏𝑏𝑘𝑘𝑘.

(i) eir elements have the same ordering (ascending or
descending) with those of 𝐵𝐵𝑘𝑘.

(ii) When their elements are not consecutive, then |𝑏𝑏𝑘𝑘𝑘 −
𝑏𝑏𝑘𝑘𝑘| = |𝜏𝜏𝜏𝜏𝜏𝜏𝜏  𝜏𝜏𝜏𝜏𝜏 𝜏 𝜏𝜏𝜏.

For example, for the meander of Figure 1, we have Figure
5. Hence, 𝜇𝜇 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇                 13 14,
with 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢            .
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6. Conclusions

We have introduced the compression of a meander, directly
with the use of blocks of its permutation. e uniqueness of
the compression is established by the ordering of the blocks,
which is deduced according to its �ow.

Various open questions can arise by the above meanders,
when they are used as representatives of large classes of
meanders as shown in Table 1. Yet, the main open problem
is the reverse procedure of compression. e decompression
of a meander to others of larger order having the same traces,
number of cuttings, and �ow seems to be the �nal step for
integrating the procedures of cutting and compressingmean-
ders, and in parallel being very promising for enumeration
results and applications in physical phenomena.
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