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Two different controlmethods, namely, adaptive slidingmode control and impulse damper, are used to control the chaotic vibration
of a block on a belt system due to the rate-dependent friction. In the first method, using the sliding mode control technique and
based on the Lyapunov stability theory, a sliding surface is determined, and an adaptive control law is established which stabilizes
the chaotic response of the system. In the second controlmethod, the vibration of this system is controlled by an impulse damper. In
this method, an impulsive force is applied to the system by expanding and contracting the PZT stack according to efficient control
law. Numerical simulations demonstrate the effectiveness of both methods in controlling the chaotic vibration of the system. It is
shown that the settling time of the controlled system using impulse damper is less than that one controlled by adaptive slidingmode
control; however, it needs more control effort.

1. Introduction

There exist a lot of works on the theory of friction-driven
oscillations in the literature, for example, influence of the belt
speed on the system response [1], dynamics of three-block
mechanical system with dry friction [2], investigation on the
geometry of chaotic attractors for dry friction oscillators [3,
4], influence of parametric and external excitations on a dry
friction oscillator dynamics [5], and the dynamic behavior of
friction-driven oscillator with an impact damper [6].

The characteristics of the friction force between two
surfaces are quite complex and depend on many parameters
such as, normal pressure, slip velocity, surface, and material
properties [7]. The friction-actuated oscillation is strongly
nonlinear, and discontinuous and has nonsmooth process,
which is a source of instabilities generating stick-slip, chatter,
squeal, and chaos [8, 9]. LuGre friction law is one of the most
widely used friction laws which models rate dependency of
the friction force by one additional inner variable [10]. In
[11], LuGre friction model is applied to the single degree of
freedom friction-induced oscillator, and it is shown that the
oscillations of this system turned out to be chaotic for most
parameter combinations.

Many active control methods have been presented for
control of chaotic systems such as nonlinear feedback control
[12], drive-response synchronization method [13], adaptive
control method [14, 15], variable structure (or sliding mode)
control method [16–19], back stepping control method [20,
21], fractional control [22], impulsive control [23], and
adaptive sliding mode control [24].

Chatterjee presented a novel method for controlling the
vibration, called impulse damper [25]. In this method, mass
loaded PZT stack is attached to the system, and applying
suitable voltage to the PZT stack leads to impulsive force
which can control the system by setting control parameters
correctly. This technique was used to control a nonlinear
friction-driven oscillator [26] and to control the chaotic
vibration of friction-driven oscillator with coulomb friction
model [27, 28].

In the present study, two different control methods,
namely, impulse damper and adaptive sliding mode control,
are used to control the chaotic vibration of a single degree
of freedom system subjected to the rate-dependent friction.
To control the chaotic vibration of this system using adaptive
sliding mode control, an adaptive control law is established
which stabilizes the chaotic response of the system.
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Since chaotic systems are sensitive to the initial con-
ditions, applying appropriate impulses at suitable positions
causes the system to maintain its path within a specified
bound. This was our motivation to investigate the effective-
ness of impulse damper to suppress the chaotic behavior
of the system. The effectiveness of both methods will be
investigated in following sections.

2. Mathematical Model

In this section, the mathematical modeling of uncontrolled
and controlled system, using adaptive sliding mode control
and impulse damper is presented.

2.1. Friction Mathematical Model. Experimental investiga-
tions, especially at low sliding speeds, have shown that
friction laws which give the friction force as an algebraic
function of the underlying parameters (i.e., static friction
laws) do not capture all of the observable frictional effects.
Among the additional effects is the presliding displacement
due to lateral contact elasticity, the increase of static friction
with time due to diffusion processes on the interface, and
frictional lag in sliding, which stands for the effect of the
friction force lagging in time behind changes in relative
velocity or normal load. To model the effects, the so-called
dynamic friction models have been proposed. The following
investigation is based on one of the most widespread models,
the LuGre model [10], which allows a comparatively simple
representation of the dynamic effects. Based on this model,
the friction force is given by
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Function 𝑔(𝑥) is given as follows:
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where V
𝑠
is the speed of belt. In this research, sliding block

on a rigid belt moving with a constant velocity as shown in
Figure 1 is considered.
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Figure 1: The structure of the block on a rigid belt.

Using LuGre friction, the equations of motion are
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where the dot denotes differentiation with respect to 𝑡.
Introducing the new parameter 𝜏 = 𝜔

𝑛
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the following relations will be concluded.
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It should be noted that the dimension of (6) and (7) is length.
In these equations, the prime denotes differentiation with
respect to 𝜏, and the values of parameters are set as follows.

𝑚 = 1 kg, 𝑘 = 200N/m, 𝜎
0

= 300N/m, 𝜎
1

=

100N/m, 𝐹
𝑐
= 2N, 𝐹

𝑠
= 8N, V

𝑠
= 0.5m/s, 𝐷 = 0.01.

Here, a relative damping measure 𝐷 = (𝑐 + 𝜎
2
)/2√𝑘𝑚

has been introduced to combine the effects of linear damping
from both structure and friction.

It is shown that for these values of parameters, the system
has chaotic vibration [11].

2.2. Adaptive SlidingMode Controller (ASMC) Design. In this
section, the adaptive sliding mode control is used to control
the chaotic vibration. The controlled chaotic system can be
rewritten as follows:
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It is desired that 𝑥 be adjusted to equilibrium state 𝑥
0
, where
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0
is a given constant. The error states are defined as
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To guarantee the stability of the sliding mode, a switching
surface 𝑠(𝑡) in the error space is defined as follows:

𝑠 (𝑡) = 𝑒
1
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Aswell known, when the systemoperates in the slidingmode,
it satisfies the following [29]:

𝑠 (𝑡) = 𝑠

(𝑡) = 0. (11)

Therefore, the following sliding mode dynamics can be
obtained as
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Using (13), (12) can be rewritten as
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The controller is designed as
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The proposed adaptive control scheme will guarantee the
global asymptotic stability of the error and is shown in the
following.

2.3. Stability Analysis. In the following, we analyze the
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Solving (16) leads to 𝛾 = 𝑒−𝜏 + 𝜉. Substituting (16) in (17), the
following is obtained:
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2.4. Mathematical Model of Impulse Damper. In this section,
for the purpose of controlling and suppressing vibration
of the system, an impulse damper is used (Figure 2). The
basic principle of the impulse damper is to generate suitable
impulsive force by quickly expanding or contracting the
PZT stack actuator. The stack is expanded by applying a
suitable positive voltage at the instants of the displacement
zero crossing with a positive velocity. In addition, a negative
voltage is applied to contract the stack when the zero crossing
takes place with a negative velocity. In fact, damping is
generated by velocity feedback.

Applied force by impulse damper can be written as 𝐹
𝑎
+
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𝑝
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𝑝
, where 𝑋
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is the elongation of PZT stack and 𝐹
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the force produced by the actuator. 𝐹
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can be found from the

electromechanical characteristics of the PZT actuator which
is given by the following:
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where 𝑄
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, and CPZT represent charge, elonga-

tion, voltage, force, and the effective capacitance of the PZT
actuator, respectively. 𝑑
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is the piezoelectric constant of each
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Figure 2: PZT stack attached to the system as controller.

wafer, and 𝑛 is the total number of wafers in the actuator. 𝑘
𝑝

−1

is the compliance of the actuator in short circuit condition
and is given by 𝐾

𝑝
= 𝐸𝐴/𝑙, where 𝐸 is the elastic modulus,

𝐴 is the cross-sectional area, and 𝑙 is the length of the
actuator. From (22), the following expression is obtained for
the actuator force:

𝐹
𝑎
= 𝑛𝑑
33
𝐾
𝑝
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𝑝
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𝑝
𝑋
𝑝
. (23)

Employing the previous equation and adding it to the right
side of (6) as an actuation force which is applied to the system
by the impulse damper, one can conclude that

𝑥

+

𝑐

√𝑘𝑚

𝑥

+ 𝑥 =

𝜎
0

𝑘
𝑧 +

𝜎
1

√𝑘𝑚

𝑧

+
𝜎
2

𝑘
(V − 𝜔

𝑛
𝑥

)

+ 𝛼𝑦 + ℎ
𝑒
𝑦

−

𝜆
2

1 − 𝜆2
𝛼𝑉.

(24)

The equation of motion of the added mass can be written as
[25]
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Depending upon the problem, the reference displacement
𝑥
0
can be suitably defined. The following values are chosen

for the previous mentioned parameters in this study: 𝑟
𝑚
=

0.1, 𝜆 = 0.7, ℎ
𝑝
= 25, 𝑉

𝑚
= 4, 𝜀 = 0.003, and 𝛼 = 100.

The proposed control law is mathematically recast as [25]
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𝑚
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𝜀

2
,
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𝑚

𝜀
𝑋 |𝑋| ≤

𝜀

2
.

(26)

3. Results and Discussion

Equations of this system are solved numerically. For the
numerical analysis, Runge-Kutta’s integration procedure is
employed where the initial condition of system is set as
(𝑥(0), �̇�(0), 𝑧(0)) = (0, 0, 0). Figure 3 shows the time history
of themass block displacement, and Figure 4 shows the phase
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Figure 3: Block displacement of the uncontrolled system.
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Figure 4: Phase plane of the uncontrolled system.

plane of the uncontrolled system. Chaotic dynamics of the
system can be clearly seen in these figures.

In the following, the numerical results are given to
confirm the validity of the proposed adaptive sliding mode
method. In the numerical simulations, 𝜉 is selected as 𝜉 = 1.5,
and the desired response is set at 𝑥

0
= 0.0383 (equilibrium

point). Synchronization error of the state variables is depicted
in Figure 5.

Phase plane of the controlled system has been shown in
Figure 6. As can be seen in this figure, the controlled system
is not chaotic.

The time response of the switching function 𝑠(𝜏) and the
control input 𝑢(𝜏) are shown in Figures 7 and 8, respectively.

For the purpose of indicating the efficacy of the proposed
impulse damper controller, we have examined the system in
two different situations. In the first situation, the controller
is turned on when the system is at origin, and accordingly,
the mass moves towards its equilibrium position at 𝑥 =

0.0383. In the second situation, controller is off for 𝜏 <
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Figure 5: Time response of error states using adaptive sliding mode method.
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Figure 6: Phase plane of the controlled system.

100; therefore, the mass is vibrating chaotically around its
equilibrium position at 𝑥 = 0.0383. At this moment, the
controller is turned on and the effect of the control input on
the behavior of the system is evaluated. After that, to show
the usefulness of the controller, the controller is turned off,
and there is no suppressing signal to damp system vibrations.
Figure 9 shows response of the system controlled by the
impulse damper when the controller is turned on at 𝜏 = 0.
Figure 10 shows applied force by the impulse damper when
the controller is turned on at 𝜏 = 0. Figures 11 and 12 illustrate
the response and control input for the system controlled by
the impulse damper when the controller is turned on at 𝜏 =
100 and is turned off at 𝜏 = 200.
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Figure 7: Time response of the switching function using adaptive
sliding mode method.

In Figure 9, when the controller is turned on at 𝜏 = 0,
response of the system is absolutely fast. The mass reaches
its equilibrium position in a very short time. Although
previously mentioned quick response and short settling time
demonstrate high performance of the controller, it is achieved
at the expense of a high actuating force (shown in Figure 10)
which is applied by the impulse damper. The achieved result
is rational since the mass is at origin and, thus, is far from its
equilibrium position. Therefore, impulse damper controller
applies big impulses to the mass for the purpose of moving
it towards the equilibrium position. In contrast, when the
controller is off for 𝜏 < 100 and thus the chaotic trajectory
enters a small neighborhood of the fixed point𝑥 = 0.0383 (m)
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Figure 8: Time response of the input control using adaptive sliding
mode method.
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Figure 9: Block displacement (controller is turned on at 𝑡 = 0).
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Figure 10: Applied force (controller is turned on at 𝑡 = 0).
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Figure 11: Block displacement (controller is turned on at 𝑡 = 100

and is turned off at 𝑡 = 200).

100 120 140 160 180 200

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

t

Fo
rc

e (
N

)
Control input

Figure 12: Applied force (controller is turned on at 𝑡 = 100 and is
turned off at 𝑡 = 200).

(Figure 10), there is no need for such a high force as in the
previous case and impulses with a short amplitude as shown
in Figure 12 can control the system effectively. In this case,
the distance between the current position of the mass and its
equilibrium position is not as far as the first case. In other
words, the farther (close) the system is to the goal dynamics,
the bigger (small) the weight given to the control effort is.
Feasibility of using impulse damper for controlling the system
is obvious in these figures. As seen in these figures, impulse
damper can damp the vibration of the system absolutely in a
short time.

4. Conclusion

In this paper, chaotic vibration control of a single degree of
freedom oscillator subjected to a LuGre type friction law was
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presented. Two different methods were used to control the
chaos, ASMC, and impulse damper.

For adaptive control of the chaotic vibration of this
system, a switching surface was adopted such that it becomes
easy to ensure the stability of the error dynamics in the
sliding mode. Then, an ASMC was derived to guarantee the
occurrence of the sliding motion. The adaptive laws were
derived in the Lyapunov sense to guarantee the stability of
the controlled system. Furthermore, impulse damperwas also
used for controlling the system.The idea is that, since chaotic
systems are exponentially sensitive to perturbations, careful
choice of even small control perturbations can, after some
time, have a large effect on the trajectory location and can
be used to guide it. In this method, controlled impulses are
generated by expanding and contracting a mass loaded PZT
actuator used between the primary system and the secondary
mass. Numerical results verified the effectiveness of the
proposed methods in controlling the chaotic vibration of the
rate-dependent friction-driven oscillator. It was shown that
impulse damper decreases the settling time of the controlled
system by applying higher control forces in comparison with
ASMC.
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