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In 2005, David Cox and Jerry Shurman proved that the curves they call𝑚𝑚-clovers can be subdivided into 𝑛𝑛 equal lengths (for certain
values of 𝑛𝑛) by origami, in the cases where𝑚𝑚 𝑚 𝑚, 2, 3, and 4. In this paper, we expand their work to include the 6-clover.

1. Historical Background

From antiquity, it was known that regular polygons with 𝑛𝑛
sides could be constructed with compass and (unmarked)
straightedge for 𝑛𝑛 of one of the forms 2𝑘𝑘, 2𝑘𝑘 ⋅ 3, 2𝑘𝑘 ⋅ 5, and
2𝑘𝑘 ⋅ 15. In 1801, Gauss showed that the list could be expanded
to include powers of two times any product of distinct Fermat
primes, primes of the form 2𝑢𝑢 +1. He claimed to have a proof
of the converse statement, but as Pierpont noted ([1], p.79),
he never actually provided it. Pierpont gives an elementary
proof (i.e., without Galois theory) in his paper.

In 1837, the French mathematician Pierre Wantzel
resolved three celebrated ancient mathematical problems
de�nitively, when he proved the impossibility of trisecting
an arbitrary angle, duplicating the cube, or constructing a
regular polygon with 𝑛𝑛 sides for values of 𝑛𝑛 other than those
of Gauss using only a compass and (unmarked) straightedge.

Remarkably, these same constructions can be achieved
by the technique of origami (paper folding). In fact, using
origami, it is also possible to trisect angles, duplicate cubes,
and generally construct roots of cubic equations. is was
observed by Beloch in a publication in 1936 [2]. An expli-
cation of Beloch’s work, including a survey of the history, can
be found in [3].

Alternatively, with amarked straightedge, one can achieve
the same result. Generalizing the notion of construction to
include this or an equivalent tool and using Galois theory [4],
the values of 𝑛𝑛 for which a regular polygon can be constructed
consist of all numbers of the form 𝑛𝑛 𝑛𝑛 𝑎𝑎3𝑏𝑏𝑝𝑝1 ⋯𝑝𝑝𝑛𝑛 where
𝑎𝑎𝑎𝑎𝑎  𝑎 𝑎 and𝑝𝑝1,… , 𝑝𝑝𝑛𝑛 are distinct primes of the form 2𝑢𝑢3𝑣𝑣+1
with 𝑢𝑢, 𝑣𝑣 𝑣𝑣 . Such primes are known as Pierpont primes.

Meanwhile, Abel showed in 1828 that the lemniscate can
also be divided into 𝑛𝑛 pieces of equal length with straightedge
and compass for the same values of 𝑛𝑛 as for the circle. See [5]
for a modern proof of this result, including the converse; see
also [6].

e 2005 paper of Cox and Shurman [7] expands the
family of divisible curves to include the clover. e 𝑚𝑚-clover
is the plane curve de�ned by the polar equation:

𝑟𝑟𝑚𝑚𝑚𝑚 = cos 󶀤󶀤
𝑚𝑚
2
𝜃𝜃󶀴󶀴 , (1)

where 𝑚𝑚 is a positive integer. is is a subfamily of the
sinusoidal or sinus spirals ([8], p.194). For𝑚𝑚 𝑚 𝑚, the curve is
the cardioid;𝑚𝑚 𝑚 𝑚 is the circle;𝑚𝑚 𝑚 𝑚 is the clover;𝑚𝑚 𝑚 𝑚 is
the Bernoulli lemniscate. In their paper, they prove that these
�rst four curves can be divided into 𝑛𝑛 arcs of equal length by
origami (paper-folding) construction for certain values of 𝑛𝑛,
as follows.

eorem 1 (see [7]). For any 𝑛𝑛, the cardioid can be divided
into 𝑛𝑛 arcs of equal length by straightedge and compass. e
circle can be divided into 𝑛𝑛 equal lengths by origami if and only
if 𝑛𝑛 𝑛𝑛 𝑎𝑎3𝑏𝑏𝑝𝑝1 ⋯𝑝𝑝𝑛𝑛 where 𝑎𝑎, 𝑏𝑏 𝑏𝑏  and 𝑝𝑝1,… , 𝑝𝑝𝑛𝑛 are distinct
Pierpont primes. In the case of the lemniscate, the Pierpont
primes must satisfy 𝑝𝑝𝑖𝑖 = 7 or 𝑝𝑝𝑖𝑖 ≡ 1 (mod 4). e clover
can be divided into 𝑛𝑛 equal lengths by origami if and only if
𝑛𝑛 𝑛𝑛 𝑎𝑎3𝑏𝑏𝑝𝑝1 ⋯𝑝𝑝𝑛𝑛 where 𝑎𝑎, 𝑏𝑏 𝑏𝑏  and 𝑝𝑝1,… , 𝑝𝑝𝑛𝑛 are distinct
Pierpont primes such that 𝑝𝑝𝑖𝑖 = 5, 𝑝𝑝𝑖𝑖 =1 7, or 𝑝𝑝𝑖𝑖 ≡ 1 (mod 3).

ere are only �ve Fermat primes known, but more than
4000 Pierpont primes have been found; as of June 2012, the
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largest known Pierpont prime is 3 ⋅ 27033641 + 1, which has
2117338 digits. ([9]; 16th on the list of largest primes.) See
[10] for up-to-date information.

In this paper, we observe that these results on origami
construction can be extended to the case 𝑚𝑚 𝑚 𝑚, the trefoil.
See Figure 1.

eorem 2. e trefoil can be divided into 𝑛𝑛 equal lengths by
origami if and only if 𝑛𝑛 𝑛𝑛 𝑎𝑎3𝑏𝑏𝑝𝑝1 ⋯𝑝𝑝𝑛𝑛 where 𝑎𝑎, 𝑏𝑏 𝑏 𝑏 and
𝑝𝑝1,… , 𝑝𝑝𝑛𝑛 are distinct Pierpont primes such that 𝑝𝑝𝑖𝑖 = 5, 𝑝𝑝𝑖𝑖 =
17, or 𝑝𝑝𝑖𝑖 ≡ 1 (mod 3).

Cox and Shurman de�ne the m-clover function 𝜑𝜑𝑚𝑚 by
𝑟𝑟 𝑟𝑟𝑟 𝑚𝑚(𝑠𝑠𝑠𝑠𝑠  𝑠 𝑠𝑠 𝑠 𝑠𝑠𝑚𝑚; here 𝑠𝑠 is the arclength, 𝑟𝑟 the radial
distance from the origin, and 𝜛𝜛𝑚𝑚 is the length of one leaf
of the 𝑚𝑚-clover. e function 𝜑𝜑𝑚𝑚 is found by inverting the
arclength integral:

𝑟𝑟 𝑟𝑟𝑟 𝑚𝑚 (𝑠𝑠) ⟺ 𝑠𝑠 𝑠 󵐐󵐐
𝑟𝑟

0

1
√1 − 𝑡𝑡𝑚𝑚

𝑑𝑑𝑑𝑑𝑑 (2)

For 𝑚𝑚 𝑚 𝑚 and 𝑚𝑚 𝑚 𝑚, these integrals are elementary.
For 𝑚𝑚 𝑚 𝑚 and 𝑚𝑚 𝑚 𝑚, these are elliptic integrals, and the
corresponding 𝑚𝑚-clover functions are elliptic functions. For
𝑚𝑚 𝑚𝑚 , the integral is no longer an elliptic integral, and
the corresponding clover function is not an elliptic function.
However, (𝜑𝜑6)

2 is an elliptic function, and this turns out to be
enough to proveeorem 2.

Note. Practically all of the hard work can be found in [7], to
which we refer the reader for the details of our arguments.
For detailed information about Galois theory, especially
its application to subdividing the lemniscate, see [4]. A
discussion of origami numbers can be found in [11].

2. Origami Constructibility

Viewing the plane as the complex numbers ℂ, the set 𝕆𝕆 of
points which can be constructed by origami is the smallest
sub�eld containing the rational numbers and closed under
rational operations and under square roots and cube roots.
If 𝑧𝑧 is a root of a polynomial of degree less than �ve with
coefficients in 𝕆𝕆, then 𝑧𝑧 itself is in 𝕆𝕆. To subdivide a leaf of
the trefoil into equal lengths, it suffices to show that the 𝑥𝑥 and
𝑦𝑦 coordinates of the division points are numbers in𝕆𝕆.

In their proof of the clover theorem, Cox and Shurman
show that the values of the clover function 𝜑𝜑𝜑𝜑𝜑𝜑𝜑  𝜑𝜑3(𝑢𝑢𝑢
lie in 𝕆𝕆 when 𝑢𝑢𝑢  𝑢𝑢𝑢𝑢3/𝑛𝑛𝑛 with ℓ=  0, 1,… , 𝑛𝑛 𝑛𝑛  and
𝑛𝑛 𝑛𝑛 𝑎𝑎3𝑏𝑏𝑝𝑝1 ⋯𝑝𝑝𝑛𝑛 where 𝑎𝑎, 𝑏𝑏 𝑏 𝑏 and 𝑝𝑝1,… , 𝑝𝑝𝑛𝑛 are distinct
Pierpont primes such that 𝑝𝑝𝑖𝑖 = 5, 𝑝𝑝𝑖𝑖 = 17, or 𝑝𝑝𝑖𝑖 ≡ 1 (mod
3). is is the main fact we need to extend the result to the
trefoil curve. If 𝜑𝜑𝜑𝜑𝜑𝜑 is in 𝕆𝕆, then 𝜑𝜑′(𝑢𝑢𝑢 is also in 𝕆𝕆, since 𝜑𝜑
satis�es the di�erential equation:

󶀥󶀥
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

󶀵󶀵
2
= 1 − 𝜑𝜑(𝑡𝑡)3, 𝜑𝜑 (0) = 0. (3)

Moreover, any rational expression in 𝜑𝜑𝜑𝜑𝜑𝜑 and 𝜑𝜑′(𝑢𝑢𝑢 is in𝕆𝕆.

3. The Trefoil Curve

e trefoil curve is given in polar coordinates by the equation

𝑟𝑟3 = cos 3𝜃𝜃 𝜃𝜃𝜃𝜃 3𝜃𝜃 𝜃𝜃𝜃𝜃𝜃   𝜃𝜃𝜃𝜃𝜃2𝜃𝜃𝜃 (4)

e rectangular equation is

󶀢󶀢𝑥𝑥2 + 𝑦𝑦2󶀲󶀲
3
= 𝑥𝑥3 − 3𝑥𝑥𝑥𝑥2. (5)

us, 𝑟𝑟6 + (3𝑥𝑥𝑥𝑥𝑥2 − 4𝑥𝑥3 = 0, and of course 𝑦𝑦2 = 𝑟𝑟2 − 𝑥𝑥2,
from which we conclude the following.

Proposition 3. (1) 𝑟𝑟 is origami constructible if and only if 𝑥𝑥
is origami constructible.

(2) 𝑥𝑥 is origami constructible implies that 𝑦𝑦 is origami
constructible.

From the polar coordinate formula, it is easy to derive the
arclength formula in terms of 𝑟𝑟 ([7], p.686):

𝑠𝑠 𝑠𝑠𝑠
𝑟𝑟

0

1
󵀄󵀄1 − 𝑡𝑡6

𝑑𝑑𝑑𝑑𝑑 (6)

Now, if we make the miraculous substitution

𝑡𝑡2 =
3𝑧𝑧2

4 − 𝑧𝑧3
, (7)

then the following equations hold:

1 − 𝑡𝑡6 =
󶀢󶀢4 − 𝑧𝑧3󶀲󶀲

3
− 27𝑧𝑧6

󶀡󶀡4 − 𝑧𝑧3󶀱󶀱3
=
󶀢󶀢1 − 𝑧𝑧3󶀲󶀲 󶀲󶀲8 + 𝑧𝑧3󶀲󶀲

2

󶀡󶀡4 − 𝑧𝑧3󶀱󶀱3
,

2𝑡𝑡𝑡𝑡𝑡𝑡 𝑡
24𝑧𝑧 𝑧𝑧 𝑧𝑧4

󶀡󶀡4 − 𝑧𝑧3󶀱󶀱2
𝑑𝑑𝑑𝑑𝑑

3𝑧𝑧 󶀢󶀢8 + 𝑧𝑧3󶀲󶀲

󶀡󶀡4 − 𝑧𝑧3󶀱󶀱2
𝑑𝑑𝑑𝑑𝑑

4𝑑𝑑𝑑𝑑2 =
3󶀢󶀢8 + 𝑧𝑧3󶀲󶀲

2

󶀡󶀡4 − 𝑧𝑧3󶀱󶀱3
𝑑𝑑𝑑𝑑2,

4𝑑𝑑𝑑𝑑2

1 − 𝑡𝑡6
=

3𝑑𝑑𝑑𝑑2

1 − 𝑧𝑧3
.

(8)

erefore,

𝑠𝑠 𝑠𝑠𝑠
𝑟𝑟

0

1
󵀄󵀄1 − 𝑡𝑡6

𝑑𝑑𝑑𝑑𝑑
√3
2

󵐐󵐐
𝜈𝜈

0

1
󵀄󵀄1 − 𝑧𝑧3

𝑑𝑑𝑑𝑑𝑑 (9)

where

𝑟𝑟2 =
3𝜈𝜈2

4 − 𝜈𝜈3
. (10)

Proposition 4. 𝑟𝑟 is origami constructible if and only if 𝜈𝜈 is
origami constructible.

Proof. If 𝜈𝜈 is in 𝕆𝕆, then 𝑟𝑟 is the square root of an element of
𝕆𝕆 and, therefore, an element of 𝕆𝕆. Conversely, if 𝑟𝑟2 is in 𝕆𝕆,
then 𝜈𝜈 satis�es a cubic equation with coefficients in𝕆𝕆, so it is
in𝕆𝕆.
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1

(a)

1

(b)

F 1: (a) e clover. (b) e trefoil.

Recall that for the clover function, 𝜑𝜑3(𝑠𝑠𝑠 𝑠 𝑠𝑠 𝑠 𝑠𝑠 𝑠
∫𝑟𝑟0 (1/󵀄󵀄1 − 𝑧𝑧3)𝑑𝑑𝑑𝑑. So, formula (9) shows that

𝜈𝜈 (𝑠𝑠) = 𝜑𝜑󶀥󶀥
2
√3

𝑠𝑠󶀵󶀵 . (11)

Now, combining Propositions 3 and 4 and formula (11) with
Cox and Shurman’s result about𝜑𝜑 yields the proof ofeorem
2.

e arclength parametrization of the curve can be derived
using lines through the origin.

Letting 𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦𝑦√3, where𝑚𝑚 is a parameter, we have

󶀦󶀦1 +
𝑚𝑚2

3
󶀶󶀶
3

𝑥𝑥6 = 󶀢󶀢1 − 𝑚𝑚2󶀲󶀲 𝑥𝑥3, (12)

and we may parametrize the curve by

𝑥𝑥𝑥𝑥 
3√1 − 𝑚𝑚2

3 + 𝑚𝑚2 , 𝑦𝑦 𝑦
𝑚𝑚𝑚𝑚
√3

. (13)

If we then replace𝑚𝑚 by 𝜑𝜑′(𝑡𝑡𝑡, we have

𝑥𝑥𝑥
3𝜑𝜑 (𝑡𝑡)

3 + 𝜑𝜑′(𝑡𝑡)2
, 𝑦𝑦 𝑦

√3𝜑𝜑 (𝑡𝑡) 𝜑𝜑′ (𝑡𝑡)
3 + 𝜑𝜑′(𝑡𝑡)2

. (14)

Now, observe that

𝑥𝑥2 + 𝑦𝑦2 =𝑟𝑟 2 =
3𝜑𝜑2

3 + 𝜑𝜑′2
=

3𝜑𝜑2

4 − 𝜑𝜑3
. (15)

erefore, replacing 𝑡𝑡 by (2/√3)𝑠𝑠 in (14) and comparing with
(10) and (11), we see that this is the arclength parametriza-
tion. We have shown the following.

eorem 5. e coordinates of the arclength parametrization
of the trefoil are rational expressions in the elliptic functions 𝜑𝜑
and 𝜑𝜑′.

4. Concluding Remarks

As is the case for the clover, also a leaf of the trefoil cannot
be subdivided into, for example, three equal arcs using
straightedge and compass. In fact, it can be shown that the
circle of radius 1/ 3√2 centered at the origin trisects each
leaf of the trefoil. Construction of this circle amounts to the
construction of the Delian number 3√2. In other words, the
problem of trisecting one leaf of the trefoil is equivalent to
the classical problem of duplication of the cube!

It is also worthwhile to note that the algebraic problem of
division into 𝑛𝑛 equal pieces by radicals (i.e., solvability) was
achieved for the circle by Gauss, for the lemniscate by Abel
(with the help of Liouville aer Abel’s untimely death), and
likewise it holds for the clover and the trefoil.
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