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e determination of the meiosis I nondisjunction fraction plays an important role in identifying the characteristics of affected
individuals and their mothers, which can generate aneuploidies. e number of individuals with one, two, and three peaks pattern
is used to obtain the information; however, the data are susceptible to misclassi�cation. We review the misclassi�cation model
previously introduced in the literature which considers a commonmisclassi�cation error.is paper aims to introduce a joint prior
distribution for the meiosis I nondisjunction fraction and the misclassi�cation error. We prove that the reference prior is a proper
distribution. We analyze a Brazilian Down syndrome dataset and compare the results with those obtained through Bayes-Laplace
and beta prior distributions.

1. Introduction

In humans, aneuploidies are common causes of mental retar-
dation, pregnancy losses, and fetal death. Although the causes
of aneuploidies are unknown, it is known that the risk of
having children with some kind of aneuploidy, such as
trisomies 21 (Down syndrome), 18 (Edward’s syndrome), or
13 (Patau syndrome), increases with the mother’s age [1].

Trisomy 21 is the most prevalent human genetic disorder
and occurs in approximately 1 out of 700 births. It is the
most common cause of mental retardation of genetic origin.
Down syndrome affects the cognitive abilities of the child
and approximately half of them can also have congenital
heart defects and problems with hearing and vision, and they
are prone to develop pulmonary hypertension. e causes of
Down syndrome are unknown, but there is evidence that in
the trisomy of chromosome 21 the rate of nondisjunction
increases with the age of the mother [2]. Women aged 35
or older have signi�cantly higher risk of having a child with
Down syndrome. In addition, the increase in the rate of
non-disjunction in meiosis II is higher than in meiosis I,
if the mother is between 35 and 39 years old. As a result,
the determination of the fraction 𝜙𝜙 of non-disjunction in

chromosomal segregation, taking place in meiosis I in each
chromosome, plays an important role in understanding ane-
uploidies. It is useful to identify possible factors generating
such abnormalities, for example: geography, nutrition, age,
reproductive, practices. Prenatal diagnosis of aneuploidies
is usually done by employing chromosome karyotype, �uo-
rescent in situ hybridization (FISH), and polymerase chain
reaction (PCR-) based approaches, see [1, 3–6] for further
details.

Methods to estimate 𝜙𝜙 considering information from
the affected children and their parents are presented in [7–
15] among others. More recently, Bayesian and classical
approaches to infer about 𝜙𝜙, assuming models that do not
take into account the parental information, are presented in
[2, 16].

e model proposed in [16] considers that, using the
PCR, it is possible to type microsatellites located near
the chromosomal centromere (to avoid problems due to
recombination) through primers designed from the unique
DNA sequence �anking the tandem repeat arrays, followed
by quantitative analysis by computer-assisted laser densit-
ometry [17]. Trisomic patients will display, in informative
microsatellite loci, three fragment peaks of equal intensity,
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two fragments at an average 2 : 1 dosage, or one individual
fragment (see an example of classi�cation in Figure 1). e
relative proportion of the three cases depends on the type
of non-disjunction, although the heterozygosity level is also
important. For a three-allele pattern to emerge, it is necessary
for the non-disjunction to occur in the �rst meiotic division,
the mother to be heterozygous at the relevant locus, and
the allele carried by the sperm to be different from the two
maternal alleles. A two-allele pattern is observed either in
the �rst or the second meiosis division, depending on the
combination of the chromosomes transmitted by the parents.
One peak pattern occurs if the parents are homozygous
for the allele inherited, see details in [9]. A scheme for
the non-disjunction in meiotic process can be found in
[16].

e model proposed in [16] brings some novelty to the
analysis of trisomies in the sense that the parental infor-
mation is not taken into account in the modeling. e use
of archive material is possible and important in the study
of rare trisomies; however, since some other peaks can
also be observed, as a consequence of residuals generated
by the preparation of the genetic material (see Figure 1),
misclassi�cation can occur and thus the fraction 𝜙𝜙 may
be poorly estimated. Extensions to the model in [16] were
introduced in [18, 19] to accommodate misclassi�cation;
such misclassi�cation models include the one indicated in
[16] as a particular case. In both papers, the inference is
developed under the Bayesian paradigm using beta prior
distributions for the parameters 𝜙𝜙 and 𝜓𝜓.

e speci�cation of priors makes it possible to incorpo-
rate scienti�c hypotheses into the analysis and, consequently,
allows us to handle complex problems and situations in
which little sample information is available. Reference (or
noninformative) priors are frequently used to describe prior
uncertainty about a parameter. ere are several methods to
construct non-informative priors; we consider the Jeffreys’
approach which is widely used in the literature. e idea
behind the Jeffreys prior is to provide as little prior informa-
tion as possible, relative to the sample information.

In this study, we review the misclassi�cation model for
trisomies presented in [18]. e main goals are to obtain
the joint Jeffreys prior for the fraction 𝜙𝜙 of non-disjunction
taking place in the meiosis I, to determine the misclassi�ca-
tion error 𝜓𝜓, and to prove that the Jeffreys prior is proper.
We implement a Metropolis-Hastings algorithm to sample
from the posterior distributions. A case study is developed
to analyze the sample of Brazilian individuals with Down
syndrome reported in [16]. We compare the results obtained
from the Jeffreys prior suggested here with those obtained
in [18] via Bayes-Laplace priors and those using a similar
approach under the model proposed in [16].

is paper is organized as follows. In Section 2, we brie�y
present themisclassi�cationmodel for trisomies according to
[18]. We build the joint Jeffreys prior for 𝜙𝜙 and 𝜓𝜓 and present
some of its properties. In Section 3, we apply the proposed
method to analyze a real dataset and compare the results with
those obtained in the literature. Finally Section 4 shows the
main conclusions.

AAA

BB
A

1

2

3

4

AA

B

A
B C∗∗

∗

∗ ∗

∗

F 1: Laser densitometry for a trisomic patient. One peak pat-
tern in 1, two peaks pattern in 2 and 3, and three peaks in 4.

2. Model Description and Inference

Here, we present the misclassi�cation model introduced in
[18] and build the Jeffreys prior for the parameters indexing
the model. We also review the model proposed in [16] which
ignores the presence of misclassi�cation.

In order to build the model, we assume that the hypothe-
sis of Hardy-Weinberg equilibrium [20] has been veri�ed for
the population; thus, we can consider as known the relative
frequency 𝑝𝑝𝑖𝑖, 𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖𝑖, of the allele 𝑖𝑖 in a multiallelic locus
of microsatellites.

Let 𝑌𝑌𝑙𝑙 be the number of individuals with 𝑙𝑙 peaks pattern,
𝑙𝑙 𝑖 𝑖𝑖𝑖 𝑖 𝑙, observed in a sample of 𝑛𝑛 trisomic individuals;
de�ne 𝐘𝐘 𝑖 𝐘𝑌𝑌𝑖𝑖 𝑌𝑌2𝑖 𝑌𝑌𝑙). Denote by 𝜃𝜃𝑙𝑙𝐘⋅) the probability
of being 𝑙𝑙, 𝑙𝑙 𝑖 𝑖𝑖𝑖 𝑖 𝑙, the true number of peaks in the
microsatellite locus of interest. As proved in [16], 𝜃𝜃𝑙𝑙𝐘⋅)
depends on the fraction 𝜙𝜙 𝜙 𝜙𝜙𝑖 𝑖𝜙 of non-disjunction taking
place in Meiosis I as follows:

𝜃𝜃𝑖 󶀡󶀡𝜙𝜙󶀱󶀱 𝑖 𝑎𝑎𝜙𝜙 𝑎 𝑎𝑎 󶀡󶀡𝑖 − 𝜙𝜙󶀱󶀱 𝑖

𝜃𝜃2 󶀡󶀡𝜙𝜙󶀱󶀱 𝑖 𝑐𝑐𝜙𝜙 𝑎 𝑐𝑐 󶀡󶀡𝑖 − 𝜙𝜙󶀱󶀱 𝑖

𝜃𝜃𝑙 󶀡󶀡𝜙𝜙󶀱󶀱 𝑖 𝑒𝑒𝜙𝜙𝑖

(1)

where 𝑎𝑎 𝑖 𝑎𝑖𝑖
𝑖𝑖𝑖𝑖 𝑝𝑝

𝑙
𝑖𝑖 𝑖 𝑎𝑎 𝑖 𝑎𝑖𝑖

𝑖𝑖𝑖𝑖 𝑝𝑝
2
𝑖𝑖 𝑖 𝑐𝑐 𝑖 𝑙𝑎𝑖𝑖

𝑗𝑗𝑖𝑖 𝑎
𝑖𝑖
𝑖𝑖𝑖𝑖 𝑝𝑝

2
𝑖𝑖 𝑝𝑝𝑗𝑗, for

all 𝑖𝑖 𝑖 𝑗𝑗𝑖 𝑐𝑐 𝑖 𝑎𝑖𝑖
𝑗𝑗𝑖𝑖 𝑎

𝑖𝑖
𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖 𝑝𝑝𝑗𝑗 for all 𝑖𝑖 𝑖 𝑗𝑗, and 𝑒𝑒 𝑖 𝑎𝑖𝑖

𝑘𝑘𝑖𝑖
𝑎𝑖𝑖
𝑗𝑗𝑖𝑖 𝑎

𝑖𝑖
𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝𝑘𝑘 for all 𝑖𝑖 𝑖 𝑗𝑗 𝑖 𝑘𝑘. Note that, under this

notation, we have 𝑎𝑎 𝑎 𝑐𝑐 𝑎 𝑒𝑒 𝑖 𝐘𝑎𝑖𝑖
𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖)

𝑙 𝑖 𝑖 and 𝑎𝑎 𝑎 𝑐𝑐 𝑖
𝐘𝑎𝑖𝑖

𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖)
2 𝑖 𝑖.

In order to de�ne the mis-
classi�cation model, we also consider the auxiliary random
variables 𝑋𝑋 and 𝑍𝑍 denoting the true (nonobserved) and
the observed number of peaks in a trisomic individual,
respectively. In addition, denote by 𝜋𝜋𝑙𝑙𝐘⋅) the probability of
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being 𝑙𝑙, 𝑙𝑙 𝑙 𝑙𝑙𝑙 𝑙 𝑙, the observed number of peaks in the
microsatellite locus of interest.

Let 𝜂𝜂𝑗𝑗𝑗𝑗𝑗 𝑙 𝑃𝑃𝑃𝑃𝑃 𝑙 𝑗𝑗 𝑗 𝑃𝑃 𝑙 𝑗𝑗𝑃 for 𝑗𝑗𝑙 𝑗𝑗 𝑙 𝑙𝑙 𝑗𝑙 𝑙, 𝑗𝑗 𝑗 𝑗𝑗, be
the probability ofmisclassifying an individual. It follows from
probability calculus that the vector of probabilities 𝝅𝝅𝑃𝝅𝝅𝑙 𝝅𝝅𝑃 𝑙
[𝜋𝜋𝑙𝑃𝝅𝝅𝑙 𝝅𝝅𝑃𝑙 𝜋𝜋𝑗𝑃𝝅𝝅𝑙 𝝅𝝅𝑃𝑙 𝜋𝜋𝑙𝑃𝝅𝝅𝑙 𝝅𝝅𝑃𝜙

𝑡𝑡 is given by 𝝅𝝅𝑃𝝅𝝅𝑙 𝝅𝝅𝑃 𝑙 𝝅𝝅𝝅𝝅𝑃𝝅𝝅𝑃,
where 𝝅𝝅𝑃𝝅𝝅𝑃 𝑙 [𝜽𝜽𝑙𝑃𝝅𝝅𝑃𝑙 𝜽𝜽𝑗𝑃𝝅𝝅𝑃𝑙 𝜽𝜽𝑙𝑃𝝅𝝅𝑃𝜙

𝑡𝑡 and 𝝅𝝅 is the (𝑙×𝑙) matrix
below

𝝅𝝅 𝑙 󶀄󶀄

󶀜󶀜

𝜂𝜂𝑙𝑗𝑙 𝜂𝜂𝑙𝑗𝑗 𝜂𝜂𝑙𝑗𝑙
𝜂𝜂𝑗𝑗𝑙 𝜂𝜂𝑗𝑗𝑗 𝜂𝜂𝑗𝑗𝑙
𝜂𝜂𝑙𝑗𝑙 𝜂𝜂𝑙𝑗𝑗 𝜂𝜂𝑙𝑗𝑙

󶀅󶀅

󶀝󶀝
. (2)

Since ∑𝑙
𝑗𝑗𝑙𝑙 𝜂𝜂𝑗𝑗𝑗𝑗𝑗 𝑙 𝑙, for each 𝑗𝑗 𝑙 𝑙𝑙 𝑗𝑙 𝑙, it can be proved

that ∑𝑙
𝑗𝑗𝑙𝑙 𝜋𝜋𝑗𝑗𝑃𝝅𝝅𝑙 𝝅𝝅𝑃 𝑙 ∑𝑙

𝑗𝑗𝑙𝑙 𝜽𝜽𝑗𝑗𝑃𝝅𝝅𝑃 𝑙 𝑙. As a consequence of
the previous assumptions, paper [18] establishes that 𝐘𝐘 𝑗
𝝅𝝅𝑙 𝝅𝝅 𝜙multinomial [𝑛𝑛𝑙 𝜋𝜋𝑙𝑃𝝅𝝅𝑙 𝝅𝝅𝑃𝑙 𝜋𝜋𝑗𝑃𝝅𝝅𝑙 𝝅𝝅𝑃𝑙 𝜋𝜋𝑙𝑃𝝅𝝅𝑙 𝝅𝝅𝑃𝜙 whose pro-
bability function is

𝑓𝑓 󶀡󶀡𝐘𝐘 𝑗 𝝅𝝅𝑙 𝝅𝝅󶀱󶀱 𝑙
𝑛𝑛𝑛

𝑦𝑦𝑙𝑛 𝑦𝑦𝑗𝑛 𝑦𝑦𝑙𝑛

𝑙
󵠉󵠉
𝑗𝑗𝑙𝑙
󶁢󶁢𝜋𝜋𝑗𝑗 󶀡󶀡𝝅𝝅𝑙 𝝅𝝅󶀱󶀱󶀱󶀱

𝑦𝑦𝑗𝑗 𝑙 (3)

with ∑𝑙
𝑗𝑗𝑙𝑙 𝑦𝑦𝑗𝑗 𝑙 𝑛𝑛. An identi�able model is obtained by

assuming equal probabilities of misclassi�cation, that is,

𝜂𝜂𝑗𝑗𝑗𝑗𝑗 𝑙 󶁆󶁆
𝑙 − 𝑗𝜓𝜓𝑙 𝑗𝑗 𝑙 𝑗𝑗𝑙
𝜓𝜓𝑙 𝑗𝑗 𝑗 𝑗𝑗.

(4)

As a result, the likelihood function in (3) becomes

𝑓𝑓 󶀡󶀡𝐘𝐘 𝑗 𝝅𝝅𝑙 𝝅𝝅󶀱󶀱 𝑙
𝑛𝑛𝑛

𝑦𝑦𝑙𝑛 𝑦𝑦𝑗𝑛 𝑦𝑦𝑙𝑛

×
𝑙
󵠉󵠉
𝑗𝑗𝑙𝑙
󶁢󶁢󶀡󶀡𝑙 − 𝑗𝜓𝜓󶀱󶀱 𝜽𝜽𝑗𝑗 󶀡󶀡𝝅𝝅󶀱󶀱 + 𝜓𝜓 󶀢󶀢𝑙 − 𝜽𝜽𝑗𝑗 󶀡󶀡𝝅𝝅󶀱󶀱󶀱󶀱󶀱󶀱

𝑦𝑦𝑗𝑗 𝑙

(5)

where 𝝅𝝅 𝜙 [𝜙𝑙 𝑙𝜙 and 𝜓𝜓 𝜙 [𝜙𝑙 𝑙𝜓𝜓𝜙.
Results in [18] are determined under the Bayesian

paradigm. Because some information about 𝝅𝝅 are available in
the literature for other populations, such pieces of informa-
tion were used to build more informative beta prior distri-
butions for 𝝅𝝅. In the literature, it is assumed a uniform prior
for the misclassi�cation error and these errors are considered
independent of 𝝅𝝅 a priori. Although the beta family is very
rich in form and can represent well many different prior
opinions about 𝝅𝝅, some researches prefer to perform an
objective analysis. In the following, we consider the Jeffreys
approach to build non-informative prior distributions.

2.2. e Jeffreys Prior for (𝝅𝝅, 𝜓𝜓). In this section, we introduce
the joint Jeffreys prior for the parameters 𝑃𝝅𝝅𝑙 𝜓𝜓𝑃 induced
by the model in (5). We consider that 𝜓𝜓 is independent of
𝝅𝝅 and obtain the marginal Jeffreys prior for 𝝅𝝅 assuming 𝜓𝜓
as �xed. e Jeffreys prior for 𝜓𝜓 is determined using the
same strategy. is approach to calculate the Jeffreys prior
in a multiparameter scenario is quite common and avoids

some misinterpretation issues related to the posterior results
that usually occur whenever the Fisher information matrix
is assumed to build the Jeffreys prior on a multi-parameter
model.

Consider again the notation in (1)� note that by �xing 𝝅𝝅
and taking the derivative of (5) with respect to 𝜓𝜓, it follows
that the Fisher information is

𝐼𝐼 󶀡󶀡𝜓𝜓󶀱󶀱 𝑙 𝑛𝑛󶁧󶁧
󶁡󶁡𝑙 + 𝑙𝜽𝜽𝑙 󶀡󶀡𝝅𝝅󶀱󶀱󶁱󶁱

𝑗

𝜽𝜽𝑙 󶀡󶀡𝝅𝝅󶀱󶀱 󶁡󶁡𝑙 − 𝑙𝜓𝜓󶁱󶁱 + 𝜓𝜓

+
󶁡󶁡𝑙 + 𝑙𝜽𝜽𝑗 󶀡󶀡𝝅𝝅󶀱󶀱󶁱󶁱

𝑗

𝜽𝜽𝑗 󶀡󶀡𝝅𝝅󶀱󶀱 󶁡󶁡𝑙 − 𝑙𝜓𝜓󶁱󶁱 + 𝜓𝜓
+

󶁡󶁡𝑙 + 𝑙𝜽𝜽𝑙 󶀡󶀡𝝅𝝅󶀱󶀱󶁱󶁱
𝑗

𝜽𝜽𝑙 󶀡󶀡𝝅𝝅󶀱󶀱 󶁡󶁡𝑙 − 𝑙𝜓𝜓󶁱󶁱 + 𝜓𝜓
󶁷󶁷 .

(6)

Since our interest lies on constructing the prior distribution
for 𝜓𝜓, the terms 𝜽𝜽𝑙𝑙𝑃𝝅𝝅𝑃, 𝑙𝑙 𝑙 𝑙𝑙 𝑗𝑙 𝑙, are assumed as constants
and they do not carry information about 𝜓𝜓. As a result, the
marginal Jeffreys prior for 𝜓𝜓 is

𝜋𝜋 󶀡󶀡𝜓𝜓󶀱󶀱 ∝ 󶁧󶁧
󶁡󶁡𝑙 + 𝑙𝑗𝑗𝑙󶁱󶁱

𝑗

𝑗𝑗𝑙 󶁡󶁡𝑙 − 𝑙𝜓𝜓󶁱󶁱 + 𝜓𝜓

+
󶁡󶁡𝑙 + 𝑙𝑗𝑗𝑗󶁱󶁱

𝑗

𝑗𝑗𝑗 󶁡󶁡𝑙 − 𝑙𝜓𝜓󶁱󶁱 + 𝜓𝜓
+

󶁡󶁡𝑙 + 𝑙𝑗𝑗𝑙󶁱󶁱
𝑗

𝑗𝑗𝑙 󶁡󶁡𝑙 − 𝑙𝜓𝜓󶁱󶁱 + 𝜓𝜓
󶁷󶁷
𝑙𝜓𝑗

𝑙

(7)

for all 𝜓𝜓 𝜙 [𝜙𝑙 𝑙𝜓𝜓𝜙 and any constant values 𝑗𝑗𝑖𝑖 𝜙 [𝜙𝑙 𝑙𝜙𝑙 𝑖𝑖 𝑙
𝑙𝑙 𝑗𝑙 𝑙, such that ∑𝑙

𝑖𝑖𝑙𝑙 𝑗𝑗𝑖𝑖 𝑙 𝑙. Note that if 𝑗𝑗𝑖𝑖 𝑗 𝜙 for all 𝑖𝑖, we
have

lim
𝜓𝜓𝜓𝜙

󶁡󶁡𝑙 + 𝑙𝑗𝑗𝑖𝑖󶁱󶁱
𝑗

𝑗𝑗𝑖𝑖 󶁡󶁡𝑙 − 𝑙𝜓𝜓󶁱󶁱 + 𝜓𝜓
𝑙
󶁡󶁡𝑙 + 𝑙𝑗𝑗𝑖𝑖󶁱󶁱

𝑗

𝑗𝑗𝑖𝑖
< ∞. (8)

erefore, 𝜋𝜋𝑃𝜓𝜓𝑃 is a proper distribution. If 𝑗𝑗𝑖𝑖 𝑙 𝜙 for some
𝑖𝑖 the propriety of 𝜋𝜋𝑃𝜓𝜓𝑃 is also veri�ed. As can be seen, if we
assume 𝑗𝑗𝑙 𝑙 𝜙, for instance, it follows that

lim
𝜓𝜓𝜓𝜙

󶁡󶁡𝑙 + 𝑙𝑗𝑗𝑙󶁱󶁱
𝑗

𝑗𝑗𝑙 󶁡󶁡𝑙 − 𝑙𝜓𝜓󶁱󶁱 + 𝜓𝜓
𝑙 lim

𝜓𝜓𝜓𝜙

𝑙
𝜓𝜓
𝑙 ∞. (9)

Consequently, there is a constant 𝐽𝐽 𝜙 [𝜙𝑙 𝑙𝜓𝜓𝜙 such that
[𝑙 + 𝑙𝑗𝑗𝑖𝑖𝜙

𝑗{[𝑙 − 𝑙𝜓𝜓𝜙 + 𝜓𝜓𝜓−𝑙 < 𝜓𝜓−𝑙 for all 𝜓𝜓 𝜙 [𝜙𝑙 𝐽𝐽𝜙 and 𝑖𝑖 𝑙
𝑙𝑙 𝑗. As a result, we have

󵐐󵐐
𝐽𝐽

𝜙
𝜋𝜋 󶀡󶀡𝜓𝜓󶀱󶀱 𝑑𝑑𝜓𝜓 < 󵐐󵐐

𝐽𝐽

𝜙
󶀥󶀥
𝑙
𝜓𝜓
󶀵󶀵
𝑙𝜓𝑗
𝑑𝑑𝜓𝜓 𝑙 𝑗𝑃𝑙𝐽𝐽𝑃𝑙𝜓𝑗𝑙 (10)

which guarantees the propriety of 𝜋𝜋𝑃𝜓𝜓𝑃.
Similarly, if we �x 𝜓𝜓 and calculate the derivative of (5)

with respect to 𝝅𝝅, the Fisher information is given by

𝐼𝐼 󶀡󶀡𝝅𝝅󶀱󶀱 𝑙 𝑛𝑛󶁡󶁡𝑙 − 𝑙𝜓𝜓󶁱󶁱𝑗

× 󶁦󶁦
[𝑎𝑎 − 𝑎𝑎𝜙𝑗

𝜽𝜽𝑙 󶀡󶀡𝝅𝝅󶀱󶀱 󶁡󶁡𝑙 − 𝑙𝜓𝜓󶁱󶁱 + 𝜓𝜓

+ [𝑐𝑐 − 𝑑𝑑𝜙𝑗

𝜽𝜽𝑗 󶀡󶀡𝝅𝝅󶀱󶀱 󶁡󶁡𝑙 − 𝑙𝜓𝜓󶁱󶁱 + 𝜓𝜓
+

𝑒𝑒𝑗

𝜽𝜽𝑙 󶀡󶀡𝝅𝝅󶀱󶀱 󶁡󶁡𝑙 − 𝑙𝜓𝜓󶁱󶁱 + 𝜓𝜓
󶁶󶁶 .

(11)
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F 2: Jeffreys prior distributions for 𝜙𝜙 (a) and 𝜓𝜓 (b). Consider
Case 1 (𝑘𝑘1 = 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎1 𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎, 𝑘𝑘2 = 𝑐𝑐 𝑎𝑎𝑎𝑎𝑎1 𝑎 𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 and
𝑘𝑘3 = 𝑒𝑒 𝑎𝑎𝑎𝑎𝑎1), Case 2 (𝑘𝑘1 = 𝑎𝑎 𝑎𝑎1 𝑎 𝑎𝑎 𝑎𝑎𝑎, 𝑘𝑘2 = 𝑐𝑐 𝑎𝑎1 𝑎 𝑐𝑐 𝑎𝑎𝑎 and
𝑘𝑘3 = 𝑒𝑒 𝑎𝑎1), and Case 3 (𝑘𝑘1 = 𝑎𝑎, 𝑘𝑘2 = 𝑐𝑐 and 𝑘𝑘1 = 𝑒𝑒).

us, since the terms in (11), depending of 𝜓𝜓, do not carry
any information about 𝜙𝜙, the Jeffreys prior for 𝜙𝜙 is

𝜋𝜋 󶀡󶀡𝜙𝜙󶀱󶀱 ∝ 󶁦󶁦
[𝑎𝑎 𝑎 𝑎𝑎]2

𝜃𝜃1 󶀡󶀡𝜙𝜙󶀱󶀱 󶁡󶁡1 𝑎 3𝑘𝑘4󶁱󶁱 𝑎 𝑘𝑘4

𝑎 [𝑐𝑐 𝑎 𝑐𝑐]2

𝜃𝜃2 󶀡󶀡𝜙𝜙󶀱󶀱 󶁡󶁡1 𝑎 3𝑘𝑘4󶁱󶁱 𝑎 𝑘𝑘4

𝑎
𝑒𝑒2

𝜃𝜃3 󶀡󶀡𝜙𝜙󶀱󶀱 󶁡󶁡1 𝑎 3𝑘𝑘4󶁱󶁱 𝑎 𝑘𝑘4
󶁶󶁶
1/2

,

(12)

where 𝜙𝜙 𝜙 [𝑎, 1] and 𝑘𝑘4 𝜙 [𝑎, 1/4]. Similar to what was
observed for the prior distribution of 𝜓𝜓, it can be proved that
the prior for 𝜙𝜙 is proper.

Since 𝜓𝜓 and 𝜙𝜙 are assumed to be independent, the joint
Jeffreys prior for (𝜙𝜙, 𝜓𝜓𝜙 is obtained through themultiplication
of the expressions (7) and (12). Figure 2 presents themarginal
Jeffreys prior of 𝜙𝜙 for three different values of 𝜓𝜓, and the
marginal Jeffreys prior of 𝜓𝜓 for three different values of 𝜙𝜙.
Figure 3 shows a three-dimensional surface plot representing

0
0.002

0.004
0.006

0.008
0.01

00.002
0.004

0.006
0.008

0.01
0

500

1000

1500

2000

2500

F 3: Jeffreys prior distribution for (𝜙𝜙, 𝜓𝜓𝜙.

the joint Jeffreys prior for (𝜙𝜙, 𝜓𝜓𝜙. Note that the three priors
are decreasing functions and they tend to in�nity as the
parameters tend to zero. However, since the 𝜋𝜋(𝜓𝜓𝜙 and 𝜋𝜋(𝜙𝜙𝜙
are both proper distributions, the joint prior for (𝜙𝜙, 𝜓𝜓𝜙 is also
proper.

e joint posterior of (𝜙𝜙, 𝜓𝜓𝜙 is obtained via Bayes theorem
assuming the likelihood function in (5) and the priors given
in (7) and (12).e posterior distribution cannot be obtained
analytically; we use a Metropolis-Hastings algorithm to sam-
ple from it.

2.3. Model in Franco et al. e model in [16] does not con-
sider the misclassi�cation errors that might occur when data
are obtained. Conditional on 𝜙𝜙, paper [16] shows that the
random vector 𝐘𝐘 = (𝐘𝐘1, 𝐘𝐘2, 𝐘𝐘3𝜙 has a Multinomial distri-
bution with parameters 𝑛𝑛, 𝜃𝜃1(𝜙𝜙𝜙, 𝜃𝜃2(𝜙𝜙𝜙, and 𝜃𝜃3(𝜙𝜙𝜙, denoted
by 𝐘𝐘 𝐘 𝜙𝜙 𝐘multinomial [𝑛𝑛, 𝜃𝜃1(𝜙𝜙𝜙, 𝜃𝜃2(𝜙𝜙𝜙, 𝜃𝜃3(𝜙𝜙𝜙], which has the
following probability function

𝑓𝑓 󶀡󶀡𝐘𝐘 𝐘 𝜙𝜙, 𝐘𝐘󶀱󶀱 =
𝑛𝑛𝑛

𝑦𝑦1𝑛 𝑦𝑦2𝑛 𝑦𝑦3𝑛

3
󵠉󵠉
𝑗𝑗=1
󶁢󶁢𝜃𝜃𝑗𝑗 󶀡󶀡𝜙𝜙󶀱󶀱󶀱󶀱

𝑦𝑦𝑗𝑗 , (13)

where 𝜃𝜃𝑗𝑗(𝜙𝜙𝜙, 𝑗𝑗 = 1, 2, 3, are indicated in (1). Note that this
model is a particular case of the model presented in (5)
whenever 𝜓𝜓 is assumed to be zero. As observed for the mis-
classi�cation model, the posterior distribution of 𝜙𝜙 cannot
be analytically evaluated even when a Bayes-Laplace prior
distribution is assumed to describe the uncertainty about
𝜙𝜙. e posterior can be approximated through numerical
algorithms [21, 22] or Monte Carlo methods. In Section 3,
we show results related to this model which were obtained in
[19].

3. Case Study: Down Syndrome Data

Here, we explore the dataset reported in [16] consisting of a
random sample of blood from 34 Brazilian individuals with
trisomy of chromosome 21. In this data set, the observed
numbers of patients with one, two, and three peaks are 6, 22,
and 6, respectively. e hypothesis of the Hardy-Weinberg
equilibrium is veri�ed for the Brazilian population and six
alleles are found with frequencies 0.12, 0.45, 0.09, 0.31, 0.01,
and 0.02.

In terms of the Markov Chain Monte Carlo (MCMC)
algorithm, we run a chain of size 10,000 and assume a burn-
in period involving the �rst 5,000 iterations to guarantee
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T 1: Posterior summaries of 𝜙𝜙.

Prior speci�cation Mean Mode Median Variance 95%HPD
Misclassi�cation model

Jeffreys 0.5370 0.5405 0.5408 0.0631 [0.1157; 0.9993]
Bayes-Laplace 0.5703 0.6088 0.5848 0.0569 [0.1383; 0.9957]

Franco et al.’s model [16]
Bayes-Laplace 0.6596 0.6551 0.6621 0.0307 [0.3539; 0.9832]

T 2: Posterior summaries of 𝜓𝜓.

Prior speci�cation Mean Mode Median Variance 95%HPD
Jeffreys 0.0658 0.0075 0.0565 0.0024 [0.0001; 0.1614]
Bayes-Laplace 0.0815 0.0122 0.0726 0.0033 [0.0001; 0.1913]

the convergence of the chain; as a result, the �nal sample from
the posterior distribution has 5,000 observations. We assume
independent uniform reference distributions to generate the
candidates required in the sampling process.

Tables 1 and 2 present the posterior summaries for 𝜙𝜙
and 𝜓𝜓 assuming the misclassi�cation model described in
Section 2.We consider two non-informative priors for (𝜙𝜙𝜙 𝜓𝜓𝜙:
the joint Jeffreys prior given in Section 2 and the Bayes-
Laplace prior assumed in [18]. We also compare these results
with those obtained by �tting Franco et al.’s model assuming
the Bayes-Laplace prior for 𝜙𝜙.

All posterior estimates for 𝜙𝜙 (Table 1) are smaller than
those observed in the literature for groups of patients with
Down syndrome (see [7, 10–15, 21]); the literature results
indicate the mean 0.6803 and the standard deviation 0.0678.
As can be seen, the estimates under the misclassi�cation
model are also smaller than those obtained for the model
proposed in [16]; the maximum likelihood estimate (MLE)
calculated in [16] is 0.6551 for the same data set. In the
comparison between the misclassi�cation and Franco et
al.’s models, we have found that the uncertainty about 𝜙𝜙 is
higher for the model including misclassi�cation. We also
observe that the posterior estimates tend to be small and
the variance tend to be large when we assume the Jeffreys
prior. e posterior distributions of 𝜓𝜓 (Table 2) suggest that
the misclassi�cation error is very small. e posterior mean,
median, mode, and the uncertainty about 𝜓𝜓 for the Jeffreys
prior model are smaller than those estimates obtained via the
Bayes-Laplace prior distribution.

Figure 4 presents two histograms representing the pos-
terior distributions of 𝜙𝜙 and 𝜓𝜓 under the proposed model.
In both graphs, the distribution has unique mode and an
asymmetric shape. e posterior distribution of 𝜙𝜙 indicates
higher probability mass for values around 0.5. Furthermore,
with 95% of probability, the Meiosis I non-disjunction frac-
tion 𝜙𝜙 belongs to the interval [0.1157; 0.9993]. e posterior
distribution for 𝜓𝜓 puts most of its probability mass for values
close to zero and with posterior probability of 97.5%, the
misclassi�cation error is smaller than 0.1614.
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F 4: Posterior distribution of 𝜙𝜙 (a) and 𝜓𝜓 (b) under the pro-
posed model.

4. Final Comments

In this paper, we provide a reference analysis for the misclas-
si�cation model introduced by [18] to describe the uncer-
tainty about theMeiosis I non-disjunction fraction in patients
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with trisomy. e Jeffreys prior, assuming independence
between the non-disjunction fraction 𝜙𝜙 and the misclassi�-
cation error 𝜓𝜓, was obtained in our analysis; we have built a
Metropolis-Hastings algorithm to sample from the posterior
distributions. e real data application, illustrating the use of
the methodology, involves a Brazilian Down syndrome data
set.

In our analysis, the Jeffreys prior determines more uncer-
tainty in the estimation of 𝜙𝜙 compared to the Bayes-Laplace
prior, but its use leads to a more precise estimate of the
misclassi�cation error. In addition, we can see that, for the
Brazilian population, the Down syndrome is oen a conse-
quence of a non-disjunction in meiosis I.

e use of the Jeffreys prior and other non-informative
priors permit us to fairly compare Bayesian and Classical
approaches of inference. It is still an open problem to �nd the
maximum likelihood estimator under the misclassi�cation
model discussed in this paper and the other extensions dis-
cussed in [19].
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