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We study two parameterized preconditioners for iteratively solving the saddle point linear systems arising from finite element
discretization of the mixed formulation of the time-harmonic Maxwell equations in electromagnetic problems. We establish some
spectral properties of the preconditioned saddle pointmatrices, involving the choice of the parameter.Meanwhile, we provide some
results of numerical experiments to show the effectiveness of the proposed parameterized preconditioners.

1. Introduction

The following time-harmonic Maxwell equations in lossless
media and perfectly conduction boundaries [1–5] are partial
differential equations of the mixed form with constant coeffi-
cients: find the vector field 𝑢 and the multiplier 𝑝 such that

∇ × ∇ × 𝑢 + ∇𝑝 = 𝑓 in Ω,

∇ ⋅ 𝑢 = 0 in Ω,

𝑢 × 𝑛 = 0 on 𝜕Ω,

𝑝 = 0 on 𝜕Ω.

(1)

Here,Ω ⊂ R3 is a simply connected polyhedron domain with
a connected boundary 𝜕Ω, and 𝑛 denotes the outward unit
normal on 𝜕Ω. The datum 𝑓 is a given generic source (not
necessarily divergence free), and the wave number satisfies
𝑘
2
= 𝜔
2
∈ 𝜇, where 𝜔 ≥ 0 is the frequency, and 𝜇 is a positive

permeability parameter.
If the lowest order Nédélec elements of the first kind

[1] are used for the approximation of the electric field and
the standard nodal elements for the multiplier, discretizing
the problem (1), we derive the approximation solution of (1)
through solving the saddle point linear system of the form

A𝑥 = [
𝐴 𝐵
𝑇

𝐵 0

] [

𝑢

𝑝
] = [

𝑔

0
] = 𝑏, (2)

where 𝑢 ∈ 𝑅𝑛 and 𝑝 ∈ 𝑅𝑚 are finite arrays representing the
finite element approximations, and 𝑔 ∈ 𝑅𝑛 is the load vector
associated with 𝑓. Thematrix𝐴 ∈ 𝑅𝑛×𝑛 is symmetric positive
semidefinite with nullity 𝑠 and corresponds to the discrete
curl-curl operator; 𝐵 ∈ 𝑅𝑚×𝑛 is a discrete divergence operator
with full row rank.

For large, sparse, or structuredmatrices iterativemethods
are the interesting alternative. Stationary iterative methods
solve a linear system (2) with an operator approximating the
original one; based on ameasurement of the error in the result
(the residual), form a “correction equation” for which this
process is repeated.While thesemethods are simple to derive,
implement, and analyze, convergence is only guaranteed for
a limited class of matrices. Examples of stationary iterative
methods are the Jacobi method, Gauss-Seidel method and
SOR method [1, 2, 6–9], and HSS splitting iterative method
[7, 10]. However, Krylov subspace methods work by forming
an orthogonal basis of the sequence of successive matrix
powers times the initial residual (the Krylov sequence).
The approximations to the solution are then formed by
minimizing the residual over the subspace formed. Krylov
subspace methods apply techniques that involve orthogonal
projections onto subspaces of the form

K
𝑗
(𝐴, 𝑟
0
) = span {𝑟

0
, 𝐴𝑟
0
, 𝐴
2
𝑟
0
, . . . , 𝐴

𝑗−1
𝑟
0
} , (3)

whereK𝑗(𝐴, 𝑟
0
) is the 𝑗th Krylov subspace associated with𝐴

and 𝑟
0
(see, e.g., [9, 11, 12]).
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The basic algorithm within this class is the conjugate
gradient (CG) method which has the nice properties that it
uses only three vectors in memory and minimizes the error
in the𝐴-norm. However, the algorithmmainly performs well
if the matrix 𝐴 is symmetric and positive definite. In cases
where one of these two properties is violated, CG may break
down. For nonsymmetric or indefinite linear systems, CG can
be applied to the normal equations since the resulting linear
system becomes (positive) definite. Upon application of CG
to the normal equations, CGNE andCGNR are obtained [12].
The CGNE and CGNR methods, transforming the system to
a symmetric definite one and then applying the conjugate
gradient method, is attractive for its coding simplicity. The
iterations are guaranteed to converge. The drawback is that
the condition number of the normal equations equals the
square of the condition number of 𝐴, slowing down the
convergence drastically.

MINRES can also be used to solve indefinite symmetric
linear systems, as well as it generalization to the nonsym-
metric case, GMRES [9, 12–14]. Both algorithms have the
minimization property, but GMRES uses long recurrences.
GMRES has the advantage that theoretically the algorithm
does not break down unless convergence has been reached.
The main problem in GMRES is that the amount of storage
increases as the iteration number increases. Therefore, the
application of GMRES may be limited by the computer stor-
age. To remedy this problem, a restarted version, GMRES(𝑚),
can be utilized. Since restarting removes the previous con-
vergence history, GMRES(𝑚) is not guaranteed to converge.
There is no specific rule to determine the restart parameter𝑚.
In cases characterized by superlinear convergence, 𝑚 should
often be chosen very large which makes restarting much less
attractive. Another way to remedy the storage problem in
GMRES is by including a so-called “inner iteration” as in
GMRESR and FGMRES [9, 12, 14].

The approximating operator that appears in stationary
iterative methods can also be incorporated in Krylov sub-
spacemethods such asGMRES (alternatively, preconditioned
Krylovmethods can be considered as accelerations of station-
ary iterative methods), where they become transformations
of the original operator to a presumably better conditioned
one. The construction of preconditioners is a large research
area [3, 4, 8, 9, 13, 15–23]. Generally, preconditioning attempts
to improve the spectral properties of the system matrix. For
symmetric problems, the rate of convergence of Krylov sub-
space methods like CG or MINRES depends on the distribu-
tion of the eigenvalues ofA. A key for the rapid convergence
of an iterative method for a linear system of the formA𝑥 = 𝑏

is the availability of an effective preconditionerP. Each step
of an outer iteration for solving the preconditioned linear sys-
temP−1A𝑥 = P−1𝑏 requires the solution of an inner linear
systemwhose coefficient matrix isA.Therefore, convergence
of the outer iteration is fast if the eigenvalues of the precondi-
tioned matrixP−1A are clustered, but careful attention must
be paid to the conditioning and eigenvalue distribution of the
matrixA itself, which determine the speed of convergence of
the inner iteration; see [8] for a comprehensive survey.

For solving the saddle point linear system (2), Greif and
Schötzau [19] presented a block diagonal preconditioner

M = [
𝐴 + 𝐵

𝑇
𝑊
−1
𝐵 0

0 𝑊

] , (4)

where 𝑊 ∈ R𝑚×𝑚 is a symmetric positive definite. In
2007, Greif and Schötzau [3] applied this type block diagonal
preconditioner to the saddle point linear systems arising from
the discretized time-harmonic Maxwell equations in mixed
form (1). Rees and Greif [20] studied a block triangular
preconditioner

N = [
𝐴 + 𝐵

𝑇
𝑊
−1
𝐵 𝐵
𝑇

0 𝑊

] (5)

which has the property that, the more the ill-conditioned
(1, 1) block of the saddle point matrix is, the faster a
minimum residual solver, such as MINRES, converges. In
2008, Cao [21] gave two augmentation block triangular
preconditioners

T
+
= [
𝐴 + 𝐵

𝑇
𝑊
−1
𝐵 𝐵
𝑇

0 𝑊

] ,

T
−
= [
𝐴 + 𝐵

𝑇
𝑊
−1
𝐵 𝐵
𝑇

0 −𝑊

] .

(6)

And he has shown that if the nullity of 𝐴 is 𝑚, then the
preconditioned matrices T−1

+
A and T−1

−
A have only three

distinct eigenvalues 1, (−1±√5)/2 and 1, (1± 𝑖√3)/2, respec-
tively.Thus, the preconditionedGMRESwith either augmen-
tation block triangular preconditioner converges within three
iterations.

Based on the preconditioners T
+
and T

−
, we study two

generalized block triangular preconditioners for iteratively
solving the saddle point linear systems arising from finite
element discretization of the mixed formulation of the time-
harmonic Maxwell equations in electromagnetic problems.
Spectral properties and computational performance of the
generalized block triangular preconditioners are discussed in
detail, involving the choice of the parameters that are consid-
ered. Meanwhile, we give the optimal parameter in practice.
Finally, numerical experiments show the effectiveness of the
proposed preconditioners.

The remainder of this paper is organized as follows. In
Section 2, the new block triangular preconditioners with one
parameter are proposed, and the spectral distribmtion of
the new preconditioned matrices is analyzed. In Section 3,
numerical experiments are provided to validate our results in
Section 2. Finally, we draw some conclusions.

2. Block Triangular Preconditioners

It is well known that characterizing the rate of convergence
of nonsymmetric preconditioned iterations can be a difficult
task. In particular, eigenvalue information alone may not be
sufficient to givemeaningful estimates of the convergence rate
of a method like preconditioned GMRES [9, 24]. Neverthe-
less, experience shows that, formany linear systems arising in
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practice, a well-clustered spectrum (away from zero) usually
results in rapid convergence of the preconditioned iteration.

Next we develop some estimates for the eigenvalues of
the preconditioned matrices P−1

𝑘
A and F−1

𝑘
A, assuming

exact solves for the (1, 1) block 𝐴. We show that, for this
“ideal” version of the preconditioner, the eigenvalues of the
preconditioned matrix become tightly clustered around 1
when the nullity of 𝐴 is𝑚.

2.1. Spectral Properties of the Preconditioned Matrix. We let

A = [
𝐴 𝐵
𝑇

𝐵 0

] (7)

represent the saddle point matrices of (10).We assume that𝐴
is symmetric and positive semidefinite with nullity 𝑠 and that
𝐵 is of size 𝑚 × 𝑛 (𝑚 ≤ 𝑛) and has full row rank. Note that
the assumption that A is nonsingular implies that null(𝐴) ∩
null(𝐵) = 0 and null(𝐴) ∪ null(𝐵) = 𝑅𝑛, which we use in our
analysis below.

Wepresent the following block triangular preconditioner:

P
𝑘
= 𝑘T

−
+ (1 − 𝑘)T

+

= [
𝐴 + 𝐵

𝑇
𝑊
−1
𝐵 𝐵

𝑇

0 (1 − 2𝑘)𝑊

] , 𝑘 ̸=

1

2

.

(8)

We will study spectral properties and computational perfor-
mance of the preconditionerP

𝑘
. Also numerical experiments

show that the preconditioner P
𝑘
with a parameter is more

efficient than both T
+
and T

−
if it is proper to choose the

value of the parameter. Following the spirit of the proof of
[11, 25] we give the following result to describe the spectral
distribution.

Theorem 1. Let A be nonsingular, and its (1, 1) block 𝐴 is
singular with nullity 𝑠. Then 𝜆 = 1 is an eigenvalue ofP−1

𝑘
A of

geometric multiplicity 𝑛−𝑚, and 𝜆 = (−1±√5 − 8𝑘)/2(1−2𝑘)
is an eigenvalue of geometric multiplicity 𝑠. The remaining
2(𝑚 − 𝑠) eigenvalues satisfy the relation

𝜆 =

(1 − 𝜇 − 2𝑘) ± √4𝜇
2
− 8𝑘𝜇

2
− 4𝑘 + 2𝜇 + 1

2 (𝜇 + 1) (1 − 2𝑘)

,
(9)

where 𝜇 are some𝑚−𝑠 generalized eigenvalues of the following
generalized eigenvalue problem:

𝐵
𝑇
𝑊
−1
𝐵𝑥 = 𝜇𝐴𝑥. (10)

Proof. Suppose that 𝜆 is an eigenvalue of P−1
𝑘
A, whose

eigenvalue is (𝑥𝑇, 𝑦𝑇)𝑇. Then we have

P
−1

𝑘
A [
𝑥

𝑦
] = 𝜆 [

𝑥

𝑦
] . (11)

Furthermore, it satisfies the generalized eigenvalue problem

[
𝐴 𝐵
𝑇

𝐵 0

] [

𝑥

𝑦
] = 𝜆 [

𝐴 + 𝐵
𝑇
𝑊
−1
𝐵 𝐵

𝑇

0 (1 − 2𝑘)𝑊

][

𝑥

𝑦
] (12)

or

𝐴𝑥 + 𝐵
𝑇
𝑦 = 𝜆 (𝐴 + 𝐵

𝑇
𝑊
−1
𝐵) 𝑥 + 𝜆𝐵

𝑇
𝑦,

𝐵𝑥 = 𝜆 (1 − 2𝑘)𝑊𝑦.

(13)

As A is nonsingular, 𝜆 ̸= 0. The second equality gives 𝑦 =
(1/𝜆(1−2𝑘))𝑊

−1
𝐵𝑥, and substituting it into the first equality

gives

(𝜆
2
− 𝜆) (1 − 2𝑘)𝐴𝑥 + [𝜆

2
(1 − 2𝑘) + 𝜆 − 1] 𝐵

𝑇
𝑊
−1
𝐵𝑥 = 0.

(14)

If 𝑥 ∈ null(𝐵), then (20) implies that

(𝜆
2
− 𝜆) (1 − 2𝑘)𝐴𝑥 = 0 (15)

from which it follows that 𝜆 = 1 is an eigenvalue ofP−1
𝑘
A of

geometric multiplicity 𝑛 − 𝑚.
If 𝑥 ∈ null(𝐴), then (14) implies that

[𝜆
2
(1 − 2𝑘) + 𝜆 − 1] 𝐵

𝑇
𝑊
−1
𝐵𝑥 = 0 (16)

from which we obtain that 𝜆 = (−1 + √5 − 8𝑘)/2(1 − 2𝑘) are
two eigenvalues ofP−1

𝑘
A of geometric multiplicity 𝑠.

We have determined 𝑛 − 𝑚 + 2𝑠 eigenvalues. Now we
consider the remaining 2(𝑚 − 𝑠) eigenvalues ofP−1

𝑘
A.

Suppose that 𝜆 ̸= (−1+√5 − 8𝑘)/2(1−2𝑘); then from (14)
we have

𝐵
𝑇
𝑊
−1
𝐵𝑥 = 𝜇𝐴𝑥, (17)

where 𝜇 = −(𝜆2−𝜆)(1−2𝑘)/(𝜆2(1−2𝑘)+𝜆−1), which implies
that

𝜆 = −

− (2𝑘 + 𝜇 − 1) ± √4𝜇
2
− 8𝑘𝜇

2
− 4𝑘 + 2𝜇 + 1

2 (𝜇 + 1) (1 − 2𝑘)

.
(18)

Since 𝐵𝑇𝑊−1𝐵 + 𝐴 is assumed to be nonsingular, the matrix
pencil 𝐵𝑇𝑊−1𝐵+𝜀𝐴 is regular (cf. [11]).Thus, the generalized
eigenvalue problem (17) is well posed. It is easy to see that
𝜇 = 0 is a generalized eigenvalue of geometric multiplicity
𝑛 − 𝑚 and 𝜇 = ∞ is a generalized eigenvalue of geometric
multiplicity 𝑠. The remaining 𝑚 − 𝑠 generalized eigenvalues
𝜇 of (17) determine the remaining 2(𝑚 − 𝑠) eigenvalues 𝜆 of
P−1
𝑘
A by (18).

If 𝑘 = 0 and P
𝑘
apparently reduce to T

+
, then we have

the following corollary.

Corollary 2. Let A be nonsingular, and its (1, 1) block 𝐴 is
singular with nullity 𝑠. Then 𝜆 = 1 is an eigenvalue of T−1

+
A

of geometric multiplicity 𝑛 − 𝑚, and 𝜆 = (−1 ± √5)/2 is an
eigenvalue of geometric multiplicity 𝑠. The remaining 2(𝑚 − 𝑠)
eigenvalues satisfy the relation

𝜆 =

(1 − 𝜇) ± √4𝜇
2
+ 2𝜇 + 1

2 (𝜇 + 1)

,
(19)
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where 𝜇 are some𝑚−𝑠 generalized eigenvalues of the following
generalized eigenvalue problem:

𝐵
𝑇
𝑊
−1
𝐵𝑥 = 𝜇𝐴𝑥. (20)

Corollary 3. Let A be nonsingular, and its (1, 1) block 𝐴 is
singular with nullity𝑚.Then the preconditionedmatrixT−1

+
A

has precisely three distinct eigenvalues: 𝜆 = 1 of geometric
multiplicity 𝑛 − 𝑚 and 𝜆 = (−1 + √5)/2 and 𝜆 = (−1 − √5)/2
both of multiplicity𝑚.

If 𝑘 = 1 and P
𝑘
apparently reduce to T

−
, then we have

the following corollary.

Corollary 4. Let A be nonsingular, and its (1, 1) block 𝐴 is
singular with nullity 𝑠. Then 𝜆 = 1 is an eigenvalue of T−1

−
A

of geometric multiplicity 𝑛 − 𝑚, and 𝜆 = (1 ± 𝑖√3)/2 is an
eigenvalue of geometric multiplicity 𝑠. The remaining 2(𝑚 − 𝑠)
eigenvalues satisfy the relation

𝜆 =

(𝜇 + 1) ± √−4𝜇
2
+ 2𝜇 − 3

2 (𝜇 + 1)

,
(21)

where 𝜇 are some𝑚−𝑠 generalized eigenvalues of the following
generalized eigenvalue problem:

𝐵
𝑇
𝑊
−1
𝐵𝑥 = 𝜇𝐴𝑥. (22)

Corollary 5. Let A be nonsingular, and its (1, 1) block 𝐴 is
singular with nullity𝑚.Then the preconditionedmatrixT−1

−
A

has precisely three distinct eigenvalues: 𝜆 = 1 of geometric
multiplicity 𝑛 − 𝑚 and 𝜆 = (1 + 𝑖√3)/2 and 𝜆 = (1 − 𝑖√3)/2
both of multiplicity𝑚.

We next consider another block triangular precondi-
tioner

F
𝑘
= [
𝐴 + 𝐵

𝑇
𝑊
−1
𝐵 2𝑘𝐵

𝑇

0 (1 − 2𝑘)𝑊

] , 𝑘 ̸=

1

2

. (23)

We give the following result to describe the spectral distribu-
tion of the preconditioned matrixF−1

𝑘
A.

Theorem 6. Let A be nonsingular, and its (1, 1) block 𝐴 is
singular with nullity 𝑠. Then 𝜆 = 1 is an eigenvalue ofF−1

𝑘
A of

geometric multiplicity 𝑛, and 𝜆 = 1/(2𝑘−1) is an eigenvalue of
geometricmultiplicity 𝑠.The remaining𝑚−𝑠 eigenvalues satisfy
the relation

𝜆 =

−𝜇

(𝜇 + 1) (1 − 2𝑘)

, (24)

where 𝜇 are some𝑚−𝑠 generalized eigenvalues of the following
generalized eigenvalue problem:

𝐵
𝑇
𝑊
−1
𝐵𝑥 = 𝜇𝐴𝑥. (25)

Proof. Suppose that 𝜆 is an eigenvalue of F−1
𝑘
A, whose

eigenvalue is (𝑥𝑇, 𝑦𝑇)𝑇. Then we have

F
−1

𝑘
A [
𝑥

𝑦
] = 𝜆 [

𝑥

𝑦
] . (26)

Furthermore, it satisfies the generalized eigenvalue problem

[
𝐴 𝐵
𝑇

𝐵 0

] [

𝑥

𝑦
] = 𝜆 [

𝐴 + 𝐵
𝑇
𝑊
−1
𝐵 2𝑘𝐵

𝑇

0 (1 − 2𝑘)𝑊

][

𝑥

𝑦
] (27)

or

𝐴𝑥 + 𝐵
𝑇
𝑦 = 𝜆 (𝐴 + 𝐵

𝑇
𝑊
−1
𝐵) 𝑥 + 2𝜆𝑘𝐵

𝑇
𝑦,

𝐵𝑥 = 𝜆 (1 − 2𝑘)𝑊𝑦.

(28)

As A is nonsingular, 𝜆 ̸= 0. The second equality gives 𝑦 =
(1/𝜆(1−2𝑘))𝑊

−1
𝐵𝑥, and substituting it into the first equality

gives

(𝜆 − 1) [𝜆 (1 − 2𝑘)𝐴𝑥 + (𝜆 + 1 − 2𝑘𝜆) 𝐵
𝑇
𝑊
−1
𝐵𝑥] = 0.

(29)

It is straightforward to see that any vector 𝑥 ∈ 𝑅𝑛 satisfies
(29) with 𝜆 = 1, and thus 𝜆 = 1 is an eigenvalue ofF−1

𝑘
A. We

claim that the eigenvalue 𝜆 = 1 has geometric multiplicity 𝑛.
If 𝜆 ̸= 1, then from (29) we have

𝜆 (1 − 2𝑘)𝐴𝑥 + (𝜆 + 1 − 2𝑘𝜆) 𝐵
𝑇
𝑊
−1
𝐵𝑥 = 0. (30)

If 𝑥 ∈ null(𝐴), then from (30) we have

(𝜆 + 1 − 2𝑘𝜆) 𝐵
𝑇
𝑊
−1
𝐵𝑥 = 0. (31)

From (31), we must have 𝜆 + 1 − 2𝑘𝜆 = 0. Since 𝐴 is singular
with nullity 𝑠, hence, we know that 𝜆 = 1/(2𝑘 − 1) is an
eigenvalue ofF−1

𝑘
A of geometric multiplicity 𝑠.

We have determined 𝑛 + 𝑠 eigenvalues. Now we consider
the remaining𝑚 − 𝑠 eigenvalues ofF−1

𝑘
A.

Suppose that 𝜆 ̸= 1, 1/(2𝑘 − 1); then from (30) we have

𝐵
𝑇
𝑊
−1
𝐵𝑥 = 𝜇𝐴𝑥, (32)

where 𝜇 = −𝜆(1 − 2𝑘)/(𝜆(1 − 2𝑘) + 1), which implies that
𝜆 = −𝜇/(𝜇 + 1)(1 − 2𝑘). Since 𝐵𝑇𝑊−1𝐵 + 𝐴 is assumed to be
nonsingular, the matrix pencil 𝐵𝑇𝑊−1𝐵 + 𝜀𝐴 is regular (cf.
[11]). Thus, the generalized eigenvalue problem (32) is well
posed. It is easy to see that 𝜇 = 0 is a generalized eigenvalue
of geometric multiplicity 𝑛 − 𝑚, and 𝜇 = ∞ is a generalized
eigenvalue of geometric multiplicity 𝑠. The remaining 𝑚 − 𝑠
generalized eigenvalues 𝜇 of (32) determine the remaining
𝑚 − 𝑠 eigenvalues 𝜆 ofF−1

𝑘
A by −𝜇/(𝜇 + 1)(1 − 2𝑘).

If 𝑘 = 0 andP
𝑘
apparently reduce toM, then we have the

following corollary.

Corollary 7. Let A be nonsingular, and its (1, 1) block 𝐴 is
singular with nullity 𝑠. Then 𝜆 = 1 is an eigenvalue of M−1A
of geometric multiplicity 𝑛, and 𝜆 = −1 is an eigenvalue of
geometricmultiplicity 𝑠.The remaining𝑚−𝑠 eigenvalues satisfy
the relation

𝜆 =

−𝜇

𝜇 + 1

, (33)

where 𝜇 are some𝑚−𝑠 generalized eigenvalues of the following
generalized eigenvalue problem:

𝐵
𝑇
𝑊
−1
𝐵𝑥 = 𝜇𝐴𝑥. (34)
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Corollary 8. Let A be nonsingular, and its (1, 1) block 𝐴 is
singular with nullity𝑚. Then 𝜆 = 1 is an eigenvalue ofM−1A
of geometric multiplicity 𝑛, and 𝜆 = −1 is an eigenvalue of
geometric multiplicity𝑚.

If 𝑘 = 1, then we have the following corollary.

Corollary 9. Let A be nonsingular, and its (1, 1) block 𝐴 is
singular with nullity 𝑠. Then 𝜆 = 1 is an eigenvalue ofF−1

1
A of

geometric multiplicity 𝑛 + 𝑠. The remaining 𝑚 − 𝑠 eigenvalues
satisfy the relation

𝜆 =

𝜇

𝜇 + 1

, (35)

where 𝜇 are some𝑚−𝑠 generalized eigenvalues of the following
generalized eigenvalue problem:

𝐵
𝑇
𝑊
−1
𝐵𝑥 = 𝜇𝐴𝑥. (36)

Corollary 10. Let A be nonsingular, and its (1, 1) block 𝐴
is singular with nullity 𝑚. Then the preconditioned matrix
F−1
1
A has only precisely one eigenvalue: 𝜆 = 1 of geometric

multiplicity 𝑛 + 𝑚.

Remark 11. From Corollaries 8 and 10, if the nullity of𝐴 is𝑚,
it is readily seen that the preconditioned matrix M−1A has
precisely twodistinct eigenvalues and that the preconditioned
matrix F−1

1
A has only precisely one eigenvalue. Thus, we

know that any preconditioned Krylov subspace method such
as GMRES terminates in at most two steps if round-off errors
are ignored.

Remark 12. From the proof of Theorems 1 and 6, we see that
we have not relied on specific properties; Theorems 1 and 6
hold for any positive definite matrix𝑊. In the next section,
we will discuss the choices of𝑊.

2.2. Choices of the Weight Matrix𝑊. In this section we will
discuss the choice of the weight matrix 𝑊. Given a weight
matrix, an efficient method of factoring or iteratively solving
systems with the preconditioner must be sought. These
considerations are motivated by the fact that each iteration of
a preconditioned Krylov subspace method requires solutions
to linear systems of the forms P

𝑘
𝑥 = 𝑏 and F

𝑘
𝑥 = 𝑏; based

on the block structure of P
𝑘
and F

𝑘
, this requires solving

systems with 𝐴 + 𝐵𝑇𝑊−1𝐵 and𝑊.
If𝑊 is diagonal or block diagonal with small blocks, the

matrix𝐴+𝐵𝑇𝑊−1𝐵 is also going to be sparse. A simple, one-
parameter choice is a scaled identity. Letting𝑊 = (1/𝛾)𝐼with
𝛾 = ‖𝐴‖/‖𝐵‖

2, 𝛾 could be chosen so that the augmenting term
𝛾𝐵
𝑇
𝐵 is of norm comparable to 𝐴. See, for example, [18, 20]

for a general algebraic discussion. For solving P
𝑘
𝑥 = 𝑏 and

F
𝑘
𝑥 = 𝑏, iterative method is possible. In an iterative scheme

the inner iteration can be solved using the preconditioned
GMRESmethod based on incompleteCholesky factorization.

In fact, for𝑊 = (1/𝛾)𝐼, it follows from two identities

P
−1

𝑘
= (

(𝐴 + 𝛾𝐵
𝑇
𝐵)

−1

0

0 𝐼
𝑚

)(

𝐼
𝑛
𝐵
𝑇

0 −𝐼
𝑚

)(

𝐼
𝑛

0

0

𝛾

2𝑘 − 1

𝐼
𝑚

) ,

F
−1

𝑘
= (

(𝐴 + 𝛾𝐵
𝑇
𝐵)

−1

0

0 𝐼
𝑚

)(

𝐼
𝑛
2𝑘𝐵
𝑇

0 −𝐼
𝑚

)(

𝐼
𝑛

0

0

𝛾

2𝑘 − 1

𝐼
𝑚

)

(37)

that the action of the preconditioner on a given vector
requires one application of (𝐴 + 𝛾𝐵𝑇𝐵)−1 and one sparse
matrix-vector product with 𝐵𝑇. Clearly, themain issue is how
to solve linear systems with coefficient matrix 𝐴 + 𝛾𝐵𝑇𝐵.
For large problems these have to be solved by an inner
iterative method. Even though the inner solvers need not be
performed to high accuracy, developing a robust and efficient
iterative method for such problems is a nontrivial task. An
effective multigrid method has been developed in [12]. We
will further discuss the issue of inexact solvers in the section
on numerical experiments.

Finally, we mention that other choices of𝑊 are possible.
For example, setting𝑊 = (𝐵𝑇𝐵)−1 has the advantage that the
matrix 𝐵(𝐵𝑇𝐵)−1𝐵𝑇 is an orthogonal projector onto the range
of 𝐵, which is orthogonal to the null space of 𝐵𝑇, and since
the null space of 𝐴 does not intersect with the null space of
𝐵
𝑇 either, such a choice of𝑊 is viable. See [11, 18, 20] for other

choices of𝑊.

3. Numerical Experiments

In this section, we illustrate the performance of our precon-
ditioning approach on Maxwell equation in which the (1, 1)
blocks of the associated matrices are highly singular. Our
results include iteration counts, condition counts, and some
timings and eigenvalue plots. All the numerical experiments
were performed with MATLAB 7.0. The machine we have
used is a PC-AMD, CPU T7400 2.2GHz process. We first
consider a finite element discretization of the time-harmonic
Maxwell equations (2)withwave numbers in a square domain
(−1 ≤ 𝑥 ≤ 1, −1 ≤ 𝑦 ≤ 1) [17] and derive the saddle point
linear system of the form (2).

In our first numerical examples the matrix 𝑊 in the
augmentation block preconditioners is taken as𝑊 = (1/𝛾)𝐼

𝑚
,

whereas the positive parameter 𝛾 is taken as (cf. [18])

𝛾 =

‖𝐴‖1

‖𝐵‖
2

1

. (38)

Figures 1, 2, 3, and 4 display the eigenvalues of the pre-
conditioned matrices P−1

𝑘
A and F−1

𝑘
A for different values

of 𝑘. As predicted by the theories and Corollaries 2–5 and
Corollaries 7–10, from these figures we can see that the higher
the nullity of the (1, 1) block is, the stronger the eigenvalues of
the preconditionedmatrices are clustered.They are extremely
close to 1. Note that the clustering of the spectrum away
from the zero eigenvalue suggests that GMRESwith the block
triangular preconditioners will converge fast.
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Table 1: Comparison of iteration counts for GMRES ofA andP−1
𝑘
A for different 𝑘.

𝑘 0 0.3 0.9 1
Iter1 10 10 10 10
Iter2 4 3 2 2
Dcond 9.3418𝑒 + 016 9.3418𝑒 + 016 9.3418𝑒 + 016 9.3418𝑒 + 016

PreDcond 7.8317𝑒 + 05 1.0174𝑒 + 06 7.2132𝑒 + 05 3.3704𝑒 + 05

Table 2: Comparison of iteration counts for GMRES ofA andF−1
𝑘
A for different 𝑘.

𝑘 0 0.3 0.9 1
Iter1 10 10 10 10
Iter3 1 2 2 1
Dcond 9.3418𝑒 + 016 9.3418𝑒 + 016 9.3418𝑒 + 016 9.3418𝑒 + 016

PreDcond 3.1740𝑒 + 05 2.2504𝑒 + 04 8.1205𝑒 + 04 1.0528𝑒 + 05
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Figure 1: Eigenvalues of the preconditioned matrixP−1
𝑘
A with 𝑘 =

0.4.

0 100 200 300 400 500 600 700 800

0

0.5

1

1.5

2

Order

Im
ag

in
ar

y 
pa

rt
 o

f e
ig

en
va

lu
es

−0.5

−1

−1.5

−2

×10
−15

Figure 2: Eigenvalues of the preconditioned matrixP−1
𝑘
Awith 𝑘 =

0.4.

Table 3: Iteration counts for GMRES of A, P−1
𝑘
A, and F−1

𝑘
A for

𝑘 = 0.01 and tol = 1.0000𝑒 − 04.

Grid 8 × 8 16 × 16 32 × 32 64 × 64

Iter1 89 835 1000 >1000
Iter2 3 4 6 8
Iter3 1 2 2 2

Table 4: Iteration counts for GMRES of A, P−1
𝑘
A, and F−1

𝑘
A for

𝑘 = 0.01 and tol = 1.0000𝑒 − 08.

Grid 8 × 8 16 × 16 32 × 32 64 × 64

Iter1 89 835 1000 >1000
Iter2 6 11 25 32
Iter3 2 4 7 8

3.1. Exact Solvers. In this section we first study the effec-
tiveness of the preconditioner with “exact” solvers: that is,
linear systems with coefficient matrix 𝐴 + 𝛾𝐵𝑇𝐵 are solved
by a direct sparse LU factorization in combination with
appropriate sparsity-preserving orderings.

In Tables 1–4, Dcond, PreDcond, and PreDcond1 denote
the condition numbers of the systemmatricesA,P−1

𝑘
A, and

F−1
𝑘
A, respectively. Iter1, Iter2, and Iter3 denote the iteration

counts for GMRES ofA,P−1
𝑘
A, andF−1

𝑘
A, respectively. As

is evident, our solver performs extremely well. From Tables
1 and 2, we can see that two types of iteration numbers
with the preconditioners P−1

𝑘
and F−1

𝑘
are slightly changed

by the change of parameter 𝑘. From Table 1, augmentation
block triangular preconditioners P−

𝑘
(𝑘 > 1/2) show more

effective performance than those of augmentation block
triangular preconditioners P+

𝑘
(0 < 𝑘 < 1/2). From Tables

3 and 4, we can see that the preconditioners P−1
𝑘

and F−1
𝑘

greatly reduce the condition counts of coefficient matrix A,
and iteration numbers of the preconditioned GMRES with
the preconditioners P−1

𝑘
and F−1

𝑘
are greatly reduced by

the change of grids. Moreover, from Tables 3 and 4, we
can know that the preconditioned GMRES method with
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Figure 3: Eigenvalues of the preconditioned matrixF−1
𝑘
Awith 𝑘 =

0.4.
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Figure 4: Eigenvalues of the preconditioned matrixF−1
𝑘
Awith 𝑘 =

0.4.

the preconditioner F−1
𝑘

is more effective than the precondi-
tioned GMRES method with the preconditionerP−1

𝑘
.

3.2. Inexact Solvers. In practice, using exact solvers in the
application of the preconditioner may be too expensive. Here
we consider replacing the exact solvers with inexact ones,
obtained via an inner preconditioned GMRES iteration. In
this paper we explore the use of drop tolerance-based incom-
plete LU as the preconditioner for the inner iteration. During
implementation of our augmentation block preconditioners,
we need the operation (𝐴 + 𝛾𝐵𝑇𝐵)−1𝑢 for a given vector 𝑢 or,
equivalently, to solve the following equation: (𝐴 + 𝛾𝐵𝑇𝐵)V =
𝑢 for which we use an incomplete LU factorization of 𝐴 +
𝛾𝐵
𝑇
𝐵 = 𝐿𝑈+𝑅with drop tolerance 𝜏, where𝑅 = (𝑟

𝑖,𝑗
), |𝑟
𝑖,𝑗
| ≤

𝜏.

4. Conclusions

In this paper, we have considered preconditioned iterative
methods applied to discretizations of the time-harmonic
Maxwell equations (𝑘 = 0) in electromagnetic problems.
We have analyzed the spectral properties as well as the
computational performance of two types of block triangular
augmentation preconditioners. Complete theoretical analysis
shows that all eigenvalues of the preconditioned matrices are
strongly clustered. A good parameter choice may substan-
tially reduce the iteration numbers and condition counts.
Especially, we have shown that, in cases where the (1, 1)
block has high nullity, convergence for each of the two
preconditioned GMRES iterative methods is guaranteed to
be almost immediate. We have compared the performance of
various types of preconditioners with regard to the grids, con-
dition counts, the time step, and other problems parameters.
Finally, the approach that we have investigated is parameter
dependent, and it would be desirable to explore choices that
reduce the overall computational cost.
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