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A discrete initial-value problem describing multiple fragmentation processes, where the fragmentation rate is size and position
dependent and where new particles are spatially randomly distributed according to some probabilistic law, is investigated by
means of parameter-dependent operators together with the theory of substochastic semigroups with a parameter. The existence
of semigroups is established for each parameter and “glued” together so as to obtain a semigroup to the full space. Under certain
conditions on each fragmentation rate, we usedKato’sTheorem in𝐿

1
to show the existence of the generator andwe provide sufficient

conditions for honesty.

1. Introduction

The process of fragmentation of clusters occurs in numerous
domains of pure and applied sciences, such as the depoly-
merization, the rock fractures, and break of droplets. The
fragmentation rate can be size and position dependent, and
new particles resulting from the fragmentation are spatially
randomly distributed according to some probability density.
When it is supposed that every group of size 𝑛 ∈ N

(one 𝑛-group) in a system of particles clusters consists of
𝑛 identical fundamental units (monomers), then the mass
of every group is simply a multiple positive integer of the
mass of the monomer. We focus here on clusters that are
discrete; that is, they consist of a finite number of elementary
(unbreakable) particles which are assumed to be of unit mass.
The state at a given time 𝑡 is the repartition at that time of
all aggregates according to their size 𝑛 and their position 𝑥.
The evolution of such particle-mass-position distribution is
given by an integrodifferential [1] equation as we will see in
this paper.

Before going farther let us review what have already
been done. Various types of fragmentation equations have
been comprehensively analyzed in numerous works (see,
e.g., [2–9]). Conservative and nonconservative regimes for

fragmentation equations have been thoroughly investigated,
and, in particular, the breach of the mass conservation law
(called shattering) has been attributed to a phase transition
creating a dust of zero-size particles with nonzero mass,
which are beyond the model resolution. Shattering can
be interpreted from the probabilistic point of view as the
explosion in the Markov process describing fragmentation
[8, 10] and from an analytic point of view as dishonesty
of the semigroup associated with the model [2, 7]. Kinetic-
Type Models with Diffusion were investigated in [11] where
the author showed that the diffusive part does not affect the
breach of the conservation laws. But discrete fragmentation
processes have not widely been investigated yet. In [1], a
discrete model with the concentration depending only on the
size 𝑛 of clusters and time 𝑡 is analyzed and the author used
compactness of the semigroups to analyze their long time
behavior and proved that they have the asynchronous growth
property.

In this paper, we exploit a technique called the method
of semigroups with a parameter [2] to analyze discrete
fragmentation models with the concentration of particles
depending not only on the size 𝑛 of clusters and time 𝑡, but
also on the random position 𝑥 of the clusters in the space.
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2. Models’ Description and Assumptions

We focus onmodels with discrete size; that is, we assume that
the mass of a particle can be an arbitrary positive integer.
The solution 𝑝

𝑛
= 𝑝(𝑡, 𝑥, 𝑛) which characterizes the state

of the system at any moment 𝑡 is the particle-mass-position
distribution defined as𝑝 : R

+
×R3×N → R

+
. For the reasons

of simplicity, we will sometimes use 𝑝(𝑡, 𝑥, 𝑛) = 𝑝
𝑛
(𝑡, 𝑥) or

simply 𝑝
𝑛
. During the unit time, a fraction 𝑎

𝑛
(𝑥) = 𝑎(𝑥, 𝑛)

(or simply 𝑎
𝑛
) of aggregates of size 𝑛 and located at 𝑥 are

undergoing breakup. We assume that for each 𝑛 ∈ N, there
are two constants 0 < 𝜃

1
and 𝜃
2
such that

𝜃
1
𝛼
𝑛
≤ 𝑎
𝑛
(𝑥) ≤ 𝜃

2
𝛼
𝑛
, (1)

with 𝛼
𝑛
∈ R
+
and independent of the state variable 𝑥. Clearly

we require that

𝑎
1
(𝑥) = 0 (2)

for every 𝑥 ∈ R3, since a cluster of size one cannot split.
Once a group of size 𝑚 and position 𝑥 breaks, the

expected average number of 𝑛-group produced upon the
splitting is a nonnegative measurable function 𝑏

𝑛,𝑚
(𝑥) =

𝑏(𝑥, 𝑛,𝑚) defined on R3 × N × N with support in the set

R
3
× {(𝑛,𝑚) ∈ N × N : 𝑚 > 𝑛} . (3)

The sum of all individuals obtained by fragmentation of an
𝑛-group should again be 𝑛 hence it follows that for any 𝑛 ∈ N,
𝑥 ∈ R3

𝑛−1

∑

𝑚=1

𝑚𝑏 (𝑥,𝑚, 𝑛) = 𝑛. (4)

Since a group of size 𝑚 ≤ 𝑛 cannot split to form a group of
size 𝑛, we require that

𝑏
𝑛,𝑚
= 0 ∀𝑚 ≤ 𝑛. (5)

Furthermore the expected number of daughter particles
produced by fragmentation of an 𝑛-group (with position 𝑥)
is, by definition, given by ∑𝑛−1

𝑚=1
𝑏(𝑥,𝑚, 𝑛).

After cluster fragmentation, new originating groups have
different centers distributed according to a given probabilistic
law ℎ(⋅, 𝑛, 𝑚, 𝑦). This is the probability density that after a
breakup of an 𝑚-aggregate (with the center at 𝑦), the new
formed 𝑛-group will be located at 𝑥. Therefore

∫
R3
ℎ (𝑥, 𝑛,𝑚, 𝑦) 𝑑𝑥 = 1. (6)

The equation describing the evolution of the particle-mass-
size distribution function for a discrete system undergoing
fragmentation can be derived by balancing loss and gain of

clusters of size 𝑛 (with position 𝑥) over a short period of time
and is given by

𝜕𝑝

𝜕𝑡
(𝑡, 𝑥, 𝑛) = −𝑎

𝑛
(𝑥) 𝑝 (𝑡, 𝑥, 𝑛)

+

∞

∑

𝑚=𝑛+1

∫
R3
𝑎
𝑚
(𝑦) 𝑏
𝑛,𝑚
(𝑦) ℎ (𝑥, 𝑛,𝑚, 𝑦) 𝑝

× (𝑡, 𝑦,𝑚) 𝑑𝑦, 𝑛 = 1, 2, 3, . . . ,

(7)

where in terms of 𝑛 and 𝑥, the state of the system is charac-
terized at any moment 𝑡 by the density (or concentration) of
particles 𝑝(𝑡, 𝑥, 𝑛).

3. Well Posedness of the Fragmentation
Problem

Since 𝑝
𝑛
= 𝑝(𝑡, 𝑥, 𝑛) is the density of groups of size 𝑛 at the

position 𝑥 and mass is expected to be a conserved quantity,
the most appropriate space to work in is the space

X
1
:= {g = (𝑔

𝑛
)
∞

𝑛=1
: R
3
× N ∋ (𝑥, 𝑛) → 𝑔

𝑛
(𝑥) ,

g
1
:= ∫

R3

∞

∑

𝑛=1

𝑛
𝑔𝑛 (𝑥)

 𝑑𝑥 < ∞} .

(8)

We complement (7) with the initial mass-position distri-
bution

𝑝 (0, 𝑥, 𝑛) =

𝑜

𝑝
𝑛
(𝑥) , 𝑛 = 1, 2, 3, . . . . (9)

InX
1
, we can rewrite (7) and (9) in more compact form:

𝜕

𝜕𝑡
p = Ap +Bp,

p
|𝑡=0
=

op .
(10)

Here p is the vector (𝑝(𝑡, 𝑥, 𝑛))
𝑛∈N, A is the diagonal matrix

(𝑎
𝑛
(𝑥))
𝑛∈N,B is defined by the expression

Bp

= (

∞

∑

𝑚=𝑛+1

∫
R3
𝑎
𝑚
(𝑦) 𝑏
𝑛,𝑚
(𝑦) ℎ (𝑥, 𝑛,𝑚, 𝑦) 𝑝

𝑚
(𝑦) 𝑑𝑦)

∞

𝑛=1

,

(11)

and
op is the initial vector (

𝑜

𝑝
𝑛
(𝑥))
𝑛∈N which belongs toX

1
.We

introduce operators A and B inX
1
defined by

[Ap] (𝑥, 𝑛) = [Ap] (𝑥, 𝑛) , 𝐷 (A) = {g ∈ X
1
; 𝑎g ∈ X

1
} ,

[Bp] (𝑥, 𝑛) = [Bp] (𝑥, 𝑛) , 𝐷 (B) := 𝐷 (A) .
(12)
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Lemma 1. (A + B, 𝐷(A)) is a well-defined operator.

Proof. We need to show that B𝐷(A) ⊂ X
1
. For every g ∈

𝐷(A),

Bg
1
= ∫

R3
(

∞

∑

𝑛=1

𝑛

∞

∑

𝑚=𝑛+1

∫
R3
𝑎
𝑚
(𝑦) 𝑏
𝑛,𝑚
(𝑦) ℎ (𝑥, 𝑛,𝑚, 𝑦)

×
𝑔 (𝑦,𝑚)

 𝑑𝑦)𝑑𝑥

= ∫
R3
(

∞

∑

𝑛=1

𝑛

∞

∑

𝑚=𝑛+1

𝑎
𝑚
(𝑦) 𝑏
𝑛,𝑚
(𝑦)
𝑔 (𝑦,𝑚)

) 𝑑𝑦

= ∫
R3

∞

∑

𝑚=2

𝑎
𝑚
(𝑦)
𝑔 (𝑦,𝑚)

 (

∞

∑

𝑛=1

𝑛𝑏
𝑛,𝑚
(𝑦)) 𝑑𝑦

= ∫
R3

∞

∑

𝑚=2

𝑎
𝑚
(𝑦)
𝑔 (𝑦,𝑚)

 (

𝑚−1

∑

𝑛=1

𝑛𝑏
𝑛,𝑚
(𝑦))𝑑𝑦

= ∫
R3

∞

∑

𝑚=2

𝑚𝑎
𝑚
(𝑦)
𝑔 (𝑦,𝑚)

 𝑑𝑦

= ∫
R3

∞

∑

𝑚=1

𝑚𝑎
𝑚
(𝑦)
𝑔 (𝑦,𝑚)

 𝑑𝑦

=
Ag
1

< ∞,

(13)

where we have used (6), (4), and (5), respectively. Then
‖Bg‖
1
= ‖Ag‖

1
∀g ∈ 𝐷(A), so that we can take𝐷(B) := 𝐷(A),

and (A + B, 𝐷(A)) is well defined.

3.1. Mathematical Setting and Analysis. We note that the
operators on the left-hand side of (12) have the property that
one of the variables is a parameter and, for each value of this
parameter, the operator has a certain desirable property (like
being the generator of a semigroup) with respect to the other
variable. Thus we need to work with parameter-dependent
operators that can be “glued” together in such a way that the
resulting operator inherits the properties of the individual
ones. Let us provide a framework for such a technique called
the method of semigroups with a parameter [2].

Let Λ = R3 × N and consider the space X := 𝐿
𝑝
(𝑉,𝑋)

where 1 ≤ 𝑝 < ∞, (𝑉, 𝑑𝑚) is a measure space and 𝑋
a Banach space. Let us suppose that we are given a family
of operators {(𝐴V, 𝐷(𝐴V))}V∈𝑉 in 𝑋 and define the operator
(A, 𝐷(A)) acting inX according to the following formulae:

D (A) := {𝑔 ∈ X; 𝑔 (V) ∈ 𝐷 (𝐴V) for almost every

V ∈ 𝑉, A𝑔 ∈ X} ,
(14)

and, for 𝑔 ∈ D(A),

(A𝑔) (V) := 𝐴V𝑔 (V) (15)

for every V ∈ X
1
. We have the following proposition.

Proposition 2 (see [2, Proposition 3.28]). If for almost any
V ∈ 𝑉 the operator 𝐴V is m-dissipative in 𝑋, and the function
V → 𝑅(𝜆, 𝐴V)𝑔(V) is measurable for any 𝜆 > 0 and 𝑔 ∈
X, then the operator A is an m-dissipative operator in X. If
(𝐺V(𝑡))𝑡≥0 and (G(𝑡))𝑡≥0 are the semigroups generated by 𝐴V
and A, respectively, then for almost every V ∈ 𝑉, 𝑡 ≥ 0, and
𝑔 ∈ X we have

[G (𝑡) 𝑔] (V) := 𝐺V (𝑡) 𝑔 (V) . (16)

Using the above ideas we introduce operators that cover
the case of the present applications. Here the 𝑛 variable is the
parameter and 𝑥 is the main variable. We set

𝑋
𝑥
:= 𝐿
1
(R
3
, 𝑑𝑥) := {𝜓 :=

𝜓
 = ∫

R3

𝜓 (𝑥, 𝑛)
 𝑑𝑥 < ∞}

(17)

and define in𝑋
𝑥
the operators (A

𝑛
, 𝐷(A

𝑛
)) as

A
𝑛
𝑝 (𝑡, 𝑥, 𝑛) = 𝑎

𝑛
(𝑥) 𝑝 (𝑡, 𝑥, 𝑛) ,

𝐷 (A
𝑛
) := {𝑝

𝑛
∈ 𝑋
𝑥
,A
𝑛
𝑝
𝑛
∈ 𝑋
𝑥
} , 𝑛 ∈ N.

(18)

Using the above proposition, we can take A = A,X = X
1
=

𝐿
1
(N, 𝑋
𝑥
) = 𝐿

1
(Λ, 𝑑𝜇𝑑𝜍) = 𝐿

1
(R3 × N, 𝑑𝜇𝑑𝜍), where N is

equipped with the counting measure 𝑑𝜍 and 𝑑𝜇 = 𝑑𝑥 is the
Lebesgue measure in R3. In the notation of the proposition,
(N, 𝑑𝜍) = (𝑉, 𝑑𝑚), 𝑋

𝑥
= 𝑋, and 𝐴V = A

𝑛
; therefore

(A
𝑛
, 𝐷(A

𝑛
))
𝑛∈N is a family of operators in𝑋

𝑥
, and using (15),

we have

(Ap)
𝑛
:= A
𝑛
𝑝
𝑛
. (19)

Theorem 3. There is an extension𝐾 of A + B that generates a
positive semigroup of contractions (𝑆

𝐾
(𝑡))
𝑡≥0

onX
1
. Moreover,

for each
op = (

𝑜

𝑝
𝑛
(𝑥))
𝑛∈N ∈ 𝐷(𝐾) there is a measurable repre-

sentation p of 𝑆
𝐾
(𝑡)

op which is absolutely continuous with
respect to 𝑡 ≥ 0 for almost any (𝑥, 𝑛) and such that (10) is
satisfied almost everywhere.

Proof. To prove the first part of the theorem, let’s show that
for each 𝑛 ∈ N, A

𝑛
generates a positive semigroup of

contractions. This assertion follows from (1) and the fact that
the operator A

𝑛
is a multiplication operator on 𝑋

𝑥
induced

by the measurable function 𝑎; then, it is closed and densely
defined [12]. Also for any 𝜆 > 0, it is obvious that 𝜆𝐼 − A

𝑛

is bijective and the resolvent 𝑅(𝜆,A
𝑛
) of A

𝑛
satisfies the

estimate

𝑅 (𝜆,A𝑛) 𝜓
 ≤
1

𝜆

𝜓


(20)

for any 𝜓 ∈ 𝑋
𝑥
. Furthermore for any positive 𝜆, the operator

𝑅(𝜆,A
𝑛
) is nonnegative. Therefore (A

𝑛
, 𝐷(A

𝑛
)) generates a

positive semigroup of contractions. Thus, using relation (16)
of Proposition 2, we claim that (A, 𝐷(A)) also generates a
positive semigroup of contractions.
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It is clear that (B, 𝐷(B)) is positive. Furthermore for any
p ∈ 𝐷(A), by the calculations in the Lemma 1, we have
‖Ag‖
1
= ‖Bg‖

1
. Then

∫
Λ

(−Ap + Bp) 𝑑𝜇 𝑑𝜍

= −∫
R3

∞

∑

𝑚=1

𝑚𝑎
𝑚
(𝑦)
𝑔 (𝑦,𝑚)

 𝑑𝑦

+ ∫
R3
(

∞

∑

𝑛=1

𝑛

∞

∑

𝑚=𝑛+1

∫
R3
𝑎
𝑚
(𝑦) 𝑏
𝑛,𝑚
(𝑦) ℎ (𝑥, 𝑛,𝑚, 𝑦)

×
𝑔 (𝑦,𝑚)

 𝑑𝑦)𝑑𝑥

= 0.

(21)

Thus the assumptions of Kato’s Theorem in 𝐿
1
(see [2,

Corollary 5.17]) are satisfied. Therefore there is an extension
𝐾 of A + B generating a substochastic semigroup (𝐺

𝐾
(𝑡))
𝑡≥0

.
Let 𝐾

𝑛
be the 𝑛th of 𝐾 according to (19) and Proposition 2;

then from (16), it suffices to prove the assertions of the
theorem for each𝐾

𝑛
, 𝑛 ∈ N. For any

𝑜

𝑝
𝑛
∈ 𝐷(𝐾

𝑛
), the function

𝑡 → 𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
is a𝐶1-function in the normof𝑋

𝑥
and satisfies

the equation
𝑑

𝑑𝑡
𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
= 𝐾
𝑛
𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
, (22)

where the equality holds for any 𝑡 > 0 in the sense of equality
in𝑋
𝑥
. The initial condition is satisfied in the following sense:

lim
𝑡→0
+

𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
=

𝑜

𝑝
𝑛
, (23)

where the convergence is in the𝑋
𝑥
-norm.

In order to prove the second part of this theoremwemake
use of the theory of extensions and the theory of 𝐿 spaces
[2]. Let Θ be the set of finite almost everywhere measurable
functions defined on R3. We recall that Θ is a lattice with
respect to the usual relation (≤almost everywhere), 𝑋

𝑥
⊂ Θ,

and 𝑋
𝑥
is a sublattice of Θ. We denote by (𝑋

𝑥
)
+
and Θ

+

the positive cones of 𝑋
𝑥
and Θ, respectively. For each 𝑛 ∈

N we introduce the operator 𝐷
𝑛
defined such that for any

nondecreasing sequence (𝜓
𝑘
)
𝑘∈N in (𝑋

𝑥
)
+
with sup

𝑘∈N𝜓𝑘 =

𝜓 ∈ Θ
+
,

𝐷
𝑛
𝜓 := sup
𝑘∈N

B
𝑛
𝜓
𝑘
, (24)

where B
𝑛
is given by Bp = (B

𝑛
)
∞

𝑛=1
defined in (11). Since

B
𝑛
is an integral operator with positive kernel, Lebesgue’s

monotone convergence theorem yields that 𝐷
𝑛
= B
𝑛
. Thus,

[2, Theorem 6.20] yields 𝐾
𝑛
⊂ A
𝑛
+ B
𝑛
. Hence 𝐺

𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛

satisfies

[
𝑑

𝑑𝑡
𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
] (𝑥, 𝑛) = [A

𝑛
𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
] (𝑥, 𝑛)

+ [B
𝑛
𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
] (𝑥, 𝑛) ,

(25)

for each fixed 𝑡 > 0, where the right-hand side does not
depend (in the sense of equality almost everywhere) on
what representation of the solution 𝐺

𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
is considered.

Making use of the fact that 𝑋
𝑥
is an 𝐿 space, from [13,

Theorem 3.4.2], we have that since the function 𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
is

strongly differentiable, there is a representation 𝑝(𝑡, 𝑥, 𝑛) =
𝑝
𝑛
of 𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
that is absolutely continuous with respect to

𝑡 ≥ 0 for almost any (𝑥, 𝑛) ∈ R
+
× R3, and that satisfies

(𝜕/𝜕𝑡)𝑝(𝑡, 𝑥, 𝑛) = [(𝑑/𝑑𝑡)𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
](𝑥, 𝑛) for any 𝑡 ≥ 0

and almost any (𝑥, 𝑛). Hence, taking this representation, we
obtain that

𝜕𝑝

𝜕𝑡
(𝑡, 𝑥, 𝑛)

= −𝑎
𝑛
(𝑥) 𝑝
𝑛

+

∞

∑

𝑚=𝑛+1

∫
R3
𝑎
𝑚
(𝑦) 𝑏
𝑛,𝑚
(𝑦) ℎ (𝑥, 𝑛,𝑚, 𝑦) 𝑝

𝑚
(𝑦) 𝑑𝑦

(26)

holds almost everywhere onR
+
×R3. Moreover, the continu-

ity of 𝑝
𝑛
with respect to 𝑡 for almost every (𝑥, 𝑛) shows that

lim
𝑡→0
+𝑝
𝑛
= 𝑝(𝑥, 𝑛) exists almost everywhere. From (23) we

see that there is a sequence (𝑡
𝑘
)
𝑘∈N converging to 0 such that

lim
𝑘→∞

𝑝(𝑡
𝑘
, 𝑥, 𝑛) =

𝑜

𝑝
𝑛
(𝑥, 𝑛), for almost every (𝑥, 𝑛). Here

we can use the same representation as above because we are
dealing with a (countable) sequence. Indeed, changing the
representation on a set of measure zero for each 𝑛 and further
taking the union of all these sets still produce a set of measure
zero. Thus

𝑜

𝑝
𝑛
= 𝑝
𝑛
almost everywhere.

In general for each 𝑛 ∈ N, the function 𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
is not

differentiable if
𝑜

𝑝
𝑛
∈ 𝑋
𝑥
\ 𝐷(𝐾

𝑛
). Therefore it cannot be

a classical solution of the Cauchy problem (22) and (23).
However it is a mild solution, that is, it is a continuous
function such that ∫𝑡

0
𝑝
𝑛
(𝜏)𝑑𝜏 ∈ 𝐷(𝐾

𝑛
) for any 𝑡 ≥ 0,

satisfying the integrated version of (22) and (23):

𝑝
𝑛
(𝑡) =

𝑜

𝑝
𝑛
+ 𝐾
𝑛
∫

𝑡

0

𝑝
𝑛
(𝜏) 𝑑𝜏. (27)

Corollary 4. If
𝑜

𝑝
𝑛
∈ 𝑋
𝑥
\ 𝐷(𝐾

𝑛
), then 𝑝

𝑛
= [𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
](𝑥, 𝑛)

satisfies the equation

𝑝 (𝑡, 𝑥, 𝑛) =

𝑜

𝑝
𝑛
(𝑥, 𝑛) − 𝑎

𝑛
(𝑥) ∫

𝑡

0

𝑝 (𝜏, 𝑥, 𝑛) 𝑑𝜏

+

∞

∑

𝑚=𝑛+1

∫
R3
𝑎
𝑚
(𝑦) 𝑏
𝑛,𝑚
(𝑦) ℎ (𝑥, 𝑛,𝑚, 𝑦) 𝑝

𝑚
(𝑦)

× (∫

𝑡

0

𝑝 (𝜏, 𝑦, 𝑛) 𝑑𝜏) 𝑑𝑦.

(28)
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Proof. Because 𝑝
𝑛
is continuous in the norm of 𝑋

𝑥
=

𝐿
1
(R3, 𝑑𝑥), we can use the fact that 𝑋

𝑥
is of type 𝐿 (see [2,

Theorem 2.39]) to claim that 𝑎𝑎
𝑛
(𝑥) ∫
𝑡

0
𝑝(𝜏, 𝑥, 𝑛)𝑑𝜏 is defined

for almost any (𝑥, 𝑛) and any 𝑡, and hence we can write

[(A
𝑛
+B
𝑛
) ∫

𝑡

0

𝑝 (𝜏) 𝑑𝜏] (𝑥, 𝑛)

= −𝑎
𝑛
(𝑥) ∫

𝑡

0

𝑝 (𝜏, 𝑥, 𝑛) 𝑑𝜏

+

∞

∑

𝑚=𝑛+1

∫
R3
𝑎
𝑚
(𝑦) 𝑏
𝑛,𝑚
(𝑦) ℎ (𝑥, 𝑛,𝑚, 𝑦) 𝑝

𝑚
(𝑦)

× (∫

𝑡

0

𝑝 (𝜏, 𝑦, 𝑛) 𝑑𝜏) 𝑑𝑦.

(29)

Thus, combining the result used in the previous theorem that
𝐾
𝑛
⊂ A
𝑛
+B
𝑛
with (27) we obtain (28).

Next we provide a fairly general condition for honesty of
(𝐺
𝐾𝑛
(𝑡))
𝑡≥0

.

4. Honesty

Because the total number of individuals in a population is
not modified by interactions (fragmentation) among groups,
the following conservation law is supposed to be satisfied
throughout the evolution:

𝑑

𝑑𝑡
𝑈 (𝑡) = 0, (30)

where 𝑈(𝑡) = ∑∞
𝑛=1
∫
R3
𝑛𝑝(𝑡, 𝑥, 𝑛)𝑑𝑥 = ∑

∞

𝑛=1
𝑛 ∫

R3
𝑝(𝑡, 𝑥, 𝑛)𝑑𝑥

is the total number of particles (total mass) in the system.
This is formally expressed by (7) as the mass rate equation
can be found by multiplying (7) by 𝑛, integrating over R3,
summing from 𝑛 = 1 to∞ and using (4), which agrees with
the physics of the process as fragmentation should simply
rearrange the distribution of masses of the particles without
altering the total mass of the system. However, the validity
of (30) depends on certain properties of the solution 𝑝 that
we tacitly assumed during the integration and which are
far from obvious. In fact, by analyzing models with specific
coefficients, several authors have observed that the local
version of (30) is not valid [9]. In other words, there occurs
an unexpected mass loss in the system. In local fragmenta-
tion, the unaccounted for mass loss was termed shattering
fragmentation and was attributed to the phase transition in
which a dust of particles with zero size and nonzero mass is
formed. The presence of 𝑥 in (30) suggests that honesty in
nonlocal discrete fragmentation depends also on the spatial
properties of the fragmentation kernels. In this section we
provide sufficient conditions for the discrete fragmentation
semigroup to be honest for general coefficients.

Lemma 5. Assume that for any p = (𝑝
𝑛
)
∞

𝑛=1
∈ (X
1
)
+
such that

−Ap + Bp ∈ X
1
we have the inequality

∫
Λ

(−Ap + Bp) 𝑑𝜇 𝑑𝜍 ≥ 0, (31)

then 𝐾 = A + B. Thus the solution (𝑝
𝑛
)
∞

𝑛=1
= p = 𝐺

𝐾
(𝑡)
𝑜p=

(𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
)
∞

𝑛=1
satisfies

𝑑

𝑑𝑡

∞

∑

𝑛=1

∫
R3
𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛
(𝑥, 𝑛) 𝑛 𝑑𝑥 =

𝑑

𝑑𝑡


𝐺
𝐾𝑛
(𝑡)

𝑜

𝑝
𝑛


= 0 (32)

and for any
𝑜p
𝑛
= (

𝑜

𝑝)

∞

𝑛=1
∈ 𝐷(𝐾)

+
. In other words, the

semigroup (𝐺
𝐾
(𝑡))
𝑡≥0

is honest.

Proof. Themethod we employ is analogous to that used in [2,
Theorem 6.22]. Assume that for any p = (𝑝

𝑛
)
∞

𝑛=1
∈ (X

1
)
+

such that −Ap + Bp ∈ X
1
the inequality (31) holds; then we

have

− ∫
R3

∞

∑

𝑛=1

𝑛𝑎 (𝑦, 𝑛) 𝑔 (𝑦, 𝑛) 𝑑𝑦

+ ∫
R3
(

∞

∑

𝑛=1

𝑛

∞

∑

𝑚=𝑛+1

∫
R3
𝑎 (𝑦,𝑚) 𝑏

𝑛,𝑚
(𝑦) ℎ (𝑥, 𝑛,𝑚, 𝑦) 𝑔

× (𝑦,𝑚) 𝑑𝑦)𝑑𝑥 ≥ 0.

(33)

By Proposition 2 and [2,Theorems 6.13 and 6.22], it is enough
to show, for each 𝑛 ∈ N, that any 𝑓

𝑛
(𝑥) = 𝑓(𝑥, 𝑛) ∈ 𝐹

𝑛+
such

that −𝑓
𝑛
+B
𝑛
𝐿𝑓
𝑛
∈ 𝑋
𝑥
; the following inequality holds:

∞

∑

𝑛=1

∫
R3
[𝐿𝑓
𝑛
] (𝑥) 𝑛 𝑑𝑥

+

∞

∑

𝑛=1

∫
R3
(−𝑓
𝑛
(𝑥) + [B

𝑛
𝐿𝑓
𝑛
] (𝑥)) 𝑛 𝑑𝑥 ≥ 0,

(34)

where 𝐹
𝑛
:= {𝜓 ∈ Θ; (1 + 𝑎

𝑛
)
−1
𝜓 ∈ 𝑋

𝑥
}, 𝐿 : (𝐹

𝑛
)
+
→ 𝑋
𝑥

is defined such that 𝐿𝑓
𝑛
:= (1 + 𝑎

𝑛
)
−1
𝑓
𝑛
and B

𝑛
is given by

Bp = (B
𝑛
𝑝
𝑛
)
∞

𝑛=1
defined in (11). Now let 𝑓

𝑛
∈ 𝐹
𝑛+

such that
−𝑓
𝑛
+ 𝐵
𝑛
𝐿𝑓
𝑛
∈ 𝑋
𝑥
; let us set 𝑔

𝑛
:= 𝐿𝑓
𝑛
; it is clear that 𝑔

𝑛
∈

(𝑋
𝑥
)
+
. Furthermore

−𝑎
𝑛
𝑔
𝑛
+ 𝐵
𝑛
𝑔
𝑛
= −𝑎
𝑛
𝐿𝑓
𝑛
+ 𝐵
𝑛
𝐿𝑓
𝑛

= 𝐿𝑓
𝑛
+ (−𝑓

𝑛
+ 𝐵
𝑛
𝐿𝑓
𝑛
) ∈ 𝑋
𝑥
.

(35)
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Since 𝑔
𝑛
satisfies the assumption, we have that

∞

∑

𝑛=1

∫
R3
[𝐿𝑓
𝑛
] (𝑥) 𝑛 𝑑𝑥

+

∞

∑

𝑛=1

∫
R3
(−𝑓 (𝑥, 𝑛) + [𝐵

𝑛
𝐿𝑓
𝑛
] (𝑥)) 𝑛 𝑑𝑥

=

∞

∑

𝑛=1

∫
R3
(𝑔
𝑛
(𝑥) − (1 + 𝑎

𝑛
(𝑥)) 𝑔

𝑛
(𝑥)

+ [𝐵
𝑛
𝑔
𝑛
] (𝑥)) 𝑛 𝑑𝑥

=

∞

∑

𝑛=1

∫
R3
(−𝑎
𝑛
(𝑥) 𝑔
𝑛
(𝑥) + [𝐵

𝑛
𝑔
𝑛
] (𝑥)) 𝑛 𝑑𝑥 ≥ 0.

(36)

The second part of the lemma follows from (30).

This lemma allows us to state the following theorem.

Theorem 6. Assume that condition (1) is satisfied for almost
all (𝑥, 𝑛) ∈ R3 × N, that is, 𝜃

1
𝛼
𝑛
≤ 𝑎
𝑛
(𝑥) ≤ 𝜃

2
𝛼
𝑛
; then the

semigroup (𝐺
𝐾
(𝑡))
𝑡≥0

is honest.

Proof. The proof is based on Theorem 6.13 of [2]. Let p =
(𝑝
𝑛
)
∞

𝑛=1
∈ (X

1
)
+
, by (1); we have each 𝑎

𝑛
𝑝
𝑛
∈ 𝑋
𝑥
:=

𝐿
1
(R3, 𝑑𝑥). Because −Ap + Bp ∈ X

1
, we also have B

𝑛
𝑝
𝑛
∈

𝑋
𝑥
:= 𝐿
1
(R3, 𝑑𝑥). So, making use of Lemma 5, it is enough to

prove that the inequality ∫
Λ
(−Ap + Bp)𝑑𝜇 𝑑𝜍 ≥ 0 is satisfied.

We have

∫
Λ

(−Ap + Bp) 𝑑𝜇 𝑑𝜍

=

∞

∑

𝑛=1

∫
R3
((−𝑎 (𝑥, 𝑛) 𝑝

𝑛
(𝑥, 𝑛) + [B

𝑛
𝑝
𝑛
] (𝑥)) 𝑛 𝑑𝑥) 𝑑𝑥

= lim
𝑁→∞

(

𝑁

∑

𝑛=1

∫
R3
−𝑎 (𝑥, 𝑛) 𝑝

𝑛
(𝑥) 𝑛 𝑑𝑥

+

𝑁

∑

𝑛=1

∫
R3
[B
𝑛
𝑝
𝑛
] (𝑥) 𝑛 𝑑𝑥) .

(37)

Also by (6),

𝑁

∑

𝑛=1

∫
R3
[B
𝑛
𝑝
𝑛
] (𝑥) 𝑛 𝑑𝑥

=

𝑁

∑

𝑛=1

𝑛

∞

∑

𝑚=𝑛+1

∫
R3
𝑎 (𝑦,𝑚) 𝑏

𝑛,𝑚
(𝑦)

× (∫
R3
ℎ (𝑥, 𝑛,𝑚, 𝑦) 𝑑𝑥)𝑝

𝑚
(𝑦) 𝑑𝑦

= ∫
R3
(

𝑁

∑

𝑛=1

𝑛

∞

∑

𝑚=𝑛+1

𝑎 (𝑦,𝑚) 𝑏
𝑛,𝑚
(𝑦) 𝑝
𝑚
(𝑦))𝑑𝑦.

(38)

Furthermore by (4), for almost all 𝑦 ∈ R3

𝑁

∑

𝑛=1

𝑛

∞

∑

𝑚=𝑛+1

𝑎 (𝑦,𝑚) 𝑏
𝑛,𝑚
(𝑦) 𝑝
𝑚
(𝑦)

= 𝑊
𝑁
(𝑦) +

𝑁

∑

𝑚=1

𝑚−1

∑

𝑛=1

𝑛𝑎 (𝑦,𝑚) 𝑏
𝑛,𝑚
(𝑦) 𝑝
𝑚
(𝑦)

= 𝑊
𝑁
(𝑦) +

𝑁

∑

𝑚=1

𝑚𝑎 (𝑦,𝑚) 𝑝
𝑚
(𝑦) ,

(39)

where 𝑊
𝑁
(𝑦) = ∑

∞

𝑚=𝑁+1
∑
𝑁

𝑛=1
𝑛𝑎(𝑦,𝑚)𝑏

𝑛,𝑚
(𝑦)𝑝
𝑚
(𝑦) ≥ 0.

Combining, for any𝑁 > 0 we have
𝑁

∑

𝑛=1

∫
R3
(−𝑎 (𝑥, 𝑛) 𝑝

𝑛
(𝑥) + [B

𝑛
𝑝
𝑛
] (𝑥)) 𝑛 𝑑𝑥

=

𝑁

∑

𝑛=1

∫
R3
− [𝑎𝑝] (𝑥, 𝑛) 𝑛 𝑑𝑥

+ ∫
R3
(𝑊
𝑁
(𝑦) +

𝑁

∑

𝑚=1

𝑚[𝑎𝑝] (𝑦,𝑚))𝑑𝑦

= ∫
R3
𝑊
𝑁
(𝑦) 𝑑𝑦 ≥ 0.

(40)

Therefore
∞

∑

𝑛=1

∫
R3
(−𝑎 (𝑥, 𝑛) 𝑝

𝑛
(𝑥) + [B

𝑛
𝑝
𝑛
] (𝑥)) 𝑛𝑑𝑥

= lim
𝑁→∞

∫
R3
𝑊
𝑁
(𝑦) 𝑑𝑦 ≥ 0.

(41)

5. Concluding Remarks and Discussion

We have used a discrete model describing multiple fragmen-
tation processes to show the honesty (conservativeness) of
the system. The originality was to combine a discrete model
with a nonlocal multiple fragmentation process where each
fragmentation rate 𝑎

𝑛
, 𝑛 ∈ N, is size and position dependent

and where new particles are spatially randomly distributed
according to the given probabilistic law ℎ (⋅, 𝑛, 𝑚, 𝑦) defined
in (6). The main result here is the conservativeness in
the nonlocal discrete fragmentation model described above.
The method of semigroups with a parameter described in
Section 3.1 together with Theorem 6 helps us to show that
when each fragmentation rate 𝑎

𝑛
, 𝑛 ∈ N is bounded by a size

only dependent function, the spatial and randomdistribution
of the particles has no influence on the conservativeness of
the system. In other words nonlocal discrete models with
each 𝑎

𝑛
(𝑥) bounded as |𝑥| approaches infinity always behave

like localmodels and therefore are conservative provided that
the fragmentation rate 𝑎

𝑛
is bounded as 𝑛 approaches zero.

However there is a major problem that arises when, in the
discrete case, each fragmentation rate 𝑎

𝑛
(𝑥) becomes infinite

as |𝑥| is close to infinity. This could be the subject of future
investigations.
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