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In this paper both the static and dynamic analyses of the geometrically linear or nonlinear, elastic or elastoplastic nonuniform
torsion problems of bars of constant or variable arbitrary cross section are presented together with the corresponding research
efforts and the conclusions drawn from examined cases with great practical interest. In the presented analyses, the bar is subjected
to arbitrarily distributed or concentrated twisting and warping moments along its length, while its edges are supported by the
most general torsional boundary conditions. For the dynamic problems, a distributed mass model system is employed taking into
account the warping inertia. The analysis of the aforementioned problems is complete by presenting the evaluation of the torsion
andwarping constants of the bar, its displacement field, its stress resultants togetherwith the torsional shear stresses and thewarping
normal and shear stresses at any internal point of the bar. Moreover, the construction of the stiffness matrix and the corresponding
nodal load vector of a bar of arbitrary cross section taking into account warping effects are presented for the development of a
beam element for static and dynamic analyses. Having in mind the disadvantages of the 3D FEM solutions, the importance of the
presented beamlike analyses becomes more evident.

1. Introduction

In engineering practice, we often come across the analysis
of members of structures subjected to twisting moments.
Curved bridges, ribbed plates subjected to eccentric loading,
or columns laid out irregularly in the interior of a plate due
to functional requirements are the most common examples.

When the warping of the cross section of a member is not
restrained, the applied twisting moment is undertaken from
the Saint-Venant [1] shear stresses. In this case the angle of
twist per unit length remains constant along the bar.However,
in most cases arbitrary torsional boundary conditions are
applied either at the edges or at any other interior point of
the bar due to construction requirements. This bar under the
action of general twisting loading is leaded to nonuniform
torsion, while the angle of twist per unit length is no longer
constant along it. The consequences of restrained warping
were first presented by Marguerre [2].

Although there is extended literature on the Saint-
Venant uniform torsion problem for homogeneous isotropic

cylindrical bars with simply or multiply connected cross sec-
tions [3–8], the extensive use of structural elements subjected
to torsional loading necessitates a reliable, accurate, and
general analysis of the torsion problem of bars of arbitrary
cross section avoiding the restrictions of the Saint-Venant
torsion theory.

In the rest of this paper, both the static and dynamic
analyses of the geometrically linear or nonlinear, elastic or
elastoplastic nonuniform torsion problems of bars of constant
or variable arbitrary cross section are presented together with
the corresponding research efforts and the conclusions drawn
from examined cases with great practical interest.

2. Linear Elastic Nonuniform Torsion of Bars

In the last decades considerable work has been done on the
elastic linear problem of nonuniform torsion of bars. Espe-
cially because of themathematical complexity of the problem,
the existing analytical solutions are limited to symmetric
cross sections of simple geometry, loading, and boundary
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conditions [9–16]. Moreover, numerical methods such as
the finite element method [17] or the boundary element
method [18–20] have also been used for the analysis of the
nonuniform torsional problem, in the case the geometry of
the cross section, the boundary conditions, or the loading are
not simple. In all the aforementioned references the analysis
of the nonuniform torsional problem is not complete, since
the secondary shear stresses due towarping are not evaluated.
Finally, Sapountzakis and Mokos in [21, 22] developed a
boundary element solution for the general linear elastic
nonuniform torsion problem of homogeneous or composite
prismatic bars of arbitrary cross section subjected to an
arbitrarily distributed or concentrated twisting moment and
supported by the most general linear torsional boundary
conditions. In these latter research efforts the evaluation
of the secondary warping function is accomplished leading
to the computation of the secondary shear stresses due to
warping, while the developed procedure is a pure BEM [23],
since it requires only boundary discretization.

In order to formulate the aforementioned problem, let us
consider a prismatic bar of length 𝑙 (Figure 1), of constant
arbitrary cross-section of area𝐴.The homogeneous isotropic
and linearly elastic material of the bar’s cross-section, with
modulus of elasticity 𝐸, shear modulus 𝐺, and Poisson’s ratio
], occupies the two dimensional multiply connected region
Ω of the 𝑦, 𝑧 plane and is bounded by the Γ𝑗 (𝑗 = 1, 2, . . . , 𝐾)

boundary curves, which are piecewise smooth; that is, they
may have a finite number of corners. In Figure 1(b) 𝐶𝑌𝑍 is
the principal coordinate system through the cross section’s
centroid𝐶, while𝑦𝐶, 𝑧𝐶 are its coordinateswith respect to 𝑆𝑦𝑧

system of axes through the cross section’s shear center 𝑆. The
bar is subjected to the arbitrarily distributed or concentrated
conservative twisting 𝑚𝑡 = 𝑚𝑡(𝑥) moment acting in the
𝑥 direction (Figure 1(a)). This torsional loading results in a
rotation with respect to the shear center 𝑆 with angle of twist
𝜃𝑥(𝑥). The shear center 𝑆 coincides with the center of twist
of the cross section provided that no other axis or rotation is
imposed due to construction requirements.

Under the aforementioned loading the displacement field
of the bar with respect to the 𝑆𝑦𝑧 system of axes is given as

𝑢 (𝑥, 𝑦, 𝑧) = 𝜃

𝑥 (𝑥) 𝜙𝑆 (𝑦, 𝑧) , (1a)

V (𝑥, 𝑦, 𝑧) = −𝑧𝜃𝑥 (𝑥) , (1b)

𝑤 (𝑥, 𝑦, 𝑧) = 𝑦𝜃𝑥 (𝑥) , (1c)

where the displacement component 𝑢 constitutes the warping
of the cross section, 𝜃𝑥(𝑥) = 𝑑𝜃𝑥/𝑑𝑥 denotes the rate of
change of the angle of twist 𝜃𝑥 regarded as the torsional
curvature, and 𝜙𝑆(𝑦, 𝑧) is the warping function with respect
to the shear center 𝑆, which is characterized as the warping
function. The index 𝑆 indicates that the warping refers to the
rotation axis 𝑆.

Substituting the aforementioned displacement field to the
linearized strain-displacement relations (infinitesimal strain
tensor) of the three-dimensional elasticity, the nonvanishing

strain components are written as

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
= 𝜃


𝑥 (𝑥) ⋅ 𝜙𝑆 (𝑦, 𝑧) , (2a)

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕V

𝜕𝑥
= 𝜃


𝑥 (𝑥) ⋅ (

𝜕𝜙𝑆

𝜕𝑦
− 𝑧) , (2b)

𝛾𝑥𝑧 =
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
= 𝜃


𝑥 (𝑥) ⋅ (

𝜕𝜙𝑆

𝜕𝑧
+ 𝑦) (2c)

while the resulting nonzero stress components (Cauchy
stress tensor) in the region Ω employing the stress-strain
relations (constitutive relations) and assuming an isotropic
and homogeneous material for zero Poisson ratio are derived
as

𝜎𝑥𝑥 =
𝐸

(1 + ]) (1 − 2])
[(1 − ]) 𝜀𝑥𝑥 + ] (𝜀𝑦𝑦 + 𝜀𝑧𝑧)]

= 𝐸 ⋅ 𝜃

𝑥 (𝑥) ⋅ 𝜙𝑆 (𝑦, 𝑧) ,

(3a)

𝜏𝑥𝑦 = 𝐺 ⋅ 𝛾𝑥𝑦 = 𝐺 ⋅ 𝜃

𝑥 (𝑥) ⋅ (

𝜕𝜙𝑆

𝜕𝑦
− 𝑧) , (3b)

𝜏𝑥𝑧 = 𝐺 ⋅ 𝛾𝑥𝑧 = 𝐺 ⋅ 𝜃

𝑥 (𝑥) ⋅ (

𝜕𝜙𝑆

𝜕𝑧
+ 𝑦) . (3c)

2.1. Equations of Local Equilibrium. Substituting the stress
tensor components in the three equilibrium equations of
the three-dimensional elasticity theory ignoring body forces
yields

𝜕

𝜕𝑦
[𝐺 ⋅ 𝜃


𝑥 (𝑥) ⋅ (

𝜕𝜙𝑆

𝜕𝑦
−𝑧)]+

𝜕

𝜕𝑧
[𝐺 ⋅ 𝜃


𝑥 (𝑥) (

𝜕𝜙𝑆

𝜕𝑧
+𝑦)]

+
𝜕

𝜕𝑥
[𝐸 ⋅ 𝜃


𝑥 (𝑥) ⋅ 𝜙𝑆] = 0,

(4a)

𝐺 ⋅ 𝜃

𝑥 (𝑥) ⋅ (

𝜕𝜙𝑆

𝜕𝑧
+ 𝑦) = 0, (4b)

𝐺 ⋅ 𝜃

𝑥 (𝑥) ⋅ (

𝜕𝜙𝑆

𝜕𝑦
− 𝑧) = 0. (4c)

The first two of these equations, as it can be observed are
not satisfied and this constitutes an inconsistency of the
nonuniform torsion theory of bars. Only in the case that
𝜃

𝑥 (𝑥) = 0, that is, the rate of change of 𝜃


𝑥(𝑥) is constant

(case of uniform Saint Venant torsion), and the first two
equilibrium equations are satisfied. From (4c) it follows that

𝜕
2
𝜙𝑆

𝜕𝑦2
+

𝜕
2
𝜙𝑆

𝜕𝑧2
= −

𝐸 ⋅ 𝜃

𝑥 (𝑥)

𝐺 ⋅ 𝜃𝑥 (𝑥)
⋅ 𝜙𝑆. (5)

Having in mind that the first 𝜃𝑥 and third 𝜃

𝑥 derivatives of

the angle of twist are functions of the longitudinal coordinate
𝑥, it can be observed that the solution of the partial differen-
tial equation (5) in the general case should be a function of
coordinate 𝑥 as well.This fact contradicts relation (1a), where
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Figure 1: Prismatic bar subjected to a twisting moment (a) with a cross section of arbitrary shape occupying the two dimensional region Ω

(b).

the warping function 𝜙𝑆(𝑦, 𝑧) is defined as independent of
the coordinate 𝑥. Thus, the left hand side of (5) is a function
only of variables 𝑦, 𝑧, since 𝜙𝑆 = 𝜙𝑆(𝑦, 𝑧), while at the
same time the right hand side is a function of variable 𝑥. To
remove this inconsistency it is assumed that the arising shear
stresses are decomposed to a primary 𝜏

𝑃part and a secondary
𝜏
𝑆 one developed due to warping. This decomposition of
shear stress is justified by the consideration of equilibrium of
normal stresses due to warping in an infinitesimal element
of the cross section as shown in Figure 2. Thus, in a bar of
arbitrary cross section subjected to nonuniform torsion, nor-
mal stresses 𝜎

𝑤
𝑥𝑥 arise, depending on the developed warping

and vary along the longitudinal axis of the bar (Figure 2(a)).
Considering the intersection (A) in Figure 2(b) it can be
observed that the infinitesimal change of normal stresses
𝑑𝜎

𝑤
𝑥𝑥 due to distortion can be equilibrated only by shear

stresses along the intersection of (A) and which employing
Cauchy’s theorem lead to the development of secondary shear
stresses 𝜏

𝑆 (Figure 2(c)) on the plane of the cross section.
Thus, according to the previously mentioned primary shear
stresses, which express the shear stresses of uniform torsion
(Saint-Venant) with the difference that 𝜃𝑥(𝑥) is not constant
and to the normal stresses due to warping resulting from the
deformation (primary ones), secondary shear stresses result
so as to equilibrate the aforementioned normal stresses 𝜎𝑤

𝑥𝑥.
Based on the above decomposition of shear stress in

primary and secondary components, that is

𝜏𝑥𝑦 = 𝜏
𝑃
𝑥𝑦 + 𝜏

𝑆
𝑥𝑦, (6a)

𝜏𝑥𝑧 = 𝜏
𝑃
𝑥𝑧 + 𝜏

𝑆
𝑥𝑧

(6b)

the primary and secondary components of these stresses and
the normal stresses due to warping are defined according to

the relations as follows:

𝜏
𝑃
𝑥𝑦 = 𝐺 ⋅ 𝜃


𝑥 (𝑥) ⋅ (

𝜕𝜙
𝑃
𝑆

𝜕𝑦
− 𝑧) , (7a)

𝜏
𝑆
𝑥𝑦 = 𝐺 ⋅

𝜕𝜙
𝑆
𝑆

𝜕𝑦
, (7b)

𝜏
𝑃
𝑥𝑧 = 𝐺 ⋅ 𝜃


𝑥 (𝑥) ⋅ (

𝜕𝜙
𝑃
𝑆

𝜕𝑧
+ 𝑦) , (8a)

𝜏
𝑆
𝑥𝑧 = 𝐺 ⋅

𝜕𝜙
𝑆
𝑆

𝜕𝑧
, (8b)

𝜎
𝑤
𝑥𝑥 = 𝐸 ⋅ 𝜃


𝑥 (𝑥) ⋅ 𝜙

𝑃
𝑆 (𝑦, 𝑧) , (9)

where the functions 𝜙
𝑃
𝑆 (𝑦, 𝑧) and 𝜙

𝑆
𝑆(𝑥, 𝑦, 𝑧) are called pri-

mary and secondary warping function, respectively. Substi-
tuting relations (6a)–(9) in the first equilibrium equation of
the theory of elasticity ignoring body forces it follows that

𝜕𝜎
𝑤
𝑥𝑥

𝜕𝑥
+

𝜕𝜏
𝑃
𝑥𝑦

𝜕𝑦
+

𝜕𝜏
𝑃
𝑥𝑧

𝜕𝑧
+

𝜕𝜏
𝑆
𝑥𝑦

𝜕𝑦
+

𝜕𝜏
𝑆
𝑥𝑧

𝜕𝑧
= 0. (10)

Equation (10) indicates that the stress state of the bar
subjected to torsional loading results from the superposition
of primary 𝜏

𝑃, secondary 𝜏
𝑆 shear stress and normal stresses

due to warping 𝜎
𝑤
𝑥𝑥. In order to satisfy (10) it is required that

both the terms originating from the primary shear stresses
as well as these from the normal and the secondary shear
stresses due to warping to vanish, that is

𝜕𝜏
𝑃
𝑥𝑦

𝜕𝑦
+

𝜕𝜏
𝑃
𝑥𝑧

𝜕𝑧
= 0,

𝜕𝜏
𝑆
𝑥𝑦

𝜕𝑦
+

𝜕𝜏
𝑆
𝑥𝑧

𝜕𝑧
+

𝜕𝜎
𝑤
𝑥𝑥

𝜕𝑥
= 0.

(11)
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Figure 2: Normal and shear stresses due to warping.
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Figure 3: Shear stress components on the boundary of the cross
section.

Substituting (7a)–(9) into (11) the following relations are
obtained:

∇
2
𝜙
𝑃
𝑆 =

𝜕
2
𝜙
𝑃
𝑆

𝜕𝑦2
+

𝜕
2
𝜙
𝑃
𝑆

𝜕𝑧2
= 0,

∇
2
𝜙
𝑆
𝑆 =

𝜕
2
𝜙
𝑆
𝑆

𝜕𝑦2
+

𝜕
2
𝜙
𝑆
𝑆

𝜕𝑧2
= −

𝐸 ⋅ 𝜃

𝑥 (𝑥)

𝐺
⋅ 𝜙

𝑃
𝑆 .

(12)

To formulate the boundary conditions of the primary and
secondary warping functions the shear stress components are
observed on the boundary of the cross section. By examining
in Figure 3 the infinitesimal surface 𝑑𝑦𝑑𝑧, the following
relations are obtained:

𝜏𝑥𝑛 = 𝜏𝑥𝑦 ⋅ 𝑛𝑦 + 𝜏𝑥𝑧 ⋅ 𝑛𝑧,

𝜏𝑥𝑡 = −𝜏𝑥𝑦 ⋅ 𝑛𝑧 + 𝜏𝑥𝑧 ⋅ 𝑛𝑦,

(13)

where 𝑛𝑦 = cos(𝑦, 𝑛) = cos𝛼 = 𝑑𝑦/𝑑𝑛 = 𝑑𝑧/𝑑𝑠 and
𝑛𝑧 = sin(𝑧, 𝑛) = sin𝛼 = 𝑑𝑧/𝑑𝑛 = −𝑑𝑦/𝑑𝑠 are the direction
cosines of the vector n normal to the boundary of the cross
section. Substituting relations (6a) and (6b) that express the

decomposition of shear stresses in primary and secondary
ones into relations (13) yields

𝜏
𝑃
𝑥𝑛 = 𝜏

𝑃
𝑥𝑦 ⋅ 𝑛𝑦 + 𝜏

𝑃
𝑥𝑧 ⋅ 𝑛𝑧, (14a)

𝜏
𝑃
𝑥𝑡 = −𝜏

𝑃
𝑥𝑦 ⋅ 𝑛𝑧 + 𝜏

𝑃
𝑥𝑧 ⋅ 𝑛𝑦, (14b)

𝜏
𝑆
𝑥𝑛 = 𝜏

𝑆
𝑥𝑦 ⋅ 𝑛𝑦 + 𝜏

𝑆
𝑥𝑧 ⋅ 𝑛𝑧, (15a)

𝜏
𝑆
𝑥𝑡 = −𝜏

𝑆
𝑥𝑦 ⋅ 𝑛𝑧 + 𝜏

𝑆
𝑥𝑧 ⋅ 𝑛𝑦. (15b)

Substituting the expressions of primary and secondary shear
stresses given by (7a), (7b), (8a), and (8b) in (14a), (14b), (15a),
and (15b) the following relations are obtained:

𝜏
𝑃
𝑥𝑛 = 𝐺 ⋅ 𝜃


𝑥 (𝑥) (

𝜕𝜙
𝑃
𝑆

𝜕𝑛
− 𝑧 ⋅ 𝑛𝑦 + 𝑦 ⋅ 𝑛𝑧) , (16a)

𝜏
𝑃
𝑥𝑡 = 𝐺 ⋅ 𝜃


𝑥 (𝑥) (

𝜕𝜙
𝑃
𝑆

𝜕𝑡
+ 𝑦 ⋅ 𝑛𝑦 + 𝑧 ⋅ 𝑛𝑧) , (16b)

𝜏
𝑆
𝑥𝑛 = 𝐺 ⋅

𝜕𝜙
𝑆
𝑆

𝜕𝑛
, (16c)

𝜏
𝑆
𝑥𝑡 = 𝐺 ⋅

𝜕𝜙
𝑆
𝑆

𝜕𝑡
. (16d)

Relations (16a), (16c) and (16b), (16d) give the normal and
tangential to the boundary of the cross section primary and
secondary shear stresses, respectively. Since the lateral surface
of the bar is unloaded along the longitudinal direction, the
normal shear stresses at the boundary of the cross section
should vanish in order to satisfy the equilibrium require-
ments. To fullfil this boundary condition it is required that
both the primary and the secondary shear stress components
to vanish, that is

𝜏
𝑃
𝑥𝑛 = 0, (17a)

𝜏
𝑆
𝑥𝑛 = 0. (17b)
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Substituting (16a) and (16c) into (17a) and (17b) and taking
into account the fact that in general 𝐺𝜃


𝑥 ̸= 0, the boundary

conditions of the primary and the secondary warping func-
tions are obtained as

𝜕𝜙
𝑃
𝑆

𝜕𝑛
= 𝑧 ⋅ 𝑛𝑦 − 𝑦 ⋅ 𝑛𝑧,

(18a)

𝜕𝜙
𝑆
𝑆

𝜕𝑛
= 0. (18b)

Summarizing the abovementioned it is concluded that for
the determination of the primary 𝜙

𝑃
𝑆 (𝑦, 𝑧) and the secondary

𝜙
𝑆
𝑆(𝑥, 𝑦, 𝑧) warping functions the solution of the following

boundary value problems is required.

For the Primary 𝜙
𝑃
𝑆 (𝑦, 𝑧) Warping Function. Neumann prob-

lem of Laplace differential equation is as follows:

∇
2
𝜙
𝑃
𝑆 =

𝜕
2
𝜙
𝑃
𝑆

𝜕𝑦2
+

𝜕
2
𝜙
𝑃
𝑆

𝜕𝑧2

= 0 in the domain of cross section Ω,

(19a)

𝜕𝜙
𝑃
𝑆

𝜕𝑛
= 𝑧 ⋅ 𝑛𝑦 − 𝑦 ⋅ 𝑛𝑧

on the boundary of the cross section Γ.

(19b)

For the Secondary 𝜙
𝑆
𝑆 (𝑥, 𝑦, 𝑧) Warping Function. Neumann

problem of the Poisson differential equation is as follows:

∇
2
𝜙
𝑆
𝑆 =

𝜕
2
𝜙
𝑆
𝑆

𝜕𝑦2
+

𝜕
2
𝜙
𝑆
𝑆

𝜕𝑧2
= −

𝐸 ⋅ 𝜃

𝑥 (𝑥)

𝐺
⋅ 𝜙

𝑃
𝑆

in the domain of cross section Ω,

(20a)

𝜕𝜙
𝑆
𝑆

𝜕𝑛
= 0 on the boundary of the cross section Γ.

(20b)

Finally, based on the abovementioned, the displacement field
of the bar ((1a), (1b), and (1c)) is formed as

𝑢 (𝑥, 𝑦, 𝑧) = 𝜃

𝑥 (𝑥) ⋅ 𝜙

𝑃
𝑆 (𝑦, 𝑧) + 𝜙

𝑆
𝑆 (𝑥, 𝑦, 𝑧) , (21a)

V (𝑥, 𝑦, 𝑧) = −𝑧𝜃𝑥 (𝑥) , (21b)

𝑤 (𝑥, 𝑦, 𝑧) = 𝑦𝜃𝑥 (𝑥) . (21c)

It is worth here noting that in the case the origin 𝑂

of the coordinate system is a point of the 𝑦, 𝑧 plane other
than the shear center (Figure 1(b)), the warping functionwith
respect to this point 𝜑𝑃

𝑂 is first established from the Neumann
problem (19a) and (19b) substituting 𝜑

𝑃
𝑆 by 𝜑

𝑃
𝑂. Using the

evaluated warping function 𝜑
𝑃
𝑂, 𝜑

𝑃
𝑆 is then established using

the transformation given by the following equation [2]:

𝜙
𝑃
𝑆 (𝑦, 𝑧) = 𝜙

𝑃
𝑂 (𝑦, 𝑧) − 𝑦𝑧

𝑆
+ 𝑧𝑦

𝑆
+ 𝑐, (22)

where 𝑦 = 𝑦−𝑦𝑆, 𝑧 = 𝑧−𝑧𝑆, 𝑦
𝑆, 𝑧𝑆 are the coordinates of the

shear center 𝑆with respect to the arbitrary coordinate system
𝑂𝑦𝑧 (Figure 1(b)) and 𝑐 is an integration constant. The latter
is given from the solution of the following linear system of
equations:

𝑆𝑦𝑦
𝑆
− 𝑆𝑧𝑧

𝑆
+ 𝐴𝑐 = −𝑅

𝑃

𝑆 ,
(23a)

𝐼𝑦𝑦𝑦
𝑆
+ 𝐼𝑦𝑧𝑧

𝑆
+ 𝑆𝑦𝑐 = −𝑅

𝑃
𝑦 , (23b)

𝐼𝑦𝑧𝑦
𝑆
+ 𝐼𝑧𝑧𝑧

𝑆
− 𝑆𝑧𝑐 = 𝑅

𝑃
𝑧 , (23c)

where

𝐴 = ∫
Ω

𝑑Ω, (24a)

𝑆𝑦 = ∫
Ω

𝑧 𝑑Ω, (24b)

𝑆𝑧 = ∫
Ω

𝑦𝑑Ω, (24c)

𝐼𝑦𝑦 = ∫
Ω

𝑧
2
𝑑Ω, (24d)

𝐼𝑧𝑧 = ∫
Ω

𝑦
2
𝑑Ω, (24e)

𝐼𝑦𝑧 = −∫
Ω

𝑦𝑧 𝑑Ω, (24f)

is the cross section area, the static moments of inertia relative
to the axes 𝑦, 𝑧, the bending moments of inertia relative to
the axes 𝑦, 𝑧, and the product of inertia, respectively, while
in relations (23a), (23b), and (23c) the warping moments
𝑅
𝑃

𝑆 , 𝑅
𝑃
𝑦 , 𝑅

𝑃
𝑧 , are defined as

𝑅
𝑃

𝑆 = ∫
Ω

𝜙
𝑃
𝑂 𝑑Ω, (25a)

𝑅
𝑃
𝑦 = ∫

Ω

𝑧𝜙
𝑃
𝑂 𝑑Ω, (25b)

𝑅
𝑃
𝑧 = ∫

Ω

𝑦𝜙
𝑃
𝑂 𝑑Ω. (25c)

Moreover, the evaluated warping function 𝜙
𝑆
𝑆 from the solu-

tion of the Neumann problem (20a) and (20b) contains an
integration constant 𝑐

𝑆 (parallel displacement of the cross
section along the beamaxis), which can be obtained from [24]
as follows:

𝑐
𝑆
=

1

𝐴
∫
Ω

�̃�
𝑆

𝑆 𝑑Ω (26)

and the main secondary warping function �̃�
𝑆

𝑆 is given as

�̃�
𝑆

𝑆 = 𝜙
𝑆
𝑆 + 𝑐

𝑆
. (27)



6 ISRN Civil Engineering

2.2. Equations of Global Equilibrium. The already established
shear stresses 𝜏𝑥𝑦 and 𝜏𝑥𝑧 yield components of torque, which
arise through integration over the cross section. Thus, the
resulting twisting moment is obtained as

𝑀𝑡 = ∫
Ω

(𝜏𝑥𝑧 ⋅ 𝑦 − 𝜏𝑥𝑦 ⋅ 𝑧) 𝑑Ω. (28)

Introducing the approximation of decomposition of shear
stress in primary and secondary components, the twisting
moment of the cross section is divided into a primary compo-
nent𝑀𝑃

𝑡 originating from the primary shear stresses 𝜏𝑃 due to
twisting (as in uniform torsion) and a secondary component
𝑀

𝑆
𝑡 , originating from the secondary shear stresses, that is

the restraint of warping (Figure 4). Thus, according to the
nonuniform torsion theory in an arbitrary cross section of the
bar the following relation is valid:

𝑀𝑡 = 𝑀
𝑃
𝑡 + 𝑀

𝑆
𝑡 , (29)

where after employing (6a) and (6b) and some algebra the
aforementioned twisting moment components are given as

𝑀
𝑃
𝑡 = ∫

Ω

[𝜏
𝑃
𝑥𝑦 (

𝜕𝜙
𝑃
𝑆

𝜕𝑦
− 𝑧) + 𝜏

𝑃
𝑥𝑧 ⋅ (

𝜕𝜙
𝑃
𝑆

𝜕𝑧
+ 𝑦)]𝑑Ω, (30a)

𝑀
𝑆
𝑡 = ∫

Ω

(−𝜏
𝑆
𝑥𝑦

𝜕𝜙
𝑃
𝑆

𝜕𝑦
− 𝜏

𝑆
𝑥𝑧

𝜕𝜙
𝑃
𝑆

𝜕𝑧
)𝑑Ω. (30b)

Substituting (7a)–(8b) in (30a) and (30b), employing the
Gauss-Green theorem, taking into account (17a), (17b), (19a),
and (20a) and after some algebra the following relations for
the twisting moment components are obtained:

𝑀
𝑃
𝑡 = −𝐺𝐼𝑡𝜃


𝑥 (𝑥) , (31a)

𝑀
𝑆
𝑡 = −𝐸𝐶𝑆𝜃


𝑥 (𝑥) , (31b)

where

𝐼𝑡 = ∫
Ω

(𝑦
2
+ 𝑧

2
+ 𝑦 ⋅

𝜕𝜙
𝑃
𝑆

𝜕𝑧
− 𝑧 ⋅

𝜕𝜙
𝑃
𝑆

𝜕𝑦
)𝑑Ω, (32a)

𝐶𝑆 = ∫
Ω

(𝜙
𝑃
𝑆 )

2
𝑑Ω. (32b)

In (32a) and (32b) the quantity 𝐼𝑡 denotes the torsional
constant introduced by Saint-Venant, while the quantity 𝐶𝑆

denotes the warping constant. The quantity 𝐺𝐼𝑡 denotes the
torsional rigidity, while the quantity 𝐸𝐶𝑆 denotes thewarping
rigidity of the cross section. It is noted that the torsional
constant is independent of the position of the coordinate
system,while thewarping constant refers to the center of twist
𝑆.

To derive the equilibrium equation for the nonuniform
torsion problem of a homogeneous isotropic bar, the equilib-
rium of an infinitesimal part 𝑑𝑥 of the bar against twisting
moments is examined and observing Figure 5 it follows that

𝑀𝑡 +
𝜕𝑀𝑡

𝜕𝑥
𝑑𝑥 − 𝑀𝑡 + 𝑚𝑡 𝑑𝑥 = 0 (33)

or after some algebra

𝜕𝑀𝑡

𝜕𝑥
= −𝑚𝑡. (34)

Substituting relations (29) and (31a) and (31b) into (34), the
following fourth-order differential equation of equilibrium
of a homogeneous isotropic bar subjected to nonuniform
torsion is obtained:

𝐸𝐶𝑆

𝑑
4
𝜃𝑥

𝑑𝑥4
− 𝐺𝐼𝑡

𝑑
2
𝜃𝑥

𝑑𝑥2
= 𝑚𝑡

(35)

which is independent of the torsional boundary conditions.
In analogy with the bending moments 𝑀𝑦, 𝑀𝑧 a new

stress resultant is defined, called warping moment (or bimo-
ment) and given by

𝑀𝑤 = −∫
Ω

𝜙
𝑃
𝑆 𝜎

𝑤
𝑥𝑥 𝑑Ω. (36)

The need for the definition of this new stress resultant stems
from the fact that, whereas 𝑀𝑦 = 𝑀𝑧 = 𝑁 = 0, there still
exist normal stresses acting on the cross section; hence if a
new quantity is not considered, the elastic energy due to 𝜎𝑥𝑥
stresses will be ignored. Substituting the expression (9) of the
stress component 𝜎𝑤

𝑥𝑥 into (36), the latter is written as

𝑀𝑤 = −𝐸𝜃

𝑥 ∫

Ω

(𝜙
𝑃
𝑆 )

2
𝑑Ω (37)

or through (32b)

𝑀𝑤 = −𝐸𝐶𝑆𝜃

𝑥

(38)

and therefore relation (9) can be written in the form of

𝜎
𝑤
𝑥𝑥 = −

𝑀𝑤

𝐶𝑆

𝜑
𝑃
𝑆 . (39)

Equation (39) shows that the quantity of warping moment
encompasses the generic characteristics of a stress resultant
of theory of elasticity. Schardt [25] refers to it as a “higher
order stress resultant.” Combining relations (31b) and (38), the
relation which correlates the secondary twistingmoment and
the warping moment arises as

𝑑𝑀𝑤

𝑑𝑥
= 𝑀

𝑆
𝑡 .

(40)

Thus, the problem of nonuniform torsion of a homogeneous
isotropic bar is reduced to solving the fourth-order differen-
tial equation with respect to the angle of twist 𝜃𝑥(𝑥) of the
cross section, given by (35). The solution of this equation
depends on both the torsional loading of the bar and the
torsional support conditions at the ends or inside the bar.The
most general linear torsional boundary conditions at the ends
of the bar are described by the relations

𝑎1𝜃𝑥 + 𝑎2𝑀𝑡 = 𝑎3, (41a)

𝛽1𝜃

𝑥 + 𝛽2𝑀𝑤 = 𝛽3. (41b)
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𝜏𝑃

𝑀𝑃
𝑡

(a)

𝜏𝑆

𝑀𝑆
𝑡

(b)

Figure 4: Distribution of primary (a) and secondary (b) shear stresses and resulting torsional moments.

𝑧

𝑦

𝑥
𝑑𝑥

𝑚𝑡𝑑𝑥

𝑀𝑡

𝑀𝑡 +
𝜕𝑀𝑡

𝜕𝑥
𝑑𝑥

Figure 5: Stress resultants in an infinitesimal segment of an elastic
bar subjected to an arbitrary concentrated or distributed torsional
loading 𝑚𝑡 = 𝑚𝑡(𝑥).

It is worth noting that all types of conventional boundary
conditions (e.g., fixed, forked support, free end, and elastic
support) arise from relations (41a) and (41b) after defining
appropriately functions 𝑎𝑖, 𝛽𝑖 (𝑖 = 1, 2, 3). For example, in the
case of a torsionally fixed support the above functions take
the values 𝑎1 = 𝛽1 = 1, 𝑎2 = 𝑎3 = 𝛽2 = 𝛽3 = 0.

From the examined example problems presented in [18–
22] it is concluded that

(i) themagnitude of the evaluated normal stresses, due to
restrainedwarping comparedwith those due to bend-
ing, necessitates the consideration of these additional
normal stresses near the restrained edges;

(ii) themagnitude of the evaluated warping shear stresses
due to restrained warping is remarkable and for
an “accurate” analysis these additional shear stresses
should not be ignored, especially near the restrained
edges.

3. Linear Elastic Nonuniform Torsion of
Bars of Variable Cross Section

Long span box shaped bridges or concrete slab and beam
structures of variable height are the most common examples
of structures including members of variable cross section
subjected to twisting moments. The extensive use of the
aforementioned structural elements necessitates a rigorous
analysis. When a bar of variable cross section is subjected to
general twisting loading, this member due to this variation
and/or due to the arbitrary torsional boundary conditions
applied either at the edges or at any other interior point is
leaded to nonuniform torsion and its angle of twist per unit
length is not constant along its axis.

Several researchers have dealt with beams of variable
cross section ignoring the warping effects resulting from the
corresponding restraints at the ends of the member [26, 27].
If the aforementioned structures are analyzed or designed for
torsion considering only the effect of Saint Venant torsion
resistance, the analysis may underestimate the torsion in the
members and the design may be unconservative. On the
contrary, to the authors’ knowledge relatively little work has
been done on the problem of nonuniform torsion of bars
of variable cross section with pioneer the work of Cywinski
[28] adopting the finite differencemethod.Wekezer [29] after
dividing the bar into segments along its longitudinal axis
approximated their shell midsurface by arbitrary triangular
shell elements and employed the finite element method
to the linear membrane shell theory. This approximation
generates inaccuracies, as the warping of the walls of the cross
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section cannot be taken into account. Moreover, Eisenberger
[30] employed FEM upon polynomial approximation of the
torsional andwarping rigidities using “exact” shape functions
to derive the exact stiffness coefficients. This application of
shape functions leads also to inaccuracies in stress analysis
of beams of variable cross section, as static and kinematic
values at nodes and in the element region are computed
only approximately and the element may not satisfy local
and global equilibrium conditions [31]. In all of the afore-
mentioned procedures the torsion and warping constants
have been approximated adopting the thin tube theory.
Finally, Sapountzakis and Mokos in [32, 33] developed a
boundary element solution for the general linear elastic
nonuniform torsion problem of homogeneous or composite
bars of arbitrary variable cross section subjected to an
arbitrarily distributed or concentrated twisting moment and
supported by the most general linear torsional boundary
conditions. In these latter research efforts, three boundary
value problems with respect to the variable along the beam
angle of twist and to the primary and secondary warping
functions are formulated and solved employing a pure BEM
[23] approach; that is, only boundary discretization is used.
Both the variablewarping and torsion constants togetherwith
the torsional primary shear stresses and the warping normal
and secondary shear stresses are computed.

In order to formulate the aforementioned problem, let
us consider a bar of length 𝑙 (Figure 6), of an arbitrarily
shaped variable along its axis cross section.Thehomogeneous
isotropic and linearly elastic material of the bar’s cross-
section, with modulus of elasticity 𝐸, shear modulus 𝐺,
and Poisson’s ratio ], occupies the two dimensional multiply
connected region Ω(𝑥) of the 𝑦, 𝑧 plane and is bounded
by the Γ𝑗 (𝑗 = 1, 2, . . . , 𝐾) boundary curves, which are
piecewise smooth; that is, they may have a finite number
of corners. In Figure 6(b) 𝐶𝑌𝑍 is the principal coordinate
system through the cross section’s centroid 𝐶, while 𝑦𝐶, 𝑧𝐶
are its coordinates with respect to 𝑆𝑦𝑧 system of axes through
the cross section’s shear center 𝑆. The bar is subjected to the
arbitrarily distributed or concentrated conservative twisting
𝑚𝑡 = 𝑚𝑡 (𝑥)moment acting in the 𝑥 direction (Figure 6(a)).

Adopting the same displacement field (21a), (21b), and
(21c)with that of the constant cross section case and following
the same procedure presented for the constant cross section
bar in Section 2, the following boundary value problem for
the angle of twist 𝜃𝑥 = 𝜃𝑥(𝑥) is derived:

𝐸𝐶𝑆

𝑑
4
𝜃𝑥

𝑑𝑥4
+ 2𝐸

𝑑𝐶𝑆

𝑑𝑥

𝑑
3
𝜃𝑥

𝑑𝑥3
+ (𝐸

𝑑
2
𝐶𝑆

𝑑𝑥2
− 𝐺𝐼𝑡)

𝑑
2
𝜃𝑥

𝑑𝑥2

− 𝐺
𝑑𝐼𝑡

𝑑𝑥

𝑑𝜃𝑥

𝑑𝑥
= 𝑚𝑡 inside the beam,

(42)

𝛼1𝜃𝑥 + 𝛼2𝑀𝑡 = 𝛼3 at the beam ends 𝑥 = 0, 𝑙, (43a)

𝛽1

𝑑𝜃𝑥

𝑑𝑥
+ 𝛽2𝑀𝑤 = 𝛽3 at the beam ends 𝑥 = 0, 𝑙, (43b)

where the total twisting moment of the cross section is once
again divided into a primary and a secondary component as

this is stated in (29), where these components are given from

𝑀
𝑃
𝑡 = 𝐺𝐼𝑡

𝑑𝜃𝑥

𝑑𝑥
, (44a)

𝑀
𝑆
𝑡 = −𝐸

𝑑

𝑑𝑥
(𝐶𝑆

𝑑
2
𝜃𝑥

𝑑𝑥2
) (44b)

with 𝐼𝑡 the torsional and𝐶𝑆 the warping constants of the cross
section varying along the length of the bar and given from
(32a) and (32b), while the resulting total twisting moment of
the cross section is given as

𝑀𝑡 = 𝐺𝐼𝑡

𝑑𝜃𝑥

𝑑𝑥
− 𝐸

𝑑𝐶𝑆

𝑑𝑥

𝑑
2
𝜃𝑥

𝑑𝑥2
− 𝐸𝐶𝑆

𝑑
3
𝜃𝑥

𝑑𝑥3
. (45)

The warping moment 𝑀𝑤 arising from the torsional cur-
vature, similarly with the constant cross section case, is
given from (38) and also functions 𝑎𝑖, 𝛽𝑖 (𝑖 = 1, 2, 3) are
specified at the boundary of the beam forming the most
general linear torsional boundary conditions for the beam
problem including also the elastic support. Finally, as for the
constant cross section case the determination of the primary
𝜙
𝑃
𝑆 (𝑦, 𝑧) and the secondary 𝜙

𝑆
𝑆(𝑥, 𝑦, 𝑧) warping functions is

achieved from the solution of the boundary value problems
given from (19a), (19b), (20a), and (20b), respectively, while
the primary, the secondary shear stress components, and the
normal stresses due to warping are defined according to the
relations (7a)–(9).

From the examined example problems presented in [32,
33] it is concluded that

(i) the variation of the beam height, as expected, results
in increment of the nonuniform beam behavior in
torsional loading;

(ii) the magnitude of the evaluated normal and warping
shear stresses due to restrained warping is remarkable
and necessitates the consideration of these additional
stresses near the restrained edges, especially for
beams with cross section of low torsional rigidity.

(iii) the inaccuracy of the thin tube theory in calculating
torsional and warping rigidities even for thin walled
sections is remarkable;

(iv) analyzing a thin-walled cross section in torsional
loading bymodeling it with shell elements cannot give
accurate results, as the warping of its walls cannot be
taken into account.

4. 3D Beam Element of Constant or Variable
Cross Section Including Warping Effect

As it has been already mentioned, the analysis of rectilinear
or curved members of structures of arbitrary constant or
variable cross section subjected to twisting moments is often
encountered in engineering practice. Nevertheless, accurate
analysis of these members is difficult to achieve for two
reasons.
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𝑧 𝑍
𝑦
𝑌

𝑥
𝑋

𝑙

𝐶

𝑆
𝑚𝑡(𝑥)

(a)

: Centroid
: Shear center

Γ = ⋃𝐾
𝑗=0 Γ𝑗

𝑠

𝑡

𝑛 𝛼

𝑞

𝑟 = ∣𝑃 − 𝑞∣

𝜔𝑃

Γ1

𝑆

𝑆

𝑧
𝑍

𝑂

𝐶

𝐶

Γ𝐾

𝑦

𝑌

Γ0

𝑧

𝑦

Ω(𝑥)

𝑧𝐶

𝑦𝐶

(b)

Figure 6: Bar subjected to a twisting moment (a) with a variable cross section of arbitrary shape occupying the two dimensional regionΩ(𝑥)

(b).

[t!]

(𝐶: Centroid
𝑆: Shear center ≅
Center of twist)

𝑝�̃� = 𝑝�̃�(𝑥) 𝑀�̃�𝑘, 𝜃�̃�𝑘(13)

𝑀𝑦𝑘, 𝜃𝑦𝑘(12)

𝑀𝑥𝑘, 𝜃𝑥𝑘(11)

𝑀𝑤𝑘, 𝜃

𝑥𝑘(14)

𝑁𝑘, 𝑢𝑥𝑘(8)

𝑥

𝑄𝑦𝑘(9)
𝑄𝑧𝑘(10)

𝑆𝑘

𝐶𝑘

𝑢𝑦𝑘(9)

(Ω)

𝑢�̃�𝑘(10)

𝑥𝑙
(𝑖)

𝑄𝑧𝑗(3) (𝑘)

𝑀�̃�𝑗, 𝜃�̃�𝑗(6)

𝑚𝑡(𝑥)

𝑦
𝑧

𝑆𝑗

�̃�

𝐶𝑗

(𝑗)

𝑢�̃�𝑗(3)

𝑦

𝑀𝑥𝑗, 𝜃𝑥𝑗(4)

𝑀𝑤𝑗, 𝜃

𝑥𝑗(7)

𝑁𝑗, 𝑢𝑥𝑗(1)

𝑄𝑦𝑗(2)

𝑢𝑦𝑗(2)

𝑀𝑦𝑗, 𝜃𝑦𝑗(5)

(a)

𝑧

𝑂
𝑦

𝑠

𝐶

𝑃

𝑡

𝑛

𝑧

𝑆
𝑦

𝑞

(Ω)

�̃�

𝑦

Γ

𝑟𝑞𝑃
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Figure 7: Beam element (a) of a cross section of arbitrary shape occupying the two dimensional region Ω (b). 𝐶�̃��̃� is the beam principal
centroidal system of axes, while 𝑆𝑦𝑧 is the corresponding one through the shear center 𝑆.
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According to the first reason, generally commercial
programs consider six degrees of freedom at each node
of a member of a space frame, ignoring in this way the
warping effects due to the corresponding restraint at the
ends of the member or due to variable twisting moment
along the bar [26, 27, 34]. If the aforementioned structures
are analyzed or designed for torsion considering only the
effect of Saint Venant torsion resistance, the analysis may
underestimate the torsion in the members and the design
may be unconservative. Several researchers tried to overcome
this inaccuracy only for constant cross section elements by
developing a 14 × 14 member stiffness matrix including
warping degrees of freedom at the ends of a member
with open thin-walled section and assuming simple [35–
38] or more complicated torsional boundary conditions [39,
40].

According to the second reason, when the variable cross
section structures are modeled by space frame elements, they
are usually analyzed usingHermite beam elements character-
ized by shape functions consisting of Hermite interpolation
functions (cubic for bending, linear for axial components of
displacement and for the angle of twist) [41] or isoparametric
beam elements [42]. In these elements the variation of the
cross section is generally considered by setting “average”
values for the cross section parameters resulting from the
corresponding parameters at the start and end nodes of the
element. Moreover, application of shape functions results
in inaccuracies in stress analysis of beams of variable cross
section, as static and kinematic values at nodes and in
the element region are computed only approximately and
the element may not satisfy local and global equilibrium
conditions [31].This inaccuracymay be reduced by increasing
the number of integration points for the stiffness matrix
assembly (at least three-point integration) or by refining the
mesh of elements, increasing at the same time the effort of
preparing the input parameters.

Nevertheless, Sapountzakis and Mokos in [43–45] devel-
oped a boundary element solution for the construction of

the 14 × 14 stiffness matrix and the nodal load vector of
a member of arbitrary homogeneous or composite, con-
stant or variable cross section, subjected to an arbitrarily
concentrated or distributed twisting moment, taking into
account warping effects. The arbitrary low rate variation
of the member of variable cross section is continuous so
as to assume that its shear center is independent of the
member loading and boundary conditions. The developed
method can take into account the variable torsional and
warping rigidities along the member length. In these latter
research efforts boundary value problems with respect to
the variable along the bar angle of twist and to the primary
warping function are formulated and solved employing a pure
BEM [23] approach; that is only boundary discretization is
used.

In order to formulate the aforementioned problem, let us
consider a prismatic bar of length 𝑙 (Figure 7), of constant or
variable arbitrary cross-section. The homogeneous isotropic
and linearly elastic material of the bar’s cross-section, with
modulus of elasticity 𝐸, shear modulus 𝐺, and Poisson’s ratio
], occupies the two dimensional multiply connected region
Ω of the 𝑦, 𝑧 plane and is bounded by the Γ𝑗 (𝑗 = 1, 2, . . . , 𝐾)

boundary curves, which are piecewise smooth; that is, they
may have a finite number of corners. In Figure 7(b) 𝐶𝑌𝑍 is
the principal coordinate system through the cross section’s
centroid 𝐶, while 𝑦𝐶, 𝑧𝐶 are its coordinates with respect to
𝑆𝑦𝑧 system of axes through the cross section’s shear center
𝑆.

In order to include the warping behavior in the study of
the aforementioned element, in each node at the element ends
a seventh degree of freedom is added to the well-known six
DOFs of the classical three-dimensional frame element. The
additional DOF is the first derivative of the angle of twist 𝜃𝑥 =

𝑑𝜃𝑥/𝑑𝑥 denoting the rate of change of the angle of twist 𝜃𝑥,
which can be regarded as the torsional curvature (Figure 8)
of the cross section. Thus, the nodal displacement vector in
the local coordinate system, as shown in Figure 7(a), can be
written as

{𝐷
𝑖
}
𝑇
= {𝑢�̃�𝑗 𝑢�̃�𝑗 𝑢�̃�𝑗 𝜃𝑥𝑗 𝜃�̃�𝑗 𝜃�̃�𝑗 𝜃


𝑥𝑗 𝑢�̃�𝑘 𝑢�̃�𝑘 𝑢�̃�𝑘 𝜃𝑥𝑘 𝜃�̃�𝑘 𝜃�̃�𝑘 𝜃


𝑥𝑘 } (46)

and the respective nodal load vector as

{𝐹
𝑖
}
𝑇
= {𝑁𝑗 𝑄�̃�𝑗 𝑄�̃�𝑗 𝑀𝑡𝑗 𝑀�̃�𝑗 𝑀�̃�𝑗 𝑀𝑤𝑗 𝑁𝑘 𝑄�̃�𝑘 𝑄�̃�𝑘 𝑀𝑡𝑘 𝑀�̃�𝑘 𝑀�̃�𝑘 𝑀𝑤𝑘} , (47)

where 𝑀𝑡 is the twisting moment at the ends of the element
given from (29) and consisting of the primary part 𝑀

𝑃
𝑡

defined as the resultant of the primary shear stress distri-
bution given from (31a) or (44a) and the secondary one
𝑀

𝑆
𝑡 defined as the resultant of the secondary shear stress

distribution due to warping given from (31b) or (44b) for the

cases of constant or variable cross section, respectively, that
is,

𝑀𝑡 = 𝐺𝐼𝑡𝜃

𝑥 − 𝐸𝐶𝑆𝜃


𝑥

for the constant cross section case,
(48a)
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𝑀𝑡 = 𝐺𝐼𝑡𝜃

𝑥 − 𝐸𝐶


𝑆𝜃


𝑥 − 𝐸𝐶𝑆𝜃


𝑥

for the variable cross section case.
(48b)

Moreover, 𝑀𝑤 is the bending moment due to the torsional
curvature at the same sections given from (38).

The nodal displacement and load vectors given in (46)
and (47) are related with the 14 × 14 local stiffness matrix of
the spatial beam element written as

[𝑘
𝑖
] =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑘
𝑖
11 0 0 0 0 0 0 𝑘

𝑖
18 0 0 0 0 0 0

0 𝑘
𝑖
22 0 0 0 𝑘

𝑖
26 0 0 𝑘

𝑖
29 0 0 0 𝑘

𝑖
2,13 0

0 0 𝑘
𝑖
33 0 𝑘

𝑖
35 0 0 0 0 𝑘

𝑖
3,10 0 𝑘

𝑖
3,12 0 0

0 0 0 kiT1 0 0 kiT2 0 0 0 −kiT1 0 0 kiT5
0 0 𝑘

𝑖
53 0 𝑘

𝑖
55 0 0 0 0 𝑘

𝑖
5,10 0 𝑘

𝑖
5,12 0 0

0 𝑘
𝑖
62 0 0 0 𝑘

𝑖
66 0 0 𝑘

𝑖
69 0 0 0 𝑘

𝑖
6,13 0

0 0 0 kiT2 0 0 kiT3 0 0 0 −kiT2 0 0 kiT4
𝑘
𝑖
81 0 0 0 0 0 0 𝑘

𝑖
88 0 0 0 0 0 0

0 𝑘
𝑖
92 0 0 0 𝑘

𝑖
96 0 0 𝑘

𝑖
99 0 0 0 𝑘

𝑖
9,13 0

0 0 𝑘
𝑖
10,3 0 𝑘

𝑖
10,5 0 0 0 0 𝑘

𝑖
10,10 0 𝑘

𝑖
10,12 0 0

0 0 0 −kiT1 0 0 −kiT2 0 0 0 kiT5 0 0 −kiT5
0 0 𝑘

𝑖
12,3 0 𝑘

𝑖
12,5 0 0 0 0 𝑘

𝑖
12,10 0 𝑘

𝑖
12,12 0 0

0 𝑘
𝑖
13,2 0 0 0 𝑘

𝑖
13,6 0 0 𝑘

𝑖
13,9 0 0 0 𝑘

𝑖
13,13 0

0 0 0 kiT5 0 0 kiT4 0 0 0 −kiT5 0 0 kiT6

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (49)

where the 𝑘
𝑖
𝑙𝑚 coefficients (𝑙, 𝑚 = 1, 2, 3, 5, 6, 8, 9, 10, 12, 13)

of the stiffness matrix of (49) come from the well-known 12×

12 classical stiffness matrix of the classical three-dimensional
frame element. In the special case of a constant cross section
element the 𝑘

𝑖
𝑇𝑛 (𝑛 = 1, 2, 3, 4, 5, 6) coefficients are given as

[14, 35]

𝑘
𝑖
𝑇1 = 𝑘𝑜𝜆𝑆, (50a)

𝑘
𝑖
𝑇2 = 𝑘

𝑖
𝑇5 = 𝑘𝑜 (𝐶 − 1) , (50b)

𝑘
𝑖
𝑇3 = 𝑘

𝑖
𝑇6 = 𝑘𝑜 (𝐶𝑙 −

1

𝜆
𝑆) , (50c)

𝑘
𝑖
𝑇4 = 𝑘𝑜 (

1

𝜆
𝑆 − 𝑙) , (50d)

where

𝜆 = √
𝐺𝐼𝑡

𝐸𝐶𝑆

, (51a)

𝑆 = sinh 𝑒, (51b)

𝐶 = cosh 𝑒, (51c)

𝑒 = 𝑙𝜆, (51d)

𝑘𝑜 =
𝐺𝐼𝑡

2 (1 − 𝐶) + 𝑒𝑆
. (51e)

In the case of a variable cross section element, the evaluation
of the 𝑘

𝑖
𝑇𝑛 (𝑛 = 1, 2, 3, 4, 5, 6) coefficients presumes the

solution of the following boundary value problem with
respect to the angle of twist 𝜃𝑥 = 𝜃𝑥(𝑥) (see also (42)):

𝐸𝐶𝑆𝜃

𝑥 + 2𝐸𝐶


𝑆𝜃


𝑥 + (𝐸𝐶


𝑆 − 𝐺𝐼𝑡) 𝜃


𝑥 − 𝐺𝐼


𝑡𝜃


𝑥

= 0 inside the element,
(52)

𝛼1𝜃𝑥 + 𝛼2𝑀𝑡 = 𝛼3, (53a)

𝛽1𝜃

𝑥 + 𝛽2𝑀𝑤 = 𝛽3 at the element ends 𝑥 = 0, 𝑙 (53b)

for appropriate values of the 𝑎𝑖, 𝛽𝑖 (𝑖 = 1, 2, 3) functions.
Thereby, for the evaluation of the 𝑘

𝑖
𝑇1 coefficient it is 𝑎1 =

𝑎3 = 𝛽1 = 1, 𝑎2 = 𝛽2 = 𝛽3 = 0 at 𝑥 = 0 and 𝑎1 = 𝛽1 = 1,
𝑎2 = 𝑎3 = 𝛽2 = 𝛽3 = 0 at 𝑥 = 𝑙, for the evaluation of the
𝑘
𝑖
𝑇3 coefficient it is 𝑎1 = 𝛽1 = 𝛽3 = 1, 𝑎2 = 𝑎3 = 𝛽2 = 0

at 𝑥 = 0 and 𝑎1 = 𝛽1 = 1, 𝑎2 = 𝑎3 = 𝛽2 = 𝛽3 = 0

at 𝑥 = 𝑙, while for the evaluation of the 𝑘
𝑖
𝑇6 coefficient it is

𝑎1 = 𝛽1 = 1, 𝑎2 = 𝑎3 = 𝛽2 = 𝛽3 = 0 at 𝑥 = 0 and
𝑎1 = 𝛽1 = 𝛽3 = 1, 𝑎2 = 𝑎3 = 𝛽2 = 0 at 𝑥 = 𝑙. Apparently, for
the constant cross section case it is 𝐶

𝑆 = 𝐶

𝑆 = 𝐼


𝑡 = 0 and the

governing equation (52) reduces to the one given from (35).
Upon the evaluation of the angle of twist 𝜃𝑥, the coefficients
𝑘
𝑖
𝑇𝑛 (𝑛 = 1, 2, 3, 4, 5, 6) are established from its derivatives
using relations (38), (48a), and (48b).

According to the nodal load vector, assuming that the
span of the bar is subjected to the arbitrarily concentrated
or distributed twisting moment 𝑚𝑡 = 𝑚𝑡 (𝑥) (Figure 7(a)),
the evaluation of the elements concerning the twisting and
the bending moments due to the torsional curvature is
accomplished using again relations (38), (48a), and (48b)
employing the derivatives of the angle of twist 𝜃𝑥, obtained
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from the solution of the following boundary value problem:
for the constant cross section case:

𝐸𝐶𝑆𝜃

𝑥 − 𝐺𝐼𝑡𝜃


𝑥 = 𝑚𝑡 inside the bar,

𝜃𝑥 = 𝜃

𝑥 = 0 at the bar ends𝑥 = 0, 𝑙,

(54)

for the variable cross section case:

𝐸𝐶𝑆𝜃

𝑥 + 2𝐸𝐶


𝑆𝜃


𝑥 + (𝐸𝐶


𝑆 − 𝐺𝐼𝑡) 𝜃


𝑥 − 𝐺𝐼


𝑡𝜃


𝑥

= 𝑚𝑡 inside the bar,

𝜃𝑥 = 𝜃

𝑥 = 0 at the bar ends 𝑥 = 0, 𝑙.

(55)

From the examined example problems presented in [43–
45] it is concluded that

(i) the discrepancy of the deflections and the internal
stress resultants arising from the ignorance of the
warping degrees of freedom at the ends of a member
and the magnitude of the normal stresses due to
warping necessitate the utilization of the 14 × 14

member stiffness matrix, especially for beams with
open shaped cross sections;

(ii) the advantages of a box shaped closed cross section
beam subjected to torsional loading compared with
that of an open one are verified;

(iii) warping is not constant along the thickness of the
cross section walls as it is assumed in thin tube theory
for thin-walled beams;

(iv) comparison of the elements of the resulting stiffness
matrix of a variable cross section member taking
into account the derivatives of the variable torsional
and warping rigidities along the member length with
those obtained using a fine mesh of elements having
“average” values for the cross section parameters leads
to the consideration of these derivatives;

(v) the discrepancy between the uncoupled proposed
procedure and the formulation that takes into account
coupled displacement components is inconsiderable;

(vi) having in mind the previous conclusion and that
coupled displacement components lead to dependent
shear center on the member loading and boundary
conditions, and the ignorance of the effect of the
transverse displacement components to the longitu-
dinal one is justified.

5. Elastic Linear Torsional Vibrations of
Constant or Variable Cross Section Bars

In engineering practice, we often come across the analysis
of structures subjected to vibratory twisting loading. The
dynamic forces acting on a structure may result from one or
more of different causes, such as rotating machinery, wind,
asymmetric traffic loading, blast loads, or earthquake forces.

The extensive use of the aforementioned structural elements
necessitates a rigorous dynamic analysis.

Exact torsional vibration frequencies were presented by
Gorman [46] and Belvins [47] for the case of circular cross
section shafts subjected to classical boundary conditions,
avoiding in this way warping effects. These efforts were
extended by Kameswara Rao [48] for elastically restrained
edges. Torsional vibration frequencies for beams of open
thin-walled sections, subjected to several combinations of
classical boundary conditions, taking into account warping
effectswere first derived byGere [49]. Since then approximate
methods [50] for the calculation of natural frequencies
including elastic torsional and warping restraints [51] and
employing either discrete [52–55] or distributed mass model
systems [56–60] have been presented. In all these references
the considered beam is of a constant homogeneous thin-
walled cross section, while its torsion and warping constants
are evaluated employing the relations of the thin tube theory.

Several researchers have also dealt with beams of variable
cross section ignoring the warping effects resulting from
the corresponding restraints at the ends of the member [26,
27]. On the contrary, to the author’s knowledge relatively
little work has been done on the problem of nonuniform
torsion of bars of variable cross section with pioneer the
work of Cywinski [28] adopting the finite difference method.
Wekezer [29] after dividing the bar into segments along
its longitudinal axis approximated their shell midsurface by
arbitrary triangular shell elements and employed the finite
element method to the linear membrane shell theory. This
approximation generates inaccuracies, as the warping of the
walls of the cross section cannot be taken into account.
Moreover, Eisenberger [30, 61] employed FEM upon polyno-
mial approximation of the torsional and warping rigidities
using “exact” shape functions to derive the exact stiffness
coefficients. This application of shape functions results also
in inaccuracies in stress analysis of beams of variable cross
section, as static and kinematic values at nodes and in the
element region are computed only approximately and the ele-
ment may not satisfy local and global equilibrium conditions
[31]. In all the aforementioned procedures the torsion and
warping constants have been approximated adopting the thin
tube theory. Moreover, research efforts have been presented
for the corresponding problem of composite beams limited
to the formulation of a displacement-based one-dimensional
finite elementmodel for the estimation of natural frequencies
and corresponding mode shapes of thin-walled composite
beams after approximating again the torsion and warping
constants with closed form solutions [62, 63].

Only in Ganapathi et al. [64] the warping function for
the constant rectangular cross section of sandwich beams
is determined by solving the boundary value problem for
torsion such that the displacements are continuous at the
interfaces of adjacent layers, while the transverse shear stress
is continuous at these interfaces and vanishes at the top
and bottom surfaces of the beam. Moreover, Sapountza-
kis in [65, 66] developed a boundary element method
for the nonuniform torsional vibration problem of doubly
symmetric composite bars of arbitrary constant or variable
cross section, respectively. In these latter efforts the beam
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Figure 8: Torsional curvature of a rectangular and a hollow square cross section.

is subjected to an arbitrarily distributed dynamic twisting
moment, while its edges are restrained by the most general
linear torsional boundary conditions. A distributed mass
model system is employed which leads to the formulation of
three boundary value problems with respect to the variable
along the beam angle of twist and to the primary and
secondary warping functions. The last two problems are
solved employing a pure BEM [23] approach that is only
boundary discretization is used. Finally, Sapountzakis and
Mokos in [67] presented the dynamic analysis of 3D beam
elements restrained at their edges by the most general linear
torsional, transverse, or longitudinal boundary conditions
and subjected in arbitrarily distributed dynamic twisting,
bending, transverse, or longitudinal loading. For the solution
of this problem, a boundary element method is developed
for the construction of the 14 × 14 stiffness matrix and
the corresponding nodal load vector, of a member of an
arbitrarily shaped simply ormultiply connected cross section,
taking into account both warping and shear deformation
effects, which together with the respective mass and damp-
ing matrices lead to the formulation of the equation of
motion.

In order to formulate the nonuniform torsional vibration
problem of doubly symmetric bars of arbitrarily shaped
simply or multiply connected constant or variable cross
section, let us consider the bar of length 𝑙 of Figure 9. The
homogeneous isotropic and linearly elastic material of the
bar’s cross-section, with modulus of elasticity 𝐸, shear mod-
ulus 𝐺, and Poisson’s ratio ], occupies the two dimensional
multiply connected regionΩ of the 𝑦, 𝑧 plane and is bounded
by the Γ𝑗 (𝑗 = 1, 2, . . . , 𝐾) boundary curves, which are
piecewise smooth; that is, they may have a finite number
of corners. In Figure 9(b) 𝐶𝑌𝑍 is the principal coordinate
system through the cross section’s centroid𝐶, while𝑦𝐶, 𝑧𝐶 are
its coordinates with respect to 𝑆𝑦𝑧 system of axes through the
cross section’s shear center 𝑆. The bar is subjected to the time
dependent arbitrarily distributed or concentrated twisting
moment 𝑚𝑡 = 𝑚𝑡(𝑥, 𝑡), 𝑡 ≥ 0 acting in the 𝑥 direction
(Figure 9(a)).

Adopting the same displacement field (21a), (21b), and
(21c) with that of the static analysis of the constant cross

section case, which for the dynamic problem is written as

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝜃

𝑥 (𝑥, 𝑡) ⋅ 𝜙

𝑃
𝑆 (𝑦, 𝑧) + 𝜙

𝑆
𝑆 (𝑥, 𝑦, 𝑧, 𝑡) , (56a)

V (𝑥, 𝑦, 𝑧, 𝑡) = −𝑧𝜃𝑥 (𝑥, 𝑡) , (56b)

𝑤 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑦𝜃𝑥 (𝑥, 𝑡) (56c)

and following the same procedure presented for the constant
cross section bar in Section 2, the following initial boundary
value problem for the angle of twist 𝜃𝑥 = 𝜃𝑥 (𝑥) is derived:

𝐸𝐶𝑆

𝑑
4
𝜃𝑥

𝑑𝑥4
+ 2𝐸

𝑑𝐶𝑆

𝑑𝑥

𝑑
3
𝜃𝑥

𝑑𝑥3
+ (𝐸

𝑑
2
𝐶𝑆

𝑑𝑥2
− 𝐺𝐼𝑡)

𝑑
2
𝜃𝑥

𝑑𝑥2

− 𝐺
𝑑𝐼𝑡

𝑑𝑥

𝑑𝜃𝑥

𝑑𝑥
+ 𝜌𝐼𝑝

𝑑
2
𝜃𝑥

𝑑𝑡2
= 𝑚𝑡 inside the beam,

(57)

𝛼1𝜃𝑥 + 𝛼2𝑀𝑡 = 𝛼3, (58a)

𝛽1

𝑑𝜃𝑥

𝑑𝑥
+ 𝛽2𝑀𝑤 = 𝛽3 at the beam ends 𝑥 = 0, 𝑙, (58b)

𝜃𝑥 (𝑥, 0) = 𝜗 (𝑥) , (59a)

�̇�𝑥 (𝑥, 0) =
̇

𝜗 (𝑥) , (59b)

where �̇�𝑥(𝑥, 𝑡) is the first derivative of the angle of twist with
respect to time; 𝜗(𝑥), 𝜗(𝑥) are the initial angle of twist and the
corresponding initial velocity of the points of the beam axis;
𝐼𝑝 = 𝐼𝑝(𝑥) is the polar moment of inertia of the cross section
about the origin 𝑆 of its two axes of symmetry (see Figure 9)
and 𝜌 is the mass density of the cross section material. It is
worth here noting that in the constant cross section case the
governing equation (57) reduces to

𝐸𝐶𝑆

𝑑
4
𝜃𝑥

𝑑𝑥4
− 𝐺𝐼𝑡

𝑑
2
𝜃𝑥

𝑑𝑥2
+ 𝜌𝐼𝑝

𝑑
2
𝜃𝑥

𝑑𝑡2
= 𝑚𝑡 inside the beam.

(60)
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Center of  twist:
(coincident with centroid

𝑥

𝑦

𝑧

𝑆

𝑙

𝑚𝑡(𝑥, 𝑡)

𝐸, 𝐺

𝑆

𝐶)

(a)

Γ = ⋃𝐾
𝑗=0 Γ𝑗

𝑠

𝑠𝑡

𝑛 𝛼

𝑞

𝑟

𝜔

𝑃

Γ1

𝑆

𝑂

𝑧

Γ𝐾

𝑦
Γ0

𝑧

𝑦

(Ω)

(b)

Figure 9: Bar subjected to a time dependent twisting moment (a) with a variable cross section of arbitrary shape occupying the two
dimensional regionΩ (b).

In (58a) and (58b) the total twisting moment of the cross
section is once again divided into a primary and a secondary
component as this is stated in (29), where these components
are given from (44a) and (44b), the resulting total twisting
moment of the cross section is given from (45), while the
warping moment 𝑀𝑤 arising from the torsional curvature,
similarly with the constant cross section case is given from
(38). Also, the functions 𝑎𝑖, 𝛽𝑖 (𝑖 = 1, 2, 3) are specified
at the boundary of the beam forming the most general
linear torsional boundary conditions for the beam problem
including also the elastic support. Moreover, as for the static
constant cross section problem the determination of the
primary 𝜙

𝑃
𝑆 (𝑦, 𝑧) and the secondary 𝜙

𝑆
𝑆(𝑥, 𝑦, 𝑧, 𝑡) warping

functions is achieved from the solution of the boundary
value problems given from (19a), (19b), (20a), and (20b),
respectively, noting that the secondary warping function
in this case is time dependent. Finally, the primary, the
secondary shear stress components, and the normal stresses
due to warping are defined similarly with relations (7a)–(9),
which for the dynamic problem are written as

𝜏
𝑃
𝑥𝑦 (𝑥, 𝑦, 𝑧, 𝑡) = 𝐺 ⋅ 𝜃


𝑥 (𝑥, 𝑡) ⋅ (

𝜕𝜙
𝑃
𝑆

𝜕𝑦
− 𝑧) , (61a)

𝜏
𝑆
𝑥𝑦 (𝑥, 𝑦, 𝑧, 𝑡) = 𝐺 ⋅

𝜕𝜙
𝑆
𝑆

𝜕𝑦
, (61b)

𝜏
𝑃
𝑥𝑧 (𝑥, 𝑦, 𝑧, 𝑡) = 𝐺 ⋅ 𝜃


𝑥 (𝑥, 𝑡) ⋅ (

𝜕𝜙
𝑃
𝑆

𝜕𝑧
+ 𝑦) , (62a)

𝜏
𝑆
𝑥𝑧 (𝑥, 𝑦, 𝑧, 𝑡) = 𝐺 ⋅

𝜕𝜙
𝑆
𝑆

𝜕𝑧
, (62b)

𝜎
𝑤
𝑥𝑥 (𝑥, 𝑦, 𝑧, 𝑡) = 𝐸 ⋅ 𝜃


𝑥 (𝑥, 𝑡) ⋅ 𝜙

𝑃
𝑆 (𝑦, 𝑧) . (63)

From the examined example problems presented in [65–
67] it is concluded that

(i) the discrepancy of the dynamic response of the bar
arising from the ignorance of the warping effect
necessitates the inclusion of the nonuniform torsional
beam behavior;

(ii) the discrepancy of the results arising from the igno-
rance of the warping especially in higher eigenfre-
quencies is remarkable;

(iii) the discrepancy in the analysis of a thin-walled cross
section beamemploying the BEMafter calculating the
torsion and warping constants adopting the thin tube
theory demonstrates the importance of the proposed
procedure even in thin-walled beams, since it approx-
imates better the torsion and warping constants and
takes also into account the warping of the walls of the
cross section;

(iv) the discrepancy of the results arising from the igno-
rance of the warping degrees of freedom at the ends
of a member necessitates the utilization of the 14× 14

member stiffness matrix, especially for beams with
open shaped cross section;

(v) warping is not constant along the thickness of the
cross section walls as it is assumed in thin tube theory
for thin-walled beams.

6. Secondary Torsional Moment
Deformation Effect in Elastic Linear
Torsional Analysis of Bars

As it has already been mentioned in the previous sec-
tions in engineering practice we often come across the
analysis of rectilinear members of structures subjected to
nonuniform torsion. In this case, as it has been analyzed
in Section 2, the twisting moment is split into a primary
and a secondary part, where the primary and the secondary
torsion moments are undertaken from the Saint-Venant
shear stresses (primary shear stresses) and the warping shear
stresses (secondary shear stresses), respectively, while the
warping normal stresses are undertaken from the warping
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moment (bimoment). Moreover, in engineering practice as
well as in the literature very strong torsional warping is
assumed to occur only for open shaped cross sections,
while for closed shaped ones the warping effect is assumed
to be insignificant and therefore negligible. However, this
assumption is not always valid especially for bars of closed
shaped cross sections and small length.Noting that in the case
of direct torsion (equilibrium torsion) the arising normal and
additional shear stresses due to warping are equilibrium and
not constraint stresses, which means that after a crack these
stresses are redistributed, the necessity of the evaluation and
inclusion of these additional warping stresses in the analysis
is clearly evident.

Despite the wide study from both the analytical [14, 15,
68–71] and numerical [18–22, 24, 72–75] point of view of
the nonuniform torsion problem of prismatic bars, relatively
little work has been done on the corresponding problem
considering secondary torsional moment deformation effect,
that is shear deformation due to the nonuniform torsional
warping. It is worth here noting that if shear deformations
due to shear forces and restrained warping are considered,
flexure and torsion of bars of nonsymmetrical cross section
are generally coupled, even if the bar is subjected only to
twisting loading, while only for bars of doubly symmetrical
cross section flexure and torsion are decoupled. According
to the research efforts on the analytical solution of the
aforementioned nonuniform torsion problem including sec-
ondary shear deformation effect the pioneer work of Heilig
[76, 77] is mentioned, in which a theoretical formulation
of the problem is presented. Later, Roik and Sedlacek [78]
presented an analytical solution applying the Force Method
(FlexibilityMethod) and employing the analogy between 2nd
order beam theory with tensional axial force and torsion with
warping. Moreover, in the work of Schade [79] a theoreti-
cal formulation of the corresponding problem is presented
including the coupled shear deformation effect due to shear
forces and restrained warping. Rubin [80] using the method-
ology of Roik and Sedlacek [78] presented an analytical solu-
tion for continuous prismatic bars by introducing a Three-
Moment Equation (similar with theThree-Moment Equation
of Clapeyron for the flexure problem). Also, the theory of the
shear deformations due to the restrained torsional warping
has been validated by a series of torsional experimental
tests on fibre reinforced plastics I-beams by Roberts and Al-
Ubaidi [81]. Furthermore, from the numerical point of view
intensive research works have been made over the last years
to develop new beam finite elements which take into account
coupled [82] or uncoupled [83] secondary shear deformation.
However, in all of the aforementioned research efforts only
bars of thin-walled cross section are investigated, since
the torsional cross section parameters (warping constant,
primary and secondary torsion constant, and shear center) as
well as the shear and normal stresses are evaluated employing
the Vlasov thin tube theory [68, 69]. Finally, Kraus [84]
presented a FEM solution for the calculation of the secondary
torsion constant of bars of hot rolled I-sections and Mokos
and Sapountzakis in [85] developed a BEM solution for the
nonuniform torsion of simply or multiply connected bars
of doubly symmetric arbitrary constant cross section (thin

and/or thick walled), taking into account secondary torsional
moment deformation effect. In this last research effort, to
account for secondary shear deformations, the concept of
shear deformation coefficient is used leading to a secondary
torsion constant, which is computed employing an effective
automatic domain integration using the Advancing Front
Method (AFM) [86].

In order to formulate the aforementioned problem, let us
consider a rectilinear bar of length 𝑙, of an arbitrary doubly
symmetric constant cross section with modulus of elasticity
𝐸 and shear modulus 𝐺, occupying the two dimensional
multiply connected region Ω of the 𝑦, 𝑧 plane bounded by
the 𝐾 + 1 curves Γ0, Γ1, . . . , Γ𝐾 as shown in Figure 10. The
bar is subjected to arbitrarily distributed and/or concentrated
twisting 𝑚𝑡 = 𝑚𝑡(𝑥) and warping 𝑚𝑤 = 𝑚𝑤(𝑥) moments,
while its edges are restrained by the most general torsional
boundary conditions.

In order to account for shear deformation due to
restrained torsional warping, the displacements 𝑢𝑥, 𝑢𝑦, 𝑢𝑧
along the three axes and the rotation 𝜃𝑥 due to twist are spilt
into a primary and a secondary part arising from the primary
(𝑃) and the secondary (𝑆) torsional moment, respectively, as

𝑢𝑦 = 𝑢
𝑃
𝑦 + 𝑢

𝑆
𝑦, (64a)

𝑢𝑧 = 𝑢
𝑃
𝑧 + 𝑢

𝑆
𝑧, (64b)

𝑢𝑥 = 𝑢
𝑃
𝑥 + 𝑢

𝑆
𝑥, (64c)

𝜃𝑥 = 𝜃
𝑃
𝑥 + 𝜃

𝑆
𝑥, (65a)

𝑑𝜃𝑥

𝑑𝑥
=

𝑑𝜃
𝑃
𝑥

𝑑𝑥
+

𝑑𝜃
𝑆
𝑥

𝑑𝑥
, (65b)

where the (total) first derivative of the angle of twist 𝑑𝜃𝑥/𝑑𝑥
denotes the rate of change of the (total) angle of twist and can
be regarded as the (total) torsional curvature. The primary
𝑑𝜃

𝑃
𝑥/𝑑𝑥 and the secondary 𝑑𝜃

𝑆
𝑥/𝑑𝑥 part of the first order

derivative of the angle of twist represent the primary torsional
curvature (Figure 11(a)) arising from the (primary) warp-
ing normal stresses and the secondary torsional curvature
(Figure 11(b)) arising from the (secondary) warping shear
stresses, respectively.

Assuming small torsional rotation, the displacement field
is defined as

𝑢
𝑃
𝑦 = −𝑧𝜃𝑥 (𝑥) , (66a)

𝑢
𝑃
𝑧 = 𝑦𝜃𝑥 (𝑥) , (66b)

𝑢
𝑃
𝑥 =

𝑑𝜃
𝑃
𝑥 (𝑥)

𝑑𝑥
𝜑
𝑃
𝑆 (𝑦, 𝑧) , (66c)

𝑢
𝑆
𝑦 = 𝑢

𝑆
𝑧 = 𝑢

𝑆
𝑥 = 0, (66d)

where 𝜑
𝑃
𝑆 (𝑦, 𝑧) is the primary warping function with respect

to the shear center 𝑆 of the cross section of the bar. Substitut-
ing the aforementioned displacement field to the linearized
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Figure 10: Rectilinear bar subjected to twisting and warping moments (a) of constant doubly symmetric arbitrary cross section occupying
the two dimensional regionΩ (b).

(a) (b)

Figure 11: Primary (a) and secondary (b) torsional curvature of a hot rolled I-profile steel HEB-100 cross section.

strain-displacement relations (Cauchy strain tensor) and to
the stress-strain relations (constitutive relations) of the three-
dimensional elasticity the nonzero stress components in the
regionΩ can be written as

𝜎
𝑃
𝑥𝑥 = 𝐸

𝑑
2
𝜃
𝑃
𝑥 (𝑥)

𝑑𝑥2
𝜑
𝑃
𝑆 (𝑦, 𝑧) , (67a)

𝜏
𝑃
𝑥𝑦 = 𝐺

𝑑𝜃𝑥 (𝑥)

𝑑𝑥
(
𝜕𝜑

𝑃
𝑆 (𝑦, 𝑧)

𝜕𝑦
− 𝑧) , (67b)

𝜏
𝑃
𝑥𝑧 = 𝐺

𝑑𝜃𝑥 (𝑥)

𝑑𝑥
(
𝜕𝜑

𝑃
𝑆 (𝑦, 𝑧)

𝜕𝑧
+ 𝑦) , (67c)

𝜏
𝑆
𝑥𝑦 = 𝐺

𝜕𝜑
𝑆
𝑆 (𝑥, 𝑦, 𝑧)

𝜕𝑦
, (68a)

𝜏
𝑆
𝑥𝑧 = 𝐺

𝜕𝜑
𝑆
𝑆 (𝑥, 𝑦, 𝑧)

𝜕𝑧
, (68b)

where 𝜑
𝑆
𝑆(𝑥, 𝑦, 𝑧) is the secondary warping function with

respect to the shear center 𝑆 of the cross section of the bar.

It is worth here mentioning that, for the derivation of the
aforementioned relations of shear stresses, the arising terms
(𝑑𝜃

𝑆
𝑥/𝑑𝑥)(𝜕𝜑

𝑃
𝑆 /𝜕𝑦), (𝑑𝜃

𝑆
𝑥/𝑑𝑥)(𝜕𝜑

𝑃
𝑆 /𝜕𝑧) have been neglected.

6.1. Equations of Local Equilibrium. The first elasticity equa-
tion of equilibrium of the three-dimensional elasticity (equi-
librium in the axial direction of the bar) with vanishing body
forces is written as

(
𝜕𝜏

𝑃
𝑥𝑦

𝜕𝑦
+

𝜕𝜏
𝑃
𝑥𝑧

𝜕𝑧
)

𝑃

+ (
𝜕𝜎

𝑃
𝑥𝑥

𝜕𝑥
+

𝜕𝜏
𝑆
𝑥𝑦

𝜕𝑦
+

𝜕𝜏
𝑆
𝑥𝑧

𝜕𝑧
)

𝑆

= 0. (69)

Similarly with Section 2, requiring both the primary (𝑃) and
the secondary due to warping (𝑆) parts of (69) to vanish,
as well as the corresponding ones of the traction vector on
the free lateral surface of the bar, the Neumann problems of
(19a) and (19b) for the primary and of (20a) and (20b) for the
secondary warping functions are obtained.

Additionally, applying the stress components given from
(67a), (67b), (67c), (68a), and (68b) into the stress resultants
given from (29), (30a), (30b), and (36) and taking into
account theNeumann problems (19a), (19b), (20a), and (20b),
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the following relations for the nonzero stress resultants of the
bar are obtained:

𝑀𝑤 = −𝐸𝐶𝑆

𝑑
2
𝜃
𝑃
𝑥

𝑑𝑥2
, (70)

𝑀
𝑃
𝑡 = 𝐺𝐼

𝑃
𝑡

𝑑𝜃𝑥

𝑑𝑥
, (71a)

𝑀
𝑆
𝑡 = −𝐸𝐶𝑆

𝑑
3
𝜃
𝑃
𝑥

𝑑𝑥3
, (71b)

where

𝐶𝑆 = ∫
Ω

(𝜙
𝑃
𝑆 )

2
𝑑Ω, (72a)

𝐼
𝑃
𝑡 = ∫

Ω

(𝑦
2
+ 𝑧

2
+ 𝑦 ⋅

𝜕𝜙
𝑃
𝑆

𝜕𝑧
− 𝑧 ⋅

𝜕𝜙
𝑃
𝑆

𝜕𝑦
)𝑑Ω (72b)

are the warping and the primary torsion constants of the
cross section, respectively, while𝐸𝐶𝑆 and𝐺𝐼

𝑃
𝑡 are thewarping

and the primary torsional rigidities of the cross section,
respectively. It is worth noting that the relations (70), (71a),
and (71b) are valid inside the bar as well as at the bar ends.
Moreover, observing (70) and (71b) equation (40) can be
easily obtained, while substituting (71b) into (20a) the partial
Poisson type differential equation governing the secondary
warping function is obtained as

∇
2
𝜑
𝑆
𝑆 =

𝑀
𝑆
𝑡

𝐺𝐶𝑆

𝜑
𝑃
𝑆 (𝑦, 𝑧) in Ω. (73)

Since the secondary warping is much smaller with regard
to the primary one [24], the secondary torsional curvature
𝑑𝜃

𝑆
𝑥/𝑑𝑥 can be taken into account in the calculation of the

angle of twist indirectly using an effective secondary torsion
constant. Thus, as in Timoshenko’s beam theory for shear
deformable beams [87, 88], the secondary torsional curvature
can be approximately evaluated from the following relation
[76, 77]:

𝑑𝜃
𝑆
𝑥

𝑑𝑥
=

𝑀
𝑆
𝑡

𝐺𝐼𝑆𝑡

, (74)

where 𝐺𝐼
𝑆
𝑡 is the secondary torsional rigidity of the cross

section, while 𝐼𝑆𝑡 is the secondary torsion constant of the cross
section which can be written as

𝐼
𝑆
𝑡 = 𝜅

𝑆
𝑥𝐼

𝑃
𝑡 =

1

𝛼𝑆
𝑥

𝐼
𝑃
𝑡 , (75)

where the coefficient 𝜅
𝑆
𝑥 is called warping shear correction

factor and 𝛼
𝑆
𝑥 is the warping shear deformation coefficient.

Substituting (75) into (74) the secondary torsional curvature
can be written as

𝑑𝜃
𝑆
𝑥

𝑑𝑥
= 𝛼

𝑆
𝑥

𝑀
𝑆
𝑡

𝐺𝐼𝑃𝑡

. (76)

From (76) it is concluded that for 𝛼
𝑆
𝑥 = 0 the secondary

shear deformation effect is neglected, that is 𝑑𝜃𝑆𝑥/𝑑𝑥 = 0 and
𝑑𝜃

𝑃
𝑥/𝑑𝑥 = 𝑑𝜃𝑥/𝑑𝑥. This assumption is usually employed in

the case of open shaped cross sections.
The evaluation of the secondary torsion constant of the

cross section can be achieved by applying an energy approach
[16, 78]. Thus, taking into account (68a), (68b), and (74) and
equating the approximate formula for the evaluation of the
secondary shear strain energy per unit length given from

𝑈appr =
1

2
𝑀

𝑆
𝑡

𝑑𝜃
𝑆
𝑥

𝑑𝑥
=

1

2

(𝑀
𝑆
𝑡 )

2

𝐺𝐼𝑆𝑡

(77)

with the exact one given from

𝑈exact =
1

2𝐺
∫
Ω

(𝜏
𝑆
𝑥𝑦

2
+ 𝜏

𝑆
𝑥𝑧

2
) 𝑑Ω

=
1

2
𝐺∫

Ω

(
𝜕𝜑

𝑆
𝑆

𝜕𝑦

𝜕𝜑
𝑆
𝑆

𝜕𝑦
+

𝜕𝜑
𝑆
𝑆

𝜕𝑧

𝜕𝜑
𝑆
𝑆

𝜕𝑧
)𝑑Ω

(78)

the secondary torsion constant can be obtained as

𝐼
𝑆
𝑡 =

(𝑀
𝑆
𝑡 )

2

𝐺2

×
1

∫
Ω
((𝜕𝜑𝑆

𝑆
/𝜕𝑦) (𝜕𝜑𝑆

𝑆
/𝜕𝑦) + (𝜕𝜑𝑆

𝑆
/𝜕𝑧) (𝜕𝜑𝑆

𝑆
/𝜕𝑧)) 𝑑Ω

.

(79)

In order to formulate this constant independently from the
loading and the material properties of the bar, the values
𝑀

𝑆
𝑡 = 1, 𝐺 = 1 are employed and the secondary torsion

constant is given as

𝐼
𝑆
𝑡 =

1

∫
Ω
((𝜕�̃�

𝑆
𝑆/𝜕𝑦) (𝜕�̃�

𝑆
𝑆/𝜕𝑦) + (𝜕�̃�

𝑆
𝑆/𝜕𝑧) (𝜕�̃�

𝑆
𝑆/𝜕𝑧)) 𝑑Ω

,

(80)

where �̃�
𝑆
𝑆(𝑦, 𝑧) is the unit secondary warping function with

respect to the shear center 𝑆 of the cross section of the bar,
while taking into account (73) and (20b) the aforementioned
function �̃�

𝑆
𝑆 can be established by solving independently the

following Neumann problem:

∇
2
�̃�
𝑆
𝑆 =

𝜑
𝑃
𝑆

𝐶𝑆

in Ω, (81a)

𝜕�̃�
𝑆
𝑆

𝜕𝑛
= 0 on Γ. (81b)

Moreover, applying the Green identity for the warping
functions 𝜑

𝑃
𝑆 (𝑦, 𝑧) and �̃�

𝑆
𝑆(𝑦, 𝑧) and taking into account the

Neumann problems (19a), (19b), (81a), (81b), and (80) the
secondary torsion constant is given as

𝐼
𝑆
𝑡 =

𝐶𝑆

𝐼𝜑

, (82)
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Figure 12: Equilibrium of a small segment 𝑑𝑥 of a twisted bar.

where 𝐼𝜑 is a domain integral given from the relation

𝐼𝜑 = −∫
Ω

𝜑
𝑃
𝑆 �̃�

𝑆
𝑆𝑑Ω (83)

while form (75) and (82) the following relation for the
warping shear deformation coefficient is obtained:

𝛼
𝑆
𝑥 =

𝐼
𝑃
𝑡

𝐶𝑆

𝐼𝜑. (84)

6.2. Equations of Global Equilibrium. Furthermore, in order
to formulate the governing differential equation of moment
equilibrium of the bar in the axial direction, the equilibrium
of a small segment 𝑑𝑥 of the bar (Figure 12) is considered
leading to the relation

𝑑𝑀𝑡

𝑑𝑥
= −𝑚𝑡 −

𝑑𝑚𝑤

𝑑𝑥
. (85)

Taking into account (29), (85) can be written as

𝑑𝑀
𝑆
𝑡

𝑑𝑥
+

𝑑𝑀
𝑃
𝑡

𝑑𝑥
= −𝑚𝑡 −

𝑑𝑚𝑤

𝑑𝑥

(86)

while substituting (40) into (86) the following equilibrium
equation is obtained:

𝑑
2
𝑀𝑤

𝑑𝑥2
+

𝑑𝑀
𝑃
𝑡

𝑑𝑥
= −𝑚𝑡 −

𝑑𝑚𝑤

𝑑𝑥
. (87)

Having in mind that both the secondary twisting moment
𝑀

𝑆
𝑡 (𝜃

𝑃
𝑥 ) and the bimoment 𝑀𝑤(𝜃

𝑃
𝑥 ) (given from relations

(71b) and (70), resp.) are expressed in terms of the primary
angle of twist (𝜃

𝑃
𝑥 ), while the primary twisting moment

𝑀
𝑃
𝑡 (𝜃𝑥) (given from relation (71a)) is expressed in terms of

the total angle of twist (𝜃𝑥), an effort is given in the following
to formulate also the primary twisting moment 𝑀

𝑃
𝑡 with

respect to the primary angle of twist (𝜃𝑃𝑥 ).
Introducing an auxiliary geometric constant 𝜅 defined as

𝜅 =
1

1 + 𝛼𝑆
𝑥

(88)

the relation (76) can be written as

𝑑𝜃
𝑆
𝑥

𝑑𝑥
=

1 − 𝜅

𝜅

𝑀
𝑆
𝑡

𝐺𝐼𝑃𝑡

(89)

while from relation (65b) the total torsional curvature can be
written as

𝑑𝜃𝑥

𝑑𝑥
=

𝑑𝜃
𝑃
𝑥

𝑑𝑥
+

1 − 𝜅

𝜅

𝑀
𝑆
𝑡

𝐺𝐼𝑃𝑡

(90)

and according to (71a) and (71b), the primary twisting
moment is given with respect to the primary angle of twist
(𝜃

𝑃
𝑥 ) as

𝑀
𝑃
𝑡 = 𝐺𝐼

𝑃
𝑡

𝑑𝜃
𝑃
𝑥

𝑑𝑥
− 𝐸𝐶𝑆

𝑑
3
𝜃
𝑃
𝑥

𝑑𝑥3
(1 − 𝜅) , (91)

where 𝐶𝑆 is a modified warping constant given as

𝐶𝑆 =
𝐶𝑆

𝜅
. (92)

It is worth here noting that the auxiliary constant 𝜅 is always
smaller or equal to one, that is 𝜅 ≤ 1. Small values of
the constant 𝜅 indicate that the secondary torsional moment
deformation effect is important and should be considered in
the analysis, while in the case of negligible secondary shear
deformations 𝜅 = 1. Moreover, according to (29), (71b), and
(91) the (total) twisting moment 𝑀𝑡 is given with respect to
the primary angle of twist (𝜃𝑃𝑥 ) from the relation

𝑀𝑡 = 𝐺𝐼
𝑃
𝑡

𝑑𝜃
𝑃
𝑥

𝑑𝑥
− 𝐸𝐶𝑆

𝑑
3
𝜃
𝑃
𝑥

𝑑𝑥3
(93)

while using (92) the moments 𝑀𝑆
𝑡 and 𝑀𝑤 can be written in

terms of the modified warping constant as

𝑀𝑤 = −𝐸𝐶𝑆

𝑑
2
𝜃
𝑃
𝑥

𝑑𝑥2
𝜅, (94)

𝑀
𝑆
𝑡 = −𝐸𝐶𝑆

𝑑
3
𝜃
𝑃
𝑥

𝑑𝑥3
𝜅. (95)

Hence, substituting (91) and (94) into (87) the governing
differential moment equation of equilibrium of the bar in the
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axial direction with respect to the primary angle of twist is
obtained as

𝐸𝐶𝑆

𝑑
4
𝜃
𝑃
𝑥

𝑑𝑥4
− 𝐺𝐼

𝑃
𝑡

𝑑
2
𝜃
𝑃
𝑥

𝑑𝑥2
= +𝑚𝑡 +

𝑑𝑚𝑤

𝑑𝑥
inside the bar (96)

while the boundary conditions are given from

𝛼1𝜃
𝑃
𝑥 + 𝛼2𝑀𝑡 = 𝛼3, (97a)

𝛽1

𝑑𝜃
𝑃
𝑥

𝑑𝑥
+ 𝛽2𝑀𝑤 = 𝛽3 at the bar ends 𝑥 = 0, 𝑙, (97b)

where the parameters 𝑎𝑖, 𝛽𝑖 (𝑖 = 1, 2, 3) are functions
specified at the boundary of the bar and themoments𝑀𝑡 and
𝑀𝑤 are given form the relations (93) and (94), respectively.
It is worth here noting that the boundary conditions (97a)
and (97b) are themost general linear torsional boundary con-
ditions including also the elastic support. It is apparent that
all types of the conventional torsional boundary conditions
(clamped, simply supported, free, or guided edge) can be
derived from these equations by specifying appropriately the
functions 𝑎𝑖 and 𝛽𝑖 (e.g., for a clamped edge it is 𝑎1 = 𝛽1 = 1,
𝑎2 = 𝑎3 = 𝛽2 = 𝛽3 = 0).

Furthermore, substituting (95) into (89) and differentiat-
ing with respect to 𝑥, the governing differential equation of
equilibriumof the bar in the axial directionwith respect to the
secondary angle of twist is obtained in terms of the primary
angle of twist as

𝑑
2
𝜃
𝑆
𝑥

𝑑𝑥2
= −

𝐸𝐶𝑆

𝐺𝐼𝑃𝑡

𝑑
4
𝜃
𝑃
𝑥

𝑑𝑥4
(1 − 𝜅) inside the bar (98)

while the corresponding boundary conditions are given in
terms of the primary angle of twist as

𝛾1𝜃
𝑆
𝑥 + 𝛾2 (𝐺𝐼

𝑃
𝑡

𝜅

1 − 𝜅
)

𝑑𝜃
𝑆
𝑥

𝑑𝑥

= 𝛾3 (−𝐸𝐶𝑆𝜅
𝑑
3
𝜃
𝑃
𝑥

𝑑𝑥3
) at the bar ends 𝑥 = 0, 𝑙,

(99)

where if the primary angle of twist is fixed, that is 𝑎1 = 1 and
𝑎2 = 𝑎3 = 0, then 𝛾1 = 1 and 𝛾2 = 𝛾3 = 0, otherwise 𝛾1 = 0

and 𝛾2 = 𝛾3 = 1.
From the examined example problems presented in [85]

it is concluded that

(i) the inaccuracy of the thin tube theory in calculating
the secondary torsion constant even for thin-walled
sections is noteworthy;

(ii) as it is also verified by other computational methods
[80, 83], for bars with open shaped cross section the
secondary torsional moment deformation effect has
not significant influence. However, the inclusion of
this additional effect leads to more accurate results;

(iii) as it is also verified by other computational methods
[80, 83], for bars with closed shaped cross sections the

secondary torsional moment deformation effect has
an important influence and should be considered in
the analysis (otherwise the results may be completely
wrong especially in the calculation of stresses).

7. Nonlinear Elastic Nonuniform
Torsion of Bars

As it has already been mentioned in the previous sections
in engineering practice we often come across the analysis
of members of structures subjected to twisting moments.
Besides, since thin-walled open sections have low torsional
stiffness, the torsional deformations can be of such mag-
nitudes that it is not adequate to treat the angles of cross
section rotation as small. When finite twist rotation angles
are considered, the elastic nonuniform torsion problem
becomes nonlinear. Moreover, this problem becomes much
more complicated in the case the cross section’s centroid
does not coincide with its shear center (asymmetric beams),
leading to the formulation of a flexural-torsional coupled
problem. The extensive use of the aforementioned structural
elements necessitates a reliable and accurate analysis of bars
of arbitrary cross section subjected to torsional loading taking
into account the geometrical nonlinearity.

Though several researchers have dealt either with the
linear nonuniform torsional behaviour of beams [17, 21, 22,
40] or with the nonlinear uniform torsional behaviour of
doubly symmetric beams [89, 90], to the author’s knowledge
very little work has been done on the corresponding nonlin-
ear nonuniform torsional problem of arbitrary cross section
beams. Ghobarah and Tso [91], Attard [92], and Attard
and Somervaille [93] have presented a set of displacement
relationships for a straight prismatic thin-walled open beam
applicable to situations where displacements are finite, the
cross section does not distort, strains are small and flexural
displacements are small to moderate while cross sectional
twist can be large.The presented numerical examples in these
studies are concerned only with uniform torsion of either
mono- or doubly symmetric cross sections. Finally, Trahair
in [94] employing the finite element method and presenting
examples of only doubly symmetric cross sections andMohri
et al. in [95] employing similar equations to those estab-
lished by Attard in [92] and presenting examples of either
doubly symmetric cross sections subjected in nonuniform
torsion or buckling or postbuckling behavior of arbitrary
cross section beams also analyze the nonlinear nonuniform
torsional problem. Nevertheless, all of the aforementioned
studies, which are the only one considering finite angles of
twist in asymmetrical bars (and taking into account all of
the arising nonlinear terms) are not general since they are
restricted to thin-walled beams. Finally, Sapountzakis and
Tsipiras in [96, 97] presented a BE solution for the elastic
nonuniform torsion analysis of simply, multiply connected
or composite cylindrical bars of arbitrary cross section
taking into account the effect of geometric nonlinearity.
The torque-rotation relationship is computed based on the
finite displacement (finite rotation) theory; that is, the
transverse displacement components are expressed so as to
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Figure 13: Prismatic bar subjected to twisting andwarpingmoments (a) with a cross section of arbitrary shape occupying the two dimensional
region Ω (b).

be valid for large rotations and the longitudinal normal
strain includes the second-order geometrically nonlinear
term often described as the “Wagner strain.” These last
formulations do not stand on the assumption of a thin-
walled structure and therefore the cross section’s torsional
rigidity is evaluated exactly without using the so-called Saint-
Venant’s torsional constant. The torsional rigidity of the cross
section is evaluated directly employing the primary warping
function of the cross section [21] depending on its shape.
Three boundary value problems with respect to the variable
along the beam axis angle of twist, to the primary and to
the secondary warping functions are formulated. The first
one of these problems is numerically solved employing the
Analog EquationMethod [98], a BEMbasedmethod, leading
to a system of nonlinear equations from which the angle
of twist is computed by an iterative process. The other two
problems are solved using a pure BEM [23] based method.
The aforementioned formulation procedure is based on the
assumption of no local or lateral torsional buckling or
distortion.

In order to formulate the aforementioned problem, let us
consider a prismatic bar of length 𝑙 (Figure 13), of constant
arbitrary cross-section of area𝐴.The homogeneous isotropic
and linearly elastic material of the bar’s cross-section, with
modulus of elasticity 𝐸, shear modulus 𝐺, and Poisson’s ratio
], occupies the two dimensionalmultiply connected regionΩ

of the 𝑦, 𝑧 plane and is bounded by the Γ𝑗 (𝑗 = 0, 1, 2, . . . , 𝐾)

boundary curves, which are piecewise smooth; that is, they
may have a finite number of corners. In Figure 13(b) 𝐶𝑌𝑍 is
the principal coordinate system through the cross section’s
centroid 𝐶, while 𝑦𝐶, 𝑧𝐶 are its coordinates with respect to
𝑆𝑦𝑧 system of axes through the cross section’s shear center 𝑆.
The bar is subjected to the combined action of the arbitrarily
distributed or concentrated conservative twisting𝑚𝑡 = 𝑚𝑡(𝑥)

and warping𝑚𝑤 = 𝑚𝑤(𝑥)moments acting in the 𝑥 direction
(Figure 13(a)).

Under the aforementioned loading the displacement field
of the bar with respect to the 𝑆𝑦𝑧 system of axes for large

twisting rotations and small bending ones is given as

𝑢 = 𝑢𝑚 (𝑥) + 𝜃𝑌 (𝑥) ⋅ (𝑧 − 𝑧𝐶) − 𝜃𝑍 (𝑥) ⋅ (𝑦 − 𝑦𝐶)

+ 𝜃

𝑥 (𝑥) ⋅ 𝜙

𝑃
𝑆 (𝑦, 𝑧) + 𝜙

𝑆
𝑆 (𝑥, 𝑦, 𝑧) ,

(100a)

V = V𝑆 (𝑥) − 𝑧 ⋅ sin 𝜃𝑥 (𝑥) − 𝑦 ⋅ (1 − cos 𝜃𝑥 (𝑥)) , (100b)

𝑤 = 𝑤𝑆 (𝑥) + 𝑦 ⋅ sin 𝜃𝑥 (𝑥) − 𝑧 ⋅ (1 − cos 𝜃𝑥 (𝑥)) , (100c)

where the transverse displacement components V,𝑤 are valid
for large rotations [99]; 𝜃𝑌, 𝜃𝑍 are the angles of rotation due to
bending of the cross section with respect to its centroid; 𝜃𝑥(𝑥)
denotes the rate of change of the angle of twist 𝜃𝑥 regarded
as the torsional curvature; V𝑆(𝑥), 𝑤𝑆(𝑥) are the transverse
displacement components of the shear center 𝑆; 𝜙𝑃

𝑆 , 𝜙
𝑆
𝑆 are

the primary and secondary warping functions with respect
to the shear center 𝑆, respectively [21]; 𝑢𝑚(𝑥) is an “average”
axial displacement of the cross section of the bar, that will be
later explained.

Substituting (100a), (100b), and (100c) in the nonlinear
(Green) strain-displacement relations of the nonvanishing
strains

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
+

1

2
⋅ [(

𝜕𝑢

𝜕𝑥
)

2

+ (
𝜕V

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑥
)

2

] , (101a)

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕V

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
⋅
𝜕𝑢

𝜕𝑥
+

𝜕V

𝜕𝑦
⋅
𝜕V

𝜕𝑥
+

𝜕𝑤

𝜕𝑦
⋅
𝜕𝑤

𝜕𝑥
, (101b)

𝛾𝑥𝑧 =
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
+

𝜕𝑢

𝜕𝑧
⋅
𝜕𝑢

𝜕𝑥
+

𝜕V

𝜕𝑧
⋅
𝜕V

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
⋅
𝜕𝑤

𝜕𝑥
(101c)

assuming moderate large deflections ((𝜕𝑢/𝜕𝑥)2 ≪ 𝜕𝑢/𝜕𝑥,
(𝜕𝑢/𝜕𝑥)(𝜕𝑢/𝜕𝑦) ≪ (𝜕V/𝜕𝑥) + (𝜕𝑢/𝜕𝑦), (𝜕𝑢/𝜕𝑥)(𝜕𝑢/𝜕𝑧) ≪

(𝜕𝑤/𝜕𝑥) + (𝜕𝑢/𝜕𝑧)) and having in mind that ignoring shear
deformation effect the angles of rotation due to bending 𝜃𝑌,
𝜃𝑍 approximate the slope between the longitudinal axis in
the deformed state and in the initial vertical and horizontal
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planes, respectively, the following relations are obtained:

𝜃𝑌 (𝑥) = V

𝑆 ⋅ sin 𝜃𝑥 − 𝑤


𝑆 ⋅ cos 𝜃𝑥, (102a)

𝜃𝑍 (𝑥) = V

𝑆 ⋅ cos 𝜃𝑥 + 𝑤


𝑆 ⋅ sin 𝜃𝑥 (102b)

and the nonvanishing strain resultants are given as

𝜀𝑥𝑥 = 𝑢

𝑚 + 𝜅𝑌 ⋅ (𝑧 − 𝑧𝐶) − 𝜅𝑍 ⋅ (𝑦 − 𝑦𝐶)

+ 𝜃

𝑥 ⋅ 𝜙

𝑃
𝑆 (𝑦, 𝑧) − 𝜃


𝑥 ⋅ (𝑦𝐶 ⋅ 𝜃𝑌 + 𝑧𝐶 ⋅ 𝜃𝑍)

+
1

2
[(V


𝑆)

2
+ (𝑤


𝑆)

2
+ (𝑦

2
+ 𝑧

2
) ⋅ (𝜃


𝑥)

2
] ,

(103a)

𝛾𝑥𝑦 = 𝜃

𝑥 ⋅ (

𝜕𝜙
𝑃
𝑆

𝜕𝑦
− 𝑧) +

𝜕𝜙
𝑆
𝑆

𝜕𝑦
, (103b)

𝛾𝑥𝑧 = 𝜃

𝑥 ⋅ (

𝜕𝜙
𝑃
𝑆

𝜕𝑧
+ 𝑦) +

𝜕𝜙
𝑆
𝑆

𝜕𝑧
, (103c)

where the curvature components 𝜅𝑌, 𝜅𝑍 are given from the
following relations:

𝜅𝑌 (𝑥) = V

𝑆 (𝑥) ⋅ sin 𝜃𝑥 − 𝑤


𝑆 (𝑥) ⋅ cos 𝜃𝑥, (104a)

𝜅𝑍 (𝑥) = V

𝑆 (𝑥) ⋅ cos 𝜃𝑥 + 𝑤


𝑆 (𝑥) ⋅ sin 𝜃𝑥 (104b)

while the second-order geometrically nonlinear term in the
right hand side of (103a) (𝑦2

+ 𝑧
2
) ⋅ (𝜃


𝑥)

2
/2 is often described

as the “Wagner strain” [94]. It is worth here noting that in
obtaining (103a) the rate of change of the secondary warping
function 𝜙

𝑆
𝑆 , that is the arising normal stress due to the

secondary shear one due to warping [24], has been ignored.
Considering strains to be small, employing the second

Piola-Kirchhoff stress tensor and assuming an isotropic and
homogeneous material for zero Poisson ratio, the stress
components are defined in terms of the strain ones as

{

{

{

𝑆𝑥𝑥
𝑆𝑥𝑦

𝑆𝑥𝑧

}

}

}

= [

[

𝐸 0 0

0 𝐺 0

0 0 𝐺

]

]

{

{

{

𝜀𝑥𝑥
𝛾𝑥𝑦

𝛾𝑥𝑧

}

}

}

(105)

or employing (103a), (103b), and (103c) as

𝑆𝑥𝑥 = 𝐸 [𝑢

𝑚 + 𝜅𝑌 ⋅ (𝑧 − 𝑧𝐶) − 𝜅𝑍 ⋅ (𝑦 − 𝑦𝐶)

+𝜃

𝑥 ⋅ 𝜙

𝑃
𝑆 (𝑦, 𝑧) − 𝜃


𝑥 ⋅ (𝑦𝐶𝜃𝑌 + 𝑧𝐶𝜃𝑍)]

+
𝐸

2
[(V


𝑆)

2
+ (𝑤


𝑆)

2
+ (𝑦

2
+ 𝑧

2
) ⋅ (𝜃


𝑥)

2
] ,

(106a)

𝑆𝑥𝑦 = 𝐺 ⋅ 𝜃

𝑥 ⋅ (

𝜕𝜙
𝑃
𝑆

𝜕𝑦
− 𝑧) + 𝐺 ⋅

𝜕𝜙
𝑆
𝑆

𝜕𝑦
, (106b)

𝑆𝑥𝑧 = 𝐺 ⋅ 𝜃

𝑥 ⋅ (

𝜕𝜙
𝑃
𝑆

𝜕𝑧
+ 𝑦) + 𝐺 ⋅

𝜕𝜙
𝑆
𝑆

𝜕𝑧
. (106c)

7.1. Equations of Local Equilibrium. Applying the stress com-
ponents (106a), (106b), and (106c) in the first equation of
equilibrium neglecting the body forces [100]

𝜕𝑆𝑥𝑥

𝜕𝑥
+

𝜕𝑆𝑥𝑦

𝜕𝑦
+

𝜕𝑆𝑥𝑧

𝜕𝑧
= 0 (107)

ignoring the independent of warping terms such as 𝐸 ⋅ 𝑢

𝑚 or

warping terms due to shear such as 𝐸(𝑤
𝑆 (𝑧 − 𝑧𝐶) + V𝑆 (𝑦 −

𝑦𝐶)) and requiring both the primary and the secondary due
to warping parts of both (107) and the traction vector on the
free surface of the bar to vanish, the Neumann problems for
the primary warping function 𝜙

𝑃
𝑆 given from (19a) and (19b)

and for the secondary warping function 𝜙
𝑆
𝑆 given from

∇
2
𝜙
𝑆
𝑆 = −

𝐸

𝐺
⋅ 𝜃


𝑥 ⋅ 𝜙

𝑃
𝑆 (𝑦, 𝑧) −

𝐸

𝐺
⋅ (𝑦

2
+ 𝑧

2
) ⋅ 𝜃


𝑥 ⋅ 𝜃


𝑥

in Ω,

(108a)

𝜕𝜙
𝑆
𝑆

𝜕𝑛
= 0 on Γ (108b)

are obtained, where ∇
2

= 𝜕
2
/𝜕𝑦

2
+ 𝜕

2
/𝜕𝑧

2 is the Laplace
operator and 𝜕/𝜕𝑛 denotes the directional derivative normal
to the boundary Γ. Thus, the primary 𝜙

𝑃
𝑆 and the secondary

𝜙
𝑆
𝑆 warping functions will be evaluated from the solution of

the Neumann problems described by the governing equa-
tions (19a) and (108a) inside the two dimensional multiply
connected region Ω, subjected to the boundary conditions
(19b) and (108b) on its boundary Γ, respectively. It is worth
here noting that the evaluated warping functions due to the
solution of the corresponding Neumann problems contain
an integration constant (parallel displacement of the cross
section along the bar axis), which can be obtained from the
requests that

∫
Ω

𝜙
𝑃
𝑆 𝑑Ω = 0, (109)

∫
Ω

𝜙
𝑆
𝑆𝑑Ω = 0. (110)

Moreover, in the case the origin 𝑂 of the coordinates is
a point of the plane other than the shear center 𝑆, the
primary warping function with respect to this point 𝜙

𝑃
𝑂 is

first established from the Neumann problems (19a) and (19b)
substituting 𝜙

𝑃
𝑆 by 𝜙

𝑃
𝑂. Using the evaluated warping function

𝜙
𝑃
𝑂, 𝜙

𝑃
𝑆 is then established using the transformation presented

in Section 2, while the coordinates of the shear center 𝑆 with
respect to the𝑂𝑦𝑧 system of coordinates are established from
(109) and the conditions

∫
Ω

𝜙
𝑃
𝑆𝑦𝑑Ω = 0, (111a)

∫
Ω

𝜙
𝑃
𝑆 𝑧 𝑑Ω = 0 (111b)

that define point 𝑆 as the point for which the axial and
bending stress resultants arising from an angle of twist at this
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point vanish in a geometrically linear analysis. It is worth
here noting that the shear center axis of an asymmetric cross
section bar subjected in pure torsion is not a rectilinear
one but is assigned from the displacement field 𝑢𝑆(𝑥), V𝑆(𝑥),
𝑤𝑆(𝑥).

Based on the conditions (109) and (110) the meaning of
the “average” axial displacement of the cross section of the
bar can now be explained as the relation

∫
Ω

𝑢 𝑑Ω = 𝑢𝑚 (𝑥) ⋅ 𝐴 + 𝜃𝑌 (𝑥) ⋅ (∫
Ω

𝑧 𝑑Ω − 𝑧𝐶 ⋅ 𝐴)

− 𝜃𝑍 (𝑥) ⋅ (∫
Ω

𝑦𝑑Ω − 𝑦𝐶 ⋅ 𝐴) + 𝜃

𝑥 ⋅ ∫

Ω

𝜙
𝑃
𝑆 𝑑Ω

+ ∫
Ω

𝜙
𝑆
𝑆𝑑Ω

(112)

leads to

𝑢𝑚 (𝑥) =
∫
Ω
𝑢 𝑑Ω

𝐴

(113)

that is 𝑢𝑚 generally does not coincide either with the axial
displacement of the cross section’s centroid 𝑢𝐶 or with that of
the shear center 𝑢𝑆.

7.2. Equations of Global Equilibrium. Neglecting body forces
the principle of virtual work yields

∫
𝑉

(𝑆𝑥𝑥 ⋅ 𝛿𝜀𝑥𝑥 + 𝑆𝑥𝑦 ⋅ 𝛿𝛾𝑥𝑦 + 𝑆𝑥𝑧 ⋅ 𝛿𝛾𝑥𝑧) 𝑑𝑉

= ∫
𝐴

(𝑡𝑥 ⋅ 𝛿𝑢 + 𝑡𝑦 ⋅ 𝛿V + 𝑡𝑧 ⋅ 𝛿𝑤) 𝑑𝐴,

(114)

where 𝛿(⋅) denotes virtual quantities, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 are the compo-
nents of the traction vector with respect to the undeformed
surface of the bar including the cross section ends, 𝐴 is the
surface area, and 𝑉 is the volume of the bar at its initial
undeformed state. Moreover, the stress resultants of the bar
are given as

𝑁 = ∫
Ω

𝑆𝑥𝑥𝑑Ω, (115a)

𝑀𝑌 = ∫
Ω

𝑆𝑥𝑥 (𝑧 − 𝑧𝐶) 𝑑Ω, (115b)

𝑀𝑍 = −∫
Ω

𝑆𝑥𝑥 (𝑦 − 𝑦𝐶) 𝑑Ω, (115c)

𝑀
𝑃
𝑡 = ∫

Ω

[𝑆
𝑃
𝑥𝑦 ⋅ (

𝜕𝜙
𝑃
𝑆

𝜕𝑦
− 𝑧) + 𝑆

𝑃
𝑥𝑧 ⋅ (

𝜕𝜙
𝑃
𝑆

𝜕𝑧
+ 𝑦)]𝑑Ω,

(115d)

𝑀𝑤 = −∫
Ω

𝑆𝑥𝑥𝜙
𝑃
𝑆 𝑑Ω, (115e)

where 𝑀
𝑃
𝑡 is the primary twisting moment resulting from

the primary shear stress distribution 𝑆
𝑃
𝑥𝑦, 𝑆

𝑃
𝑥𝑧 and 𝑀𝑤 is the

warping moment due to the torsional curvature. Substituting
(106a), (106b), and (106c) into (115a), (115b), (115c), (115d), and
(115e) the stress resultants are obtained as

𝑁 = 𝐸𝐴 ⋅ [𝑢

𝑚 +

1

2
⋅ ((V


𝑆)

2
+ (𝑤


𝑆)

2
+

𝐼𝑃

𝐴
⋅ (𝜃


𝑥)

2
)

−𝜃

𝑥 ⋅ (𝑦𝐶𝜃𝑌 + 𝑧𝐶𝜃𝑍) ] ,

(116a)

𝑀𝑌 = 𝐸𝐼𝑌𝑌 ⋅ [𝜅𝑌 + 𝛽2(𝜃

𝑥)

2
] , (116b)

𝑀𝑍 = 𝐸𝐼𝑍𝑍 ⋅ [𝜅𝑍 − 𝛽1(𝜃

𝑥)

2
] , (116c)

𝑀
𝑃
𝑡 = 𝐺𝐼𝑡 ⋅ 𝜃


𝑥, (116d)

𝑀𝑤 = −𝐸𝐶𝑆 ⋅ [𝜃

𝑥 +

𝑈𝑤

2𝐶𝑆

⋅ (𝜃

𝑥)

2
] , (116e)

where the torsion constant 𝐼𝑡 and the warping constant 𝐶𝑆

with respect to the shear center 𝑆 are given from (32a) and
(32b), the polarmoment of inertia 𝐼𝑃 with respect to the shear
center 𝑆 and the moments of inertia 𝐼𝑌𝑌, 𝐼𝑍𝑍 with respect to
the cross section’s centroid are given as

𝐼𝑃 = ∫
Ω

𝑟
2
𝑑Ω, (117a)

𝐼𝑌𝑌 = ∫
Ω

(𝑧 − 𝑧𝐶)
2
𝑑Ω, (117b)

𝐼𝑍𝑍 = ∫
Ω

(𝑦 − 𝑦𝐶)
2
𝑑Ω (117c)

with 𝑟 = √𝑦2 + 𝑧2, while the geometric constants 𝛽1, 𝛽2, and
𝑈𝑤 are given as

𝛽1 =
1

2𝐼𝑍𝑍

⋅ ∫
Ω

𝑟
2
⋅ (𝑦 − 𝑦𝐶) 𝑑Ω, (118a)

𝛽2 =
1

2𝐼𝑌𝑌

⋅ ∫
Ω

𝑟
2
⋅ (𝑧 − 𝑧𝐶) 𝑑Ω, (118b)

𝑈𝑤 = ∫
Ω

𝜙
𝑃
𝑆 ⋅ 𝑟

2
𝑑Ω. (118c)

It is worth here noting that the aforementioned stress
resultants refer to the directions of the cross section at its
deformed configuration (they take into account the cross
sections’ rotations), since they have been defined with respect
to the second Piola-Kirchhoff stress tensor.Moreover, though
the direction of the axial force 𝑁 is the tangential one to
the deformed centroid axis, it is not necessarily applied
to the cross section’s centroid, as it is already mentioned
the “average” axial displacement 𝑢𝑚 is not necessarily the
centroid’s displacement 𝑢𝐶 [92]. In deriving the relations
(116a), (116b), (116c), (116d), and (116e), the properties of the
principal system of axes and the orthogonality conditions of
the primary warping function 𝜙

𝑃
𝑆 with respect to the shear

center 𝑆 have been employed.
Substituting the stress components given in (106a),

(106b), and (106c) and the strain resultants given in (103a),
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(103b), and (103c) to the principle of virtual work (114) the
equation of torque equilibrium of the bar is obtained as

− 𝑁𝑦𝐶𝜃𝑍𝜃

𝑥 + 𝑁𝑧𝐶𝜃𝑌𝜃


𝑥 − 𝑀𝑍𝜅𝑌 + 𝑀𝑌𝜅𝑍

−
𝑑

𝑑𝑥
[𝑀

𝑃
𝑡 +

1

2
𝐸𝐼𝑛(𝜃


𝑥)

3
+ Ψ𝜃


𝑥 − 𝑁𝑦𝐶𝜃𝑌 − 𝑁𝑧𝐶𝜃𝑍]

−
𝑑
2
𝑀𝑤

𝑑𝑥2
= 𝑚𝑡 (𝑥) +

𝑑

𝑑𝑥
[𝑚𝑤 (𝑥)]

(119)

and the corresponding boundary conditions are written as

[(𝑀𝑤)

+ 𝑀

𝑃
𝑡 +

1

2
𝐸𝐼𝑛(𝜃


𝑥)

3
+ Ψ𝜃


𝑥 − 𝑁𝑦𝐶𝜃𝑌

−𝑁𝑧𝐶𝜃𝑍 − 𝑀𝑡] 𝛿𝜃𝑥 = 0,

(120a)

(−𝑀𝑤 + 𝑀𝑤) 𝛿𝜃

𝑥 = 0, (120b)

where the “higher order torsion constant” 𝐼𝑛 and the variable
Ψ are given as

𝐼𝑛 = 𝐼𝑃𝑃 −
𝐼
2
𝑃

𝐴
− 4𝛽

2
1𝐼𝑍𝑍 − 4𝛽

2
2𝐼𝑌𝑌 −

𝑈
2
𝑤

𝐶𝑆

, (121a)

Ψ = 𝑁
𝐼𝑃

𝐴
− 2𝑀𝑍𝛽1 + 2𝑀𝑌𝛽2 − 𝑀𝑤

𝑈𝑤

𝐶𝑆

(121b)

while 𝑀𝑡, 𝑀𝑤 in the boundary conditions (120a) and (120b)
are the externally applied conservative twisting and warping
moments at the bar ends and 𝐼𝑃𝑃 = ∫

Ω
𝑟
4
𝑑Ω (in (121a)). It

is worth here noting that in deriving the equation of torque
equilibrium of the bar the secondary shear stress distribution
has been ignored [24]. Considering that the axial force and
the bending moments vanish along the bar

𝑁 = 0, (122a)

𝑀𝑌 = 0, (122b)

𝑀𝑍 = 0 (122c)

the governing equation of the nonuniform nonlinear tor-
sional problem is written as

𝐸𝐶𝑆𝜃

𝑥 −

3

2
𝐸𝐼𝑛2(𝜃


𝑥)

2
𝜃

𝑥 − 𝐺𝐼𝑡𝜃


𝑥

= 𝑚𝑡 (𝑥) +
𝑑

𝑑𝑥
[𝑚𝑤 (𝑥)]

(123)

subjected to the following boundary conditions at the bar
ends

𝛼1𝜃𝑥 + 𝛼2𝑀𝑡 = 𝛼3, (124a)

𝛽1𝜃

𝑥 + 𝛽2𝑀𝑤 = 𝛽3, (124b)

where 𝐼𝑛2 is defined as

𝐼𝑛2 = 𝐼𝑛 +
𝑈

2
𝑤

𝐶𝑆

(125)

and 𝑀𝑡, 𝑀𝑤 are the twisting and warping moments at the
boundary of the bar, respectively, given as

𝑀𝑡 = −𝐸𝐶𝑆𝜃

𝑥 + 𝐺𝐼𝑡𝜃


𝑥 +

1

2
𝐸𝐼𝑛2(𝜃


𝑥)

3
, (126a)

𝑀𝑤 = −𝐸𝐶𝑆 [𝜃

𝑥 +

𝑈𝑤

2𝐶𝑆

(𝜃

𝑥)

2
] (126b)

while 𝛼𝑖, 𝛽𝑖 (𝑖 = 1, 2, 3) are functions specified at the
boundary of the bar. The boundary conditions (124a) and
(124b) are the most general linear torsional boundary con-
ditions for the beam problem including also the elastic
support. It is apparent that all types of the conventional
torsional boundary conditions (clamped, simply supported,
free, or guided edge) can be derived from these equations by
specifying appropriately the functions 𝛼𝑖 and 𝛽𝑖 (e.g., for a
clamped edge it is 𝛼1 = 𝛽1 = 1, 𝛼2 = 𝛼3 = 𝛽2 = 𝛽3 = 0).

The solution of the boundary value problem described
by (123), (124a), and (124b) for the evaluation of the angle
of twist 𝜃𝑥 assumes that the warping 𝐶𝑆, the torsion 𝐼𝑡, and
the geometric 𝑈𝑤 constants defined from (32a), (32b), and
(118c) are already established. Equations (32a), (32b), and
(118c) indicate that the evaluation of the aforementioned
constants presumes that the primary warping function 𝜙

𝑃
𝑆

at any interior point of the domain Ω of the cross section
of the bar is evaluated after solving the boundary value
problem described by (19a) and (19b). Once 𝜃𝑥 is established,
the secondary warping function 𝜙

𝑆
𝑆 at any interior point of

the domain Ω of the cross section of the bar is evaluated
after solving the boundary value problem described by (108a)
and (108b). Subsequently the second Piola-Kirchhoff stress
components are evaluated employing (106a), (106b), and
(106c). Moreover, using the evaluated angle of twist 𝜃𝑥,
the transverse displacement components of the shear center
V𝑆(𝑥),𝑤𝑆(𝑥) can be established integrating twice the following
relations:

V

𝑆 = −(𝜃


𝑥)

2
⋅ (𝛽2 ⋅ sin 𝜃𝑥 − 𝛽1 ⋅ cos 𝜃𝑥) , (127a)

𝑤

𝑆 = (𝜃


𝑥)

2
⋅ (𝛽2 ⋅ cos 𝜃𝑥 + 𝛽1 ⋅ sin 𝜃𝑥) (127b)

obtained from the solution of the linear system of equations
arising from the substitution of (116b) and (116c) to (122b)
and (122c) after employing (104a) and (104b). Finally, using
the evaluated derivatives of the transverse displacement com-
ponents V𝑆, 𝑤


𝑆 the “average” axial displacement of the cross
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section of the bar 𝑢𝑚 can be established after substitution of
(116a) to (122a) as

𝑢

𝑚 = −

1

2
⋅ [(V


𝑆)

2
+ (𝑤


𝑆)

2
+

𝐼𝑃

𝐴
⋅ (𝜃


𝑥)

2
]

+ 𝜃

𝑥 ⋅ (𝑦𝐶𝜃𝑌 + 𝑧𝐶𝜃𝑍)

(128)

and subsequent integration.
From the examined example problems presented in [96,

97] it is concluded that

(i) geometrical nonlinearity leads to stiffening of the bar
and eventually its better response against torsional
loading;

(ii) as observed, restrained warping boundary conditions
lead to slightly greater torsional resistance than those
of free warping for both the geometrically linear and
nonlinear cases;

(iii) axial shortening of bars of doubly symmetric cross
section subjected to torsional loading is observed in
the nonlinear analysis, while bars of asymmetrical
cross section exhibit lateral displacement of their
shear center axis as well;

(iv) the nonlinear Wagner torque can reach significant
values locally along the bar axis while the nonlinear
warping moment can be neglected in most cases;

(v) the secondary shear stress distribution and magni-
tude are influenced by the geometrical nonlinearity.

8. Nonlinear Elastic Torsional
Vibrations of Bars

As it has already been mentioned in the previous section,
since weight saving is of paramount importance, frequently
used thin-walled open sections have low torsional stiffness
and their torsional deformations can be of such magnitudes
that it is not adequate to treat the angles of cross section
rotation as small. In these cases, the study of nonlinear
effects on these members becomes essential, where this
nonlinearity results from retaining the nonlinear terms in
the strain-displacement relations (finite displacement—small
strain theory). When finite twist rotation angles are con-
sidered, the nonuniform torsional dynamic analysis of bars
becomes muchmore complicated, leading to the formulation
of coupled and nonlinear torsional and axial equilibrium
equations. In this case, accounting for the axial loading and
boundary conditions becomes essential to perform a rigorous
dynamic analysis of the bar.

During the past few years, the nonlinear nonuniform
torsional dynamic analysis of bars undergoing large rotations
has received a good amount of attention in the literature.
More specifically, Rozmarynowski and Szymczak in [101]
studied the nonlinear free torsional vibrations of axially
immovable thin-walled beams with doubly symmetric open
cross section, employing the finite element method. In this
research effort only free vibrations are examined, the solution
is provided only at points of reversal of motion (not in

the time domain), no general axial, torsional, or warping
boundary conditions (elastic support case) are studied, while
some nonlinear terms related to the finite twisting rotations
as well as the axial inertia term are ignored. Da Silva in [102,
103] presented the nonlinear flexural-torsional-extensional
vibrations of Euler-Bernoulli doubly symmetric thin-walled
closed cross section beams, primarily focusing on flexural
vibrations and neglecting the effect of torsional warping. Pai
and Nayfeh in [104–106] studied also the nonlinear flexural-
torsional-extensional vibrations of metallic and composite
slewing or rotating closed cross section beams, primarily
focusing on flexural vibrations and neglecting again the
effect of torsional warping. Di Egidio et al. in [107, 108]
presented also a FEM solution to the nonlinear flexural-
torsional vibrations of shear undeformable thin-walled open
beams taking into account in-plane and out-of-plane warp-
ings and neglecting warping inertia. In these papers, the
torsional-extensional coupling is taken into account but the
inextensionality assumption leads to the fact that the axial
boundary conditions are not general. Simo and Vu-Quoc in
[109] presented a FEM solution to a fully nonlinear (small
or large strains, hyperelastic material) three dimensional
rod model including the effects of transverse shear and
torsion-warping deformation based on a geometrically exact
description of the kinematics of deformation. Moreover, Pai
and Nayfeh in [110] studied a geometrically exact nonlinear
curved beammodel for solid composite rotor blades using the
concept of local engineering stress and strain measures and
taking into account the in-plane and out-of-plane warpings.
In all of the aforementioned research efforts the evaluation
of the warping shear stress distribution is not discussed.
Finally, Sapountzakis and Tsipiras in [111, 112] developed
a boundary element solution for the nonuniform torsional
vibration problem of bars of arbitrary doubly symmetric
constant cross section taking into account the effect of
geometrical nonlinearity. In these last research efforts the
bar is subjected to arbitrarily distributed or concentrated
conservative dynamic twisting and warping moments along
its length, while its edges are supported by the most general
torsional and axial boundary conditions. A distributed mass
model system is employed, taking into account the warping,
rotatory, and axial inertia, which after employing a variational
approach leads to the formulation of a coupled nonlinear ini-
tial boundary value problemwith respect to the variable along
the bar angle of twist and to an “average” axial displacement
of the cross section of the bar and to two boundary value
problems with respect to the primary and secondary warping
functions. The numerical solution of the aforementioned
initial boundary value problem is performed using the
Analog EquationMethod [98], a BEMbasedmethod, leading
to a system of nonlinear Differential-Algebraic Equations
(DAEs), which is solved using an efficient time discretization
scheme. The other two problems are solved using a pure
BE method, requiring exclusively boundary discretization
of the bar’s cross-section. Both free and forced vibrations
are considered, while the arising linear system of equations
related to the secondary warping function is singular and a
special technique [113] is used to perform its regularization.
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𝑧, 𝑤
𝑦, 𝑣

𝑚𝑡(𝑥, 𝑡)

𝑥, 𝑢

𝑚𝑤(𝑥, 𝑡)

𝑙

𝑛(𝑥, 𝑡)

𝐶: Centroid
𝑆: Shear center ≡

𝐶≡𝑆

(a)

𝑠

𝑡

𝑛 𝛼

𝑞

𝑟 = ∣𝑃 − 𝑞∣
𝜔

𝑃

Γ1

𝑧

Γ𝐾
𝑦

(Ω)

Γ0

𝐶≡𝑆

1

(b)

Figure 14: Bar subjected to axial and torsional time dependent loading (a) of arbitrarily shaped doubly symmetric constant cross section
occupying region Ω (b).

In order to formulate the nonlinear torsional vibration
problem of doubly symmetric bars of arbitrarily shaped
simply or multiply connected cross section, let us consider
the bar of length 𝑙 of Figure 14. The homogeneous isotropic
and linearly elastic material of the bar’s cross-section of
area 𝐴, with modulus of elasticity 𝐸, shear modulus 𝐺,
and Poisson’s ratio ], occupies the two dimensional multiply
connected region Ω of the 𝑦, 𝑧 plane and is bounded by the
Γ𝑗 (𝑗 = 0, 1, 2, . . . , 𝐾) boundary curves, which are piecewise
smooth; that is, they may have a finite number of corners. In
Figure 14(b) 𝑆𝑦𝑧 is the principal bending coordinate system
through the cross section’s shear center. The bar is subjected
to the combined action of the arbitrarily distributed or
concentrated time dependent conservative axial load 𝑛(𝑥, 𝑡),
𝑡 ≥ 0, twisting 𝑚𝑡 = 𝑚𝑡(𝑥, 𝑡) and warping 𝑚𝑤 = 𝑚𝑤(𝑥, 𝑡)

moments, acting in the 𝑥 direction (Figure 14(a)).
For the analysis of the aforementioned problem, the same

displacement field (100a), (100b), and (100c) with that of the
nonlinear static analysis is adopted, which for the dynamic
problem and for a doubly symmetric cross section is written
as

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢𝑚 (𝑥, 𝑡) + 𝜃

𝑥 (𝑥, 𝑡) ⋅ 𝜙

𝑃
𝑆 (𝑦, 𝑧) + 𝜙

𝑆
𝑆 (𝑥, 𝑦, 𝑧, 𝑡) ,

(129a)

V (𝑥, 𝑦, 𝑧, 𝑡) = −𝑧 ⋅ sin 𝜃𝑥 (𝑥, 𝑡) − 𝑦 ⋅ (1 − cos 𝜃𝑥 (𝑥, 𝑡)) ,

(129b)

𝑤 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑦 ⋅ sin 𝜃𝑥 (𝑥, 𝑡) − 𝑧 ⋅ (1 − cos 𝜃𝑥 (𝑥, 𝑡)) .

(129c)

8.1. Equations of Local Equilibrium. Following the same pro-
cedure presented in Section 7, the local equilibriumequations
are established employing the principle of virtual work

𝛿𝑊int + 𝛿𝑊mass = 𝛿𝑊ext, (130)

where

𝛿𝑊int = ∫
𝑉

(𝑆𝑥𝑥𝛿𝜀𝑥𝑥 + 𝑆𝑥𝑦𝛿𝛾𝑥𝑦 + 𝑆𝑥𝑧𝛿𝛾𝑥𝑧) 𝑑𝑉, (131a)

𝛿𝑊mass = ∫
𝑉

𝜌 ⋅ (�̈�𝛿𝑢 + V̈𝛿V + �̈�𝛿𝑤) 𝑑𝑉, (131b)

𝛿𝑊ext = ∫
𝐹

(𝑡𝑥 ⋅ 𝛿𝑢 + 𝑡𝑦 ⋅ 𝛿V + 𝑡𝑧 ⋅ 𝛿𝑤) 𝑑𝐹 (131c)

under a Total Lagrangian formulation. In the above equa-
tions, 𝛿(⋅) denotes virtual quantities, (⋅) denotes differentia-
tion with respect to time,𝑉, 𝐹 are the volume and the surface
of the bar, respectively, at the initial configuration, and 𝑡𝑥, 𝑡𝑦,
𝑡𝑧 are the components of the traction vector with respect to
the undeformed surface of the bar.

Neglecting virtual terms of the secondary warping func-
tion 𝜙

𝑆
𝑆 , following the technique presented in [100] and after

some algebra [112], the following local equilibrium equation

𝜕𝑆𝑥𝑥

𝜕𝑥
+

𝜕𝑆𝑥𝑦

𝜕𝑦
+

𝜕𝑆𝑥𝑧

𝜕𝑧
− 𝜌�̈� = 0 in Ω, ∀𝑥 ∈ (0, 𝑙) (132)

along with its corresponding boundary condition

𝑆𝑥𝑦𝑛𝑦 + 𝑆𝑥𝑧𝑛𝑧 = 0 on Γ𝑗, ∀𝑥 ∈ (0, 𝑙) (133)

is obtained. Requiring both the primary and the secondary
due to warping parts of (132) and (133) to vanish, employing
(106a), (106b), and (106c) after taking into account the double
symmetry of the cross section and ignoring the term �̈�

𝑆

𝑆, the
following governing equation for the secondary 𝜙

𝑆
𝑆 warping

function is obtained as

∇
2
𝜙
𝑆
𝑆 = (−

𝐸

𝐺
𝑢

𝑚 +

𝜌

𝐺
�̈�𝑚) − (

𝐸

𝐺
𝜃

𝑥 −

𝜌

𝐺
�̈�


𝑥) ⋅ 𝜙
𝑃
𝑆 (𝑦, 𝑧)

−
𝐸

𝐺
𝜃

𝑥𝜃


𝑥 ⋅ (𝑦

2
+ 𝑧

2
) in Ω

(134)
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along with its corresponding boundary condition

𝜕𝜙
𝑆
𝑆

𝜕𝑛
= 0 on Γ𝑗 (𝑗 = 1, 2, . . . , 𝐾) (135)

while as expected, the governing equation related to the
primary 𝜙

𝑃
𝑆 warping function is found to be coincident

with the well-known St. Venant corresponding boundary
value problem given from (19a) and (19b). As it has already
been mentioned for the static case, the evaluation of the
warping function contains an integration constant (parallel
displacement of the cross section along the bar axis), which
can be obtained from (110), arising from the request that
the torsional terms of the displacement field do not result
in any axial forces. It is worth pointing out that any other
constraints could be used, although the use of (110) decouples
the governing equations of the torsional problem at the
greatest extent.

8.2. Equations of Global Equilibrium. Taking into account the
double symmetry of the cross section and substituting the
stress components ((106a), (106b), and (106c)) the strain ones
((103a), (103b), and (103c)) and the displacement components
((129a), (129b), and (129c)) to the principle of virtual work
(130), the governing partial differential equations of the bar
are obtained after some algebra as

𝜌𝐴 ⋅ �̈�𝑚 − 𝐸𝐴 ⋅ 𝑢

𝑚 − 𝐸𝐼𝑃 ⋅ 𝜃


𝑥𝜃


𝑥 = 𝑛 (𝑥, 𝑡) , (136a)

𝜌𝐼𝑃 ⋅ �̈�𝑥 − 𝜌𝐶𝑆 ⋅ �̈�


𝑥 − 𝐺𝐼𝑡𝜃

𝑥 + 𝐸𝐶𝑆𝜃


𝑥 −

3

2
𝐸𝐼𝑃𝑃

⋅ (𝜃

𝑥)

2
𝜃

𝑥 − 𝐸𝐼𝑃 ⋅ 𝑢


𝑚𝜃


𝑥 − 𝐸𝐼𝑃 ⋅ 𝑢


𝑚𝜃


𝑥

= 𝑚𝑡 (𝑥, 𝑡) +
𝜕

𝜕𝑥
[𝑚𝑤 (𝑥, 𝑡)]

(136b)

subjected to the initial conditions (𝑥 ∈ (0, 𝑙))

𝑢𝑚 (𝑥, 0) = 𝑢𝑚0 (𝑥) , (137a)

�̇�𝑚 (𝑥, 0) = �̇�𝑚0 (𝑥) , (137b)

𝜃𝑥 (𝑥, 0) = 𝜃𝑥0 (𝑥) , (137c)

�̇�𝑥 (𝑥, 0) =
̇

𝜃𝑥0 (𝑥)
(137d)

together with the boundary conditions at the bar ends 𝑥 = 0, 𝑙

𝑎1𝑁 + 𝛼2𝑢𝑚 = 𝛼3, (138a)

𝛽1𝑀𝑡 + 𝛽2𝜃𝑥 = 𝛽3, (138b)

𝛽1𝑀𝑤 + 𝛽2𝜃

𝑥 = 𝛽3, (138c)

where𝑁,𝑀𝑡,𝑀𝑤 are the axial force, the twisting andwarping
moments at the bar ends given from (116a), (126a), and (126b),
respectively. The expressions of the externally applied loads
appearing in the right hand side of (136a) and (136b) with
respect to the first Piola-Kirchhoff stress components can be
easily deduced by virtue of (131c). It is worth here noting

that damping could also be included in the analysis without
any special difficulty, while the geometric cross sectional
properties appearing in (136a) and (136b) are also given in
Section 7.

The solution of the initial boundary value problem
described by (136a)–(138c) for the evaluation of the unknown
kinematical components 𝑢𝑚(𝑥, 𝑡), 𝜃𝑥(𝑥, 𝑡) assumes that the
warping 𝐶𝑆 and the torsion 𝐼𝑡 constants are already estab-
lished; the evaluation of which presumes that the primary
warping function 𝜙

𝑃
𝑆 at any interior point of the domain

Ω of the cross section of the bar is evaluated. Once these
components are established, the secondary warping function
𝜙
𝑆
𝑆 at any interior point of the domainΩ of the cross section of

the bar is evaluated after solving the boundary value problem
described by (134) and (135). Subsequently the second Piola-
Kirchhoff stress components are evaluated employing (106a),
(106b), and (106c) completing the computation of the stress
field.

A significant reduction on both the set of the govern-
ing differential equations and the boundary value problem
related to the secondary warping function 𝜙

𝑆
𝑆 can be achieved

by neglecting the axial inertia term 𝜌𝐴 ⋅ �̈�𝑚 of (136a), an
assumption which is common among various dynamic beam
formulations. Ignoring this term, a single partial differential
equation along with a single unknown kinematical compo-
nent (the angle of twist 𝜃𝑥(𝑥, 𝑡)) is obtained, which is further
simplified in the case of vanishing distributed axial load along
the bar. In what follows, this procedure is described in detail
for the cases of axially immovable ends and constant axial
load along the bar, which are of great practical interest.

8.3. Reduced Problems for Special Cases of Axial Boundary
Conditions. For the case of axially immovable ends, it is easily
proved that [112]

𝑢

𝑚 = −

𝐼𝑃

𝐴
⋅ 𝜃


𝑥𝜃


𝑥 , ∀𝑥 ∈ (0, 𝑙) (139)

which after subsequent integration yields

𝑢

𝑚 = −

1

2
⋅
𝐼𝑃

𝐴
⋅ (𝜃


𝑥)

2
+

�̃�

𝐸𝐴
, ∀𝑥 ∈ [0, 𝑙] , (140)

where �̃� is a time-dependent tensile axial load induced by the
geometrical nonlinearity given as

�̃� =
1

2
⋅
𝐸𝐼𝑃

𝑙
⋅ ∫

𝑙

0

(𝜃

𝑥)

2
𝑑𝑥. (141)

For the case of constant along the bar axial load equations
((139) and (140)) hold by setting �̃� = 𝑁(𝑙, 𝑡), where
𝑁(𝑙, 𝑡) is the externally applied axial force at the bar’s right
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end. Substituting (139) and (140) into (136a) and (136b) the
reduced initial boundary value problem is established as

𝜌𝐼𝑃 ⋅ �̈�𝑥 − 𝜌𝐶𝑆 ⋅ �̈�


𝑥 − (𝐺𝐼𝑡 +
𝐼𝑃

𝐴
⋅ �̃�) 𝜃


𝑥

+ 𝐸𝐶𝑆𝜃

𝑥 −

3

2
𝐸𝐼𝑛 ⋅ (𝜃


𝑥)

2
𝜃

𝑥

= 𝑚𝑡 (𝑥, 𝑡) +
𝜕

𝜕𝑥
[𝑚𝑤 (𝑥, 𝑡)] ,

(142)

where the pertinent initial and boundary conditions are
appropriately modified, while the boundary value problem
related to the secondarywarping function𝜙

𝑆
𝑆 ((134) and (135))

is accordingly modified to

∇
2
(𝜙

𝑆
𝑆)red.

=
𝐸

𝐺
𝜃

𝑥𝜃


𝑥 ⋅ [

𝐼𝑃

𝐴
− (𝑦

2
+ 𝑧

2
)]

− (
𝐸

𝐺
𝜃

𝑥 −

𝜌

𝐺
�̈�


𝑥) ⋅ 𝜙
𝑃
𝑆 (𝑦, 𝑧) inΩ

(143a)

𝜕(𝜙
𝑆
𝑆)red.
𝜕𝑛

= 0 on Γ𝑗 (𝑗 = 1, 2, . . . , 𝐾) . (143b)

It is worth here noting that 𝐼𝑛 in (142) is a nonnegative
geometric cross sectional property, related to the geometrical
nonlinearity, defined from (121a), which after taking into
account the double symmetry of the cross section reduces to

𝐼𝑛 = 𝐼𝑃𝑃 −
𝐼
2
𝑃

𝐴
. (144)

From the examined example problems presented in [111,
112] it is concluded that

(i) the geometrical nonlinearity leads to coupling
between the torsional and axial equilibrium equations
and alters the modeshapes of vibration;

(ii) large twisting rotations increase the stiffness of the
bar, leading to higher natural frequencies and better
response against torsional loading;

(iii) a tensile axial force is induced in the bar for special
cases of axial boundary conditions, due to the geo-
metrical nonlinearity;

(iv) in the treated examples, the axial inertia term 𝜌𝐴 ⋅

�̈�𝑚 exhibits a time varying influence on the warping
displacements and shear stresses, while its effects
are more pronounced at the instants at which the
aforementioned quantities get local extreme values;

(v) geometrical nonlinearity, dynamic loading and axial
boundary conditions influence the warping shear
stress distribution and magnitude of bars undergoing
twisting deformations;

(vi) warping shear stresses should not be neglected in
nonuniform nonlinear torsional vibrations of bars.

9. Inelastic Nonuniform Torsion of Bars

Design of bars and bar assemblages subjected to twisting
moments based on elastic analysis is most likely to be
extremely conservative not only due to significant difference
between initial yield and full plastification in a cross section,
but also due to the unaccounted for yet significant reserves of
strength that are not mobilized in redundant members until
after inelastic redistribution takes place. Thus, material non-
linearity is important for investigating the ultimate strength
of a bar that resists torsional loading, while distributed
plasticity models are acknowledged in the literature [114–116]
to capture more rigorously material nonlinearities than cross
sectional stress resultant approaches [117] or lumped plastic-
ity idealizations [118, 119]. If inelastic effects are considered,
especially through distributed plasticity formulations, then
the nonuniform [120, 121] torsional problem requires a much
more rigorous analysis.

Apart from research efforts in which bars are idealized
with computationally demanding three dimensional [122] or
shell [123] elements, several researchers proposed specialized
beam elements to analyze bars under inelastic nonuniform
torsion. Bathe and Wiener [123] employed Hermitian and
isoparametric beam elements to model thin-walled I-beams
using one element for each flange and one element for theweb
of the cross section.Wunderlich et al. [124] employed a power
series numerical technique using anUpdated Lagrangian for-
mulation to study thin-walled beams under general loading
conditions. Izzuddin and Lloyd Smith [125, 126] followed an
Eulerian approach employing cubic shape functions to study
thin walled bars under general loading conditions. Chen
and Trahair [99] and Pi and Trahair [121], using a mitre
model [127] to describe the shear strain distribution over
the cross section, developed finite element models for the
inelastic analysis of thin-walled I-beams under torsion. Nie
and Zhong [128] and Wang et al. [129] studied thin-walled
beams under general loading conditions by employing an
Updated Lagrangian description and the FE method.

The aforementioned contributions are applicable to cross
sections of special geometry (e.g., thin-walled ones). A more
general approach is presented by Baba and Kajita [120]
who used a two-node, four-degree-of-freedom element for
the longitudinal modeling and a four-node, 12-degree-of-
freedom rectangular element for the cross sectionalmodeling
of bars of bisymmetrical section under a Total Lagrangian
formulation, taking into account plasticity effects in the plane
of the cross section as well. Moreover, in the more recent
contributions of Battini and Pacoste [130], Nukala andWhite
[114] and Gruttmann et al. [131], beams of arbitrarily shaped
cross section under general loading conditions are analyzed.
Battini and Pacoste [130] and Nukala and White [114] use an
independent warping parameter associated with the intensity
of warping deformations to model nonuniform torsion. This
parameter is eventually equated with the angle of twist per
unit length in their analyses, thus only St. Venant shear
stresses are taken into account. In all of the aforementioned
research efforts warping shear stresses are not taken into
account, with the exceptions of Wunderlich et al. [124],
Gruttmann et al. [131], Nie and Zhong [128] and Wang et
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Figure 15: Prismatic bar subjected to twisting and warping moments (a) of an arbitrarily shaped doubly symmetric cross section, occupying
region Ω (b).

al. [129] who exploit a stress distribution arising from the
introduction of an independent warping parameter in the
displacement field of the bar. However, since this theory is
analogous to the Timoshenko beam theory of shear-bending
loading conditions, it does not satisfy local equilibrium
equations under inelastic or even elastic conditions (for
relevant discussions see e.g., Simo et al. [132] andMinghini et
al. [133]). Finally, Sapountzakis andTsipiras in [134] presented
a boundary element solution for the inelastic nonuniform
torsional problemof simply ormultiply connected cylindrical
bars of arbitrarily shaped doubly symmetric cross section
taking into account the effect of warping shear stresses. The
bar is subjected to arbitrarily distributed or concentrated
torsional loading along its length,while its edges are subjected
to the most general torsional boundary conditions. In this
last research effort a displacement based formulation is
developed and inelastic redistribution is modelled through
a distributed plasticity model exploiting three-dimensional
material constitutive laws and numerical integration over the
cross sections. An incremental-iterative solution strategy is
adopted to restore global equilibrium along with an efficient
iterative process to integrate the inelastic rate equations [135].
Three boundary value problems with respect to the variable
along the bar axis angle of twist to the primary and to
the secondary warping functions are formulated and solved
employing the boundary element method [23].

In order to formulate the inelastic torsional problem, let
us consider a prismatic bar of length 𝑙 (Figure 15) with an
arbitrarily shaped doubly symmetric constant cross section,
occupying the two dimensional multiply connected region
Ω of the 𝑦, 𝑧 plane bounded by the Γ𝑗 (𝑗 = 0, 1, 2, . . . , 𝐾)

boundary curves, which are piecewise smooth; that is, they
may have a finite number of corners. In Figure 15(b) 𝑆𝑦𝑧 is an
arbitrary coordinate system through the cross section’s shear
center. The normal stress-strain relationship for the material
is assumed to be elastic-plastic-strain hardening with initial
modulus of elasticity, shear modulus, and yield stress 𝐸, G,
and 𝜎𝑌0, respectively. The bar is subjected to the combined
action of arbitrarily distributed or concentrated twisting

𝑚𝑡 = 𝑚𝑡(𝑥) and warping 𝑚𝑤 = 𝑚𝑤(𝑥) moments acting in
the 𝑥 direction (Figure 15(a)).

Under the aforementioned loading, the displacement
field of the bar taking into account warping shear stresses is
assumed to be given as

𝑢 (𝑥, 𝑦, 𝑧) = 𝜃

𝑥 (𝑥) 𝜙

𝑃
𝑆 (𝑦, 𝑧) + 𝜃


𝑥 (𝑥) 𝜙

𝑆
𝑆 (𝑦, 𝑧) , (145a)

V (𝑥, 𝑧) = −𝑧𝜃𝑥 (𝑥) , (145b)

𝑤 (𝑥, 𝑦) = 𝑦𝜃𝑥 (𝑥) , (145c)

where 𝑢, V, 𝑤 are the axial and transverse bar displacement
components with respect to the 𝑆𝑦𝑧 system of axes; 𝜃𝑥(𝑥)
denotes the rate of change of the angle of twist 𝜃𝑥(𝑥) regarded
as the torsional curvature, while 𝜃


𝑥 (𝑥) is the third order

derivative of the angle of twist with respect to 𝑥; 𝜙𝑃
𝑆 , 𝜙

𝑆
𝑆 are

the primary and secondary warping functions, respectively
with respect to the shear center 𝑆.

Substituting (145a), (145b), and (145c) in the well-known
three-dimensional linear strain-displacement relations, the
nonvanishing (total) strain resultants are obtained as

𝜀𝑥𝑥 = 𝜃

𝑥𝜙

𝑃
𝑆 , (146a)

𝛾𝑥𝑦 = 𝜃

𝑥 (

𝜕𝜙
𝑃
𝑆

𝜕𝑦
− 𝑧) + 𝜃


𝑥

𝜕𝜙
𝑆
𝑆

𝜕𝑦
, (146b)

𝛾𝑥𝑧 = 𝜃

𝑥 (

𝜕𝜙
𝑃
𝑆

𝜕𝑧
+ 𝑦) + 𝜃


𝑥

𝜕𝜙
𝑆
𝑆

𝜕𝑧
, (146c)

where in (146a) the higher order contribution of the sec-
ondary warping function to the normal strain component
is neglected [21]. The first terms of (146b) and (146c) are
related to the primary shear stress distribution accounting for
uniform torsion, while the last ones are related to the warping
shear stress distribution accounting for nonuniform torsion.

Considering strains to be small, employing the Cauchy
stress tensor and assuming an isotropic and homogeneous
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Figure 16: Normal stress-strain (a) and yield stress-equivalent plastic strain (b) relationships.

material without exhibiting any damage during its plastifica-
tion, the stress rates are defined in terms of the strain ones
as

{

{

{

𝑑𝜎𝑥𝑥
𝑑𝜏𝑥𝑦

𝑑𝜏𝑥𝑧

}

}

}

= [

[

𝐸
∗

0 0

0 𝐺 0

0 0 𝐺

]

]

{{

{{

{

𝑑𝜀
el
𝑥𝑥

𝑑𝛾
el
𝑥𝑦

𝑑𝛾
el
𝑥𝑧

}}

}}

}

, (147)

where 𝑑(⋅) denotes infinitesimal incremental quantities over
time (rates), the superscript el denotes the elastic part of the
strain components and 𝐸

∗
= 𝐸(1 − V)/(1 + V)(1 − 2V). If

the plane stress hypothesis is undertaken then 𝐸
∗

= 𝐸/(1 −

V2) holds [68], while 𝐸 is frequently considered instead of
𝐸
∗ (𝐸∗

≈ 𝐸) in beam formulations [68, 136]. This last
consideration is followed here, while any other reasonable
expression of 𝐸∗ could also be used without any difficulty.

As long as the material remains elastic or elastic unload-
ing occurs, that is,

{𝑑𝜀𝑥𝑥 𝑑𝛾𝑥𝑦 𝑑𝛾𝑥𝑧}
𝑇
= {𝑑𝜀

el
𝑥𝑥 𝑑𝛾

el
𝑥𝑦 𝑑𝛾

el
𝑥𝑧}

𝑇
. (148)

The stress rates are given with respect to the total strain ones
by combining (147) and (148). If plastic flow occurs then

{𝑑𝜀𝑥𝑥 𝑑𝛾𝑥𝑦 𝑑𝛾𝑥𝑧}
𝑇
= {𝑑𝜀

el
𝑥𝑥 𝑑𝛾

el
𝑥𝑦 𝑑𝛾

el
𝑥𝑧}

𝑇

+ {𝑑𝜀
pl
𝑥𝑥 𝑑𝛾

pl
𝑥𝑦 𝑑𝛾

pl
𝑥𝑧}

𝑇
,

(149)

where the superscript pl denotes the plastic part of the strain
components. A Von Mises yield criterion and an associated
flow rule for the material are considered. The yield condition
is described with the expression

𝑓 = √𝜎2
𝑥𝑥 + 3 (𝜏2𝑥𝑦 + 𝜏2𝑥𝑧) − 𝜎𝑌 (𝜀

pl
eq) = 0, (150)

where 𝜎𝑌 is the yield stress of the material and 𝜀
pl
eq is the

equivalent plastic strain, the rate of which is defined in [137]
and is equal to 𝑑𝜀

pl
eq = 𝑑𝜆 (𝑑𝜆 is the proportionality factor).

Moreover, the plastic modulus ℎ is defined as ℎ = 𝑑𝜎𝑌/𝑑𝜀
pl
eq

or 𝑑𝜎𝑌 = ℎ𝑑𝜆 and can be estimated from a tension test as
ℎ = 𝐸𝑡𝐸/(𝐸 − 𝐸𝑡) (Figure 16). According to the associated
flow rule the plastic strain rates are given as

{𝑑𝜀
pl
𝑥𝑥 𝑑𝛾

pl
𝑥𝑦 𝑑𝛾

pl
𝑥𝑧}

𝑇
= 𝑑𝜆{

𝜕𝑓

𝜕𝜎𝑥𝑥

𝜕𝑓

𝜕𝜏𝑥𝑦

𝜕𝑓

𝜕𝜏𝑥𝑧
}

𝑇

. (151)

Using the aforementioned relation linking the yield stress
rate and the proportionality factor, (147), (149)–(151) and
exploiting the plastic loading condition (𝑑𝑓 = 0), the stress
rates—total strain rates relations are resolved as

{

{

{

𝑑𝜎𝑥𝑥
𝑑𝜏𝑥𝑦

𝑑𝜏𝑥𝑧

}

}

}

= [𝐷
el-pl

]
{

{

{

𝑑𝜀𝑥𝑥
𝑑𝛾𝑥𝑦

𝑑𝛾𝑥𝑧

}

}

}

, (152)

where [𝐷
el-pl

] is the elastoplastic constitutive matrix given as

[𝐷
el-pl

] =
1

𝑐

[

[

𝑐11 sym.

𝑐21 𝑐22
𝑐31 𝑐32 𝑐33

]

]

(153)

with

𝑐 = ℎ𝜎
2
𝑒 + 𝐸𝜎

2
𝑥𝑥 + 9𝐺 (𝜏

2
𝑥𝑦 + 𝜏

2
𝑥𝑧) , (154a)

𝑐11 = 𝐸 [ℎ𝜎
2
𝑒 + 9𝐺 (𝜏

2
𝑥𝑦 + 𝜏

2
𝑥𝑧)] , (154b)

𝑐21 = −3𝐸𝐺𝜎𝑥𝑥𝜏𝑥𝑦, (154c)

𝑐31 = −3𝐸𝐺𝜎𝑥𝑥𝜏𝑥𝑧, (154d)

𝑐22 = 𝐺 [ℎ𝜎
2
𝑒 + 𝐸𝜎

2
𝑥𝑥 + 9𝐺𝜏

2
𝑥𝑧] , (154e)

𝑐32 = −9𝐺
2
𝜏𝑥𝑦𝜏𝑥𝑧, (154f)

𝑐33 = 𝐺 [ℎ𝜎
2
𝑒 + 𝐸𝜎

2
𝑥𝑥 + 9𝐺𝜏

2
𝑥𝑦] , (154g)

𝜎𝑒 = √𝜎2
𝑥𝑥 + 3 (𝜏2𝑥𝑦 + 𝜏2𝑥𝑧).

(154h)
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By setting ℎ = 0 in the above relations, the constitutivematrix
presented by Baba and Kajita [120] is obtained, while if one of
the shear stress components (along with the corresponding
strain one) is dropped out, the constitutive relations pre-
sented by Chen and Trahair [99] are also precisely recovered.

9.1. Equations of Local Equilibrium. The primary and sec-
ondary warping functions are resolved by exploiting local
equilibrium considerations along the longitudinal 𝑥 axis
(together with the associated boundary condition at the
lateral surface of the bar) under elastic conditions. Thus, 𝜙𝑃

𝑆 ,
𝜙
𝑆
𝑆 are evaluated by solving the boundary value problems

∇
2
𝜙
𝑃
𝑆 = 0 in Ω, (155a)

𝜕𝜙
𝑃
𝑆

𝜕𝑛
= 𝑧𝑛𝑦 − 𝑦𝑛𝑧 on Γ𝑗,

(155b)

∇
2
𝜙
𝑆
𝑆 = −

𝐸

𝐺
𝜙
𝑃
𝑆 (𝑦, 𝑧) in Ω, (156a)

𝜕𝜙
𝑆
𝑆

𝜕𝑛
= 0 on Γ𝑗

(156b)

which are similar to those presented in Section 2 ((19a), (19b),
(20a), and (20b)). It is worth noting that the difference in the
governing equation of the secondary warping function is due
to the definition of the axial displacement component (145a).

Apparently, local equilibrium is violated when (155a)–
(156b) are introduced in (152) to perform stress calculations
and inelastic redistribution is modelled only through the
angle of twist 𝜃𝑥(𝑥). Equations (155a)–(156b) exhibit less
accuracy as plastic deformations throughout the cross section
increase. Introducing appropriate plastic terms in (155a)
and (155b) to satisfy local equilibrium has already been
achieved by Wagner and Gruttmann [138] and Sapountzakis
and Tsipiras [139] for the uniform torsion problem under
small and large displacements, respectively, and by Baba
and Kajita [120] for the geometrically nonlinear nonuniform
torsional problem of bars of bisymmetrical cross section.
However, none of these research efforts accounts for warping
shear stresses, while it is pointed out in the literature [130]
that such efforts lead to a much higher computational cost.
An interesting and simple solution to the same problem is
presented by Billinghurst et al. [127] and by Chen and Trahair
[99] who employ a “mitre model” to distribute the primary
shear stresses along the cross section in such amanner so as to
resemble the shear stress distribution of bars under uniform
torsion just before plastic collapse. However, this approach is
limited in thin-walled bisymmetrical I-shaped cross sections,
while it is expected to be less accurate in the elastic part of the
bar and during the early phases of plastic loading.

9.2. Equations of Global Equilibrium. To establish global
equilibrium equations, the principle of virtual work neglect-
ing body forces is employed as follows:

∫
𝑉

(𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧) 𝑑𝑉

= ∫
𝐹

(𝑡𝑥𝛿𝑢 + 𝑡𝑦𝛿V + 𝑡𝑧𝛿𝑤) 𝑑𝐹,

(157)

where 𝛿(⋅) denotes virtual quantities, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 are the
components of the traction vector, 𝑉 is the volume, and 𝐹 is
the surface area of the bar including the end cross sections.

In the elastic case, shear stresses in the left hand side of
(12) yield four sets of terms depending on 𝜃


𝑥𝛿𝜃


𝑥, 𝜃


𝑥𝛿𝜃


𝑥 ,

𝜃

𝑥 𝛿𝜃


𝑥, and 𝜃


𝑥 𝛿𝜃


𝑥 , respectively. The first term is related to

primary shear stresses, the second and third terms are proved
to vanish by exploiting (155a)–(156b) and the homogeneity of
the constitutivematrix, while the last term, related to warping
shear stresses, yields a sixth order derivative of 𝜃𝑥 in the
(Euler-Lagrange) governing equation of the bar. By dropping
this term, the fourth-order governing differential equation of
the bar under nonuniform torsion

𝐸𝐶𝑆𝜃

𝑥 − 𝐺𝐼𝑡𝜃


𝑥 = 𝑚𝑡 (𝑥) +

𝑑𝑚𝑤 (𝑥)

𝑑𝑥
(158)

is obtained, where 𝐼𝑡, 𝐶𝑆 are the torsion (St. Venant) and
warping constants, respectively, depending exclusively on the
geometry of the cross section and defined from (32a) and
(32b). Till now, in the elastic range warping shear stresses do
not affect global equilibrium.However, they are still evaluated
through (146a)–(148), following the procedure presented in
Section 2.

In the inelastic case, the linearized version of (157)
neglecting body forces

∫
𝑉

[(𝜎𝑥𝑥 + Δ𝜎𝑥𝑥) 𝛿Δ𝜀𝑥𝑥 + (𝜏𝑥𝑦 + Δ𝜏𝑥𝑦) 𝛿Δ𝛾𝑥𝑦

+ (𝜏𝑥𝑧 + Δ𝜏𝑥𝑧) 𝛿Δ𝛾𝑥𝑧] 𝑑𝑉

= ∫
𝐹

(𝑡𝑥𝛿Δ𝑢 + 𝑡𝑦𝛿ΔV + 𝑡𝑧𝛿Δ𝑤) 𝑑𝐹

(159)

is employed, where Δ(⋅) denotes incremental quantities (over
time).The incremental strains are obtained employing (146a),
(146b), and (146c). As in the elastic case, a sixth order
governing differential equation is formulated due to the
third order derivative 𝜃


𝑥 appearing in (146b) and (146c).

By dropping terms of fifth order or higher, a fourth-order
governing differential equation is once again formulated.
However, contrary to the elastic case, the inhomogeneity of
the constitutive equations (152) (dependence on the longitu-
dinal coordinate 𝑥) and the property of the fully populated
constitutive matrix lead to nonvanishing terms of fourth or
lower order related to warping shear stresses. Since all these
terms depend on 𝜙

𝑆
𝑆 , they are neglected in the formulation

in order to reduce the computational cost of obtaining the
tangent stiffness matrix of the bar. It is pointed out that this
process affects only the convergence rate of the algorithm
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and not the equilibrium path. Moreover, the virtual terms
𝛿Δ𝛾𝑥𝑦, 𝛿Δ𝛾𝑥𝑧, and 𝛿Δ𝑢 depend on the third order derivative
𝛿Δ𝜃


𝑥 which will eventually lead to the requirement of an

additional (third) boundary condition apart from the well-
known torsional and warping ones. In order to avoid the
formulation of a third-order shear deformation theory, terms
of 𝛿Δ𝜃


𝑥 are neglected in (159), resulting in an approximate

solution of the problemat hand.Nevertheless, it is pointed out
that warping shear stresses still affect the global equilibrium
of the bar, without being completely neglected due to the
aforementioned simplifications.

The stress resultants of the bar are defined as (see also
Section 2)

𝑆𝑀𝑡 = ∫
Ω

[𝜏𝑥𝑦 (
𝜕𝜙

𝑃
𝑆

𝜕𝑦
− 𝑧) + 𝜏𝑥𝑧 (

𝜕𝜙
𝑃
𝑆

𝜕𝑧
+ 𝑦)]𝑑Ω, (160a)

𝑆𝑀𝑤 = ∫
Ω

𝜎𝑥𝑥𝜙
𝑃
𝑆 𝑑Ω, (160b)

where 𝑆𝑀𝑡 and 𝑆𝑀𝑤 correspond to the internal twisting and
warping moments of the bar, respectively, and the relevant
incremental stress resultants are defined as

Δ𝑆𝑀𝑡 = ∫
Ω

[Δ𝜏𝑥𝑦 (
𝜕𝜙

𝑃
𝑆

𝜕𝑦
− 𝑧) + Δ𝜏𝑥𝑧 (

𝜕𝜙
𝑃
𝑆

𝜕𝑧
+ 𝑦)]𝑑Ω,

(161a)

Δ𝑆𝑀𝑤 = ∫
Ω

Δ𝜎𝑥𝑥𝜙
𝑃
𝑆 𝑑Ω. (161b)

By exploiting (145a), (145b), (145c), (146a), (146b), (146c),
(160a), (160b), (161a), and (161b) and the aforementioned
simplifications, the governing equation of the bar is obtained
after some algebra through (159) as

−
𝑑Δ𝑆𝑀𝑡

𝑑𝑥
+

𝑑
2
Δ𝑆𝑀𝑤

𝑑𝑥2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

tangent stiffness matrix ×
incremental displacements

=

out-of-balance forces
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑚𝑡 (𝑥) +
𝑑𝑚𝑤 (𝑥)

𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

externally applied loading

+
𝑑𝑆𝑀𝑡

𝑑𝑥
−

𝑑
2
𝑆𝑀𝑤

𝑑𝑥2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

internal stress resultants

(162)

along with its corresponding boundary conditions

𝛼1 (Δ𝑆𝑀𝑡 −
𝑑Δ𝑆𝑀𝑤

𝑑𝑥
)+𝛼2Δ𝜃𝑥=𝛼3−𝛼1 (𝑆𝑀𝑡 −

𝑑𝑆𝑀𝑤

𝑑𝑥
) ,

(163a)

𝛽1Δ𝑆𝑀𝑤 + 𝛽2Δ𝜃

𝑥 = 𝛽3 − 𝛽1𝑆𝑀𝑤, (163b)

where 𝛼𝑖, 𝛽𝑖 (𝑖 = 1, 2, 3) are functions specified at the bar
ends.The boundary conditions (163a) and (163b) are themost
general ones for the problem at hand, including also the
elastic support. It is apparent that all types of the conventional
boundary conditions (clamped, simply supported, free, or
guided edge) may be derived from (163a) and (163b) by

specifying appropriately the functions 𝛼𝑖 and 𝛽𝑖 (e.g., for a
clamped edge it is 𝛼2 = 𝛽2 = 1, 𝛼1 = 𝛼3 = 𝛽1 = 𝛽3 = 0).
Finally, the expressions of the externally applied loading (𝑚𝑡,
𝑚𝑤) with respect to the components of the traction vector (or
the Cauchy stress tensor) may be easily resolved by virtue of
(159) as

𝑚𝑡 (𝑥) = ∫
Γ

[𝑡𝑦 (−𝑧) + 𝑦𝑡𝑧] 𝑑𝑠, (164a)

𝑚𝑤 (𝑥) = −∫
Γ

𝑡𝑥𝜙
𝑃
𝑆 𝑑𝑠. (164b)

From the above presentation and the examined example
problems presented in [134] it is concluded that

(i) both St. Venant and warping shear stresses are
evaluated from the solution of two boundary value
problems formulated under elastic conditions;

(ii) warping shear stresses slightly decrease the torsional
rigidity and the ultimate torsional loading that bars
can undertake under nonuniform torsion;

(iii) warping shear stresses have an influence on inelastic
redistribution patterns of bars under nonuniform
torsion.

10. Inelastic Nonuniform Torsion of Bars
Including Secondary Torsional Moment
Deformation Effect

As it has been already mentioned in the previous sec-
tion, material nonlinearity is important for investigating the
ultimate strength of a bar that resists torsional loading,
while distributed plasticity models are acknowledged in
the literature [114–116] to capture more rigorously material
nonlinearities than cross sectional stress resultant approaches
[117] or lumped plasticity idealizations [118, 119]. Moreover,
in the nonuniform torsional analysis of a bar except from
the primary (St. Venant) shear stress distribution forming the
primary torsional moment stress resultant additional normal
and secondary (warping) shear stresses arise, forming the
warping moment and secondary torsional moment stress
resultants, respectively. In order to include warping shear
stresses in the global equilibrium of the bar, that is, to account
for the secondary torsional moment deformation effect
(STMDE), an additional kinematical component (along with
the angle of twist) is generally required [81–140], increasing
the difficulty of the problem at hand.

The STMDE has been shown in the literature to be sig-
nificant, especially on closed shaped section bars. Massonnet
[141] presented a qualitative explanation why warping shear
stresses are of the same order of magnitude as primary
ones in the case of closed shaped section bars. As early
as 1954, Benscoter [142] analyzed the nonuniform torsional
problem of multicell section bars. Since then, a significant
amount of relevant contributions has appeared in the lit-
erature as well [109, 140, 143–146]. Since the topic at hand
is analogous to the geometrically nonlinear Timoshenko
beam theory of shear-bending loading conditions [78, 83],
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it does not satisfy local equilibrium equations (for relevant
discussions see e.g., Simo et al. [132] and Minghini et al.
[133]). This problem is alleviated by introducing torsional
shear correction factor at the global level [78, 84, 85] and
suitable warping shear stress distribution at the local level
[80, 85, 147]. The aforementioned contributions refer to
the linear elastic regime. If inelastic effects are considered,
especially through distributed plasticity formulations, then
the nonuniform [120, 122] torsion problem including STMDE
requires a much more rigorous analysis.

In the majority of the research efforts concerning the
inelastic nonuniform torsional problem of bars (already
presented in the previous section) torsional shear correction
factor is not included in the analyses, while the employed
warping shear stress distributions though included in the
global equilibrium of the bar they do not satisfy local
equilibrium considerations under inelastic or even elastic
conditions. A different approach is undertaken in the recent
contribution of Sapountzakis and Tsipiras [139], where a
single (fourth-order) governing differential equation is for-
mulated with respect to a single kinematical component
(angle of twist), leading to an approximate solution of
the problem at hand. However, the adopted warping shear
stress distribution verifies local equilibrium equations under
elastic conditions. Moreover, an alternative methodology is
presented in the very recent contribution of Le Corvec and
Filippou [148], where a multitude of local section warping
degrees of freedom are introduced in order to model effects
such as in-plane plasticity effects, constrained warping, shear
lag, and so forth. This technique does not require the
introduction of torsional shear correction factor; however,
the reduction of the number of employed degrees of freedom
requires further investigation, while an example of a thick-
walled cross section beam is not presented. In the publication
of Wackerfuß and Gruttmann [149], beams of thick-walled
rectangular cross sections are worked out by employing a
series of polynomials as global warping functions in order
to capture advanced effects such as in-plane inelastic redis-
tribution and transverse contraction. Moreover, the same
researchers [150] have employed local warping functions
to capture the aforementioned effects in moderately thick
arbitrarily shaped cross section beams; however, bimoment
loading cannot be applied at the bar. Finally, Tsipiras and
Sapountzakis [151] developed a boundary element solution
for the inelastic nonuniform torsional problem of simply
or multiply connected cylindrical bars of arbitrarily shaped
doubly symmetric cross section taking into account the
effect of secondary torsional moment deformation.The bar is
subjected to arbitrarily distributed or concentrated torsional
loading along its length, while its edges are subjected to the
most general torsional boundary conditions. A displacement
based formulation is developed and inelastic redistribution
is modelled through a distributed plasticity model exploiting
three dimensional material constitutive laws and numerical
integration over the cross sections. An incremental-iterative
solution strategy is adopted to resolve the elastic and plastic
part of stress resultants along with an efficient iterative
process to integrate the inelastic rate equations [135]. The
one dimensional primary angle of twist per unit length, a

two dimensional secondary warping function, and a scalar
torsional shear correction factor are employed to account
for STMDE. The latter is computed employing an energy
approach under elastic conditions [85].

In order to formulate the aforementioned problem, let
us consider the prismatic bar of Figure 15 subjected to the
combined action of arbitrarily distributed or concentrated
twisting 𝑚𝑡 = 𝑚𝑡(𝑥) and warping 𝑚𝑤 = 𝑚𝑤(𝑥) moments
acting in the 𝑥 direction (Figure 15(a)). Under the aforemen-
tioned loading, the displacement field of the bar taking into
account warping shear stresses is assumed to be given as

𝑢 (𝑥, 𝑦, 𝑧) = (𝜃
𝑃
𝑥 (𝑥))


𝜙
𝑃
𝑆 (𝑦, 𝑧) , (165a)

V (𝑥, 𝑧) = −𝑧𝜃𝑥 (𝑥) , (165b)

𝑤 (𝑥, 𝑦) = 𝑦𝜃𝑥 (𝑥) , (165c)

where 𝑢, V, 𝑤 are the axial and transverse bar displacement
components with respect to the 𝑆𝑦𝑧 system of axes; 𝜃𝑥 is the
(total) angle of twist; (𝜃𝑃𝑥 )

 is the primary angle of twist per
unit length which is in general not equal to the angle of twist
per unit length 𝜃


𝑥 (see also (65a); 𝜙𝑃

𝑆 is the primary warping
function with respect to the shear center S.

Substituting (165a), (165b), and (165c) in the well-
known three-dimensional linear strain-displacement rela-
tions, the nonvanishing compatible (total) strain resultants
are obtained as

𝜀𝑥𝑥 = (𝜃
𝑃
𝑥)


𝜙
𝑃
𝑆 ,

(166a)

𝛾𝑥𝑦 = 𝜃

𝑥 (

𝜕𝜙
𝑃
𝑆

𝜕𝑦
− 𝑧)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

primary

+ ((𝜃
𝑃
𝑥)


− 𝜃


𝑥)

𝜕𝜙
𝑃
𝑆

𝜕𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

secondary

, (166b)

𝛾𝑥𝑧 = 𝜃

𝑥 (

𝜕𝜙
𝑃
𝑆

𝜕𝑧
+ 𝑦)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

primary

+ ((𝜃
𝑃
𝑥)


− 𝜃


𝑥)

𝜕𝜙
𝑃
𝑆

𝜕𝑧⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

secondary

, (166c)

where in (166b) and (166c), the first terms correspond to
St. Venant shear strains (𝛾𝑃𝑥𝑦, 𝛾

𝑃
𝑥𝑧) and the last terms to

warping shear strains (𝛾𝑆𝑥𝑦, 𝛾
𝑆
𝑥𝑧). In order to formulate global

equilibrium equations at the elastic regime that include
torsional shear correction factor, the above relations are
proposed to be corrected as

𝜀𝑥𝑥 = (𝜃
𝑃
𝑥)


𝜙
𝑃
𝑆 ,

(167a)

𝛾𝑥𝑦 = 𝜃

𝑥 (

𝜕𝜙
𝑃
𝑆

𝜕𝑦
− 𝑧)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

primary

+ ((𝜃
𝑃
𝑥)


− 𝜃


𝑥)√𝜅𝑥

𝜕𝜙
𝑃
𝑆

𝜕𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

secondary

, (167b)

𝛾𝑥𝑧 = 𝜃

𝑥 (

𝜕𝜙
𝑃
𝑆

𝜕𝑧
+ 𝑦)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

primary

+ ((𝜃
𝑃
𝑥)


− 𝜃


𝑥)√𝜅𝑥

𝜕𝜙
𝑃
𝑆

𝜕𝑧⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

secondary

, (167c)

where 𝜅𝑥 is the torsional shear correction factor, while the
specific form of the correction (√𝜅𝑥) is justified from the
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use of an energy approach to evaluate 𝜅𝑥 [151]. The elastic
shear stress distribution arising from (167a), (167b), and
(167c) yields equilibrium equations that are corrected at the
global level; however, it still violates the longitudinal local
equilibrium equation. Thus a two dimensional secondary
warping function 𝜙

𝑆
𝑆(𝑦, 𝑧) [151] is introduced as

𝜀𝑥𝑥 = (𝜃
𝑃
𝑥)


𝜙
𝑃
𝑆 ,

(168a)

𝛾𝑥𝑦 = 𝜃

𝑥 (

𝜕𝜙
𝑃
𝑆

𝜕𝑦
− 𝑧)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

primary

+ ((𝜃
𝑃
𝑥)


− 𝜃


𝑥)(−

𝐼
𝑆
𝑡

𝐶𝑆

)
𝜕𝜙

𝑆
𝑆

𝜕𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

secondary

, (168b)

𝛾𝑥𝑧 = 𝜃

𝑥 (

𝜕𝜙
𝑃
𝑆

𝜕𝑧
+ 𝑦)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

primary

+ ((𝜃
𝑃
𝑥)


− 𝜃


𝑥)(−

𝐼
𝑆
𝑡

𝐶𝑆

)
𝜕𝜙

𝑆
𝑆

𝜕𝑧⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

secondary

, (168c)

where 𝐼
𝑆
𝑡 and 𝐶𝑆 are the secondary torsion constant and

warping constant, respectively (see also Section 6, [151]).
Both the primary and the secondary warping functions are
determined by formulating boundary value problems based
on the exploitation of the longitudinal local equilibrium
equation and the associated boundary condition as presented
in previous sections. Formulation arising from (166a), (166b),
and (166c) corresponds to the use of constant strain distribu-
tion in Timoshenko beam theory of shear-bending loading
conditions without employing a shear correction factor and is
denoted as model A in this work. Formulations arising from
(167a), (167b), (167c), (168a), (168b), and (168c) correspond
to the use of constant and parabolic strain distribution in
Timoshenko beam theory and are denoted as models B, C,
respectively. It is pointed out that the motivation to perform
the above corrections on the strain field of the bar (and not
on the definition of the secondary torsional moment stress
resultant) stems from the fact that most inelastic material
state determination algorithms are strain-driven ones, while
the adopted methodology conforms to the one presented in
[152].

Following the procedure presented in Section 9, the appli-
cation of the principle of virtual work neglecting body forces
after some algebraic manipulations leads to the following
global equilibrium equations of the bar:

𝑑𝑆𝑀
𝑃
𝑡

𝑑𝑥
+

𝑑𝑆𝑀
𝑆
𝑡

𝑑𝑥
= −𝑚𝑡,

(169a)

𝑑𝑆𝑀𝑤

𝑑𝑥
+ 𝑆𝑀

𝑆
𝑡 = 𝑚𝑤 (169b)

along with their corresponding boundary conditions

𝛼1𝑆𝑀
tot
𝑡 + 𝛼2𝜃𝑥 = 𝛼3, (170a)

𝛽1𝑆𝑀𝑤 + 𝛽2(𝜃
𝑃
𝑥)


= 𝛽3, (170b)

where 𝑆𝑀
tot
𝑡 = 𝑆𝑀

𝑃
𝑡 + 𝑆𝑀

𝑆
𝑡 is the total twisting moment at

the bar ends, while the stress resultants are naturally defined
as

𝑆𝑀𝑤 = ∫
Ω

(𝜎𝑥𝑥𝜙
𝑃
𝑆 ) 𝑑Ω, (171a)

𝑆𝑀
𝑃
𝑡 = ∫

Ω

[𝜏𝑥𝑦 (
𝜕𝜙

𝑃
𝑆

𝜕𝑦
− 𝑧) + 𝜏𝑥𝑧 (

𝜕𝜙
𝑃
𝑆

𝜕𝑧
+ 𝑦)]𝑑Ω, (171b)

𝑆𝑀
𝑆
𝑡 =

𝐼
𝑆
𝑡

𝐶𝑆

∫
Ω

(𝜏𝑥𝑦

𝜕𝜙
𝑆
𝑆

𝜕𝑦
+ 𝜏𝑥𝑧

𝜕𝜙
𝑆
𝑆

𝜕𝑧
)𝑑Ω, (171c)

where 𝑆𝑀𝑤, 𝑆𝑀
𝑃
𝑡 , and 𝑆𝑀

𝑆
𝑡 correspond to warping moment,

primary, and secondary twisting moments, respectively.
Equation (171c) gives the expression of 𝑆𝑀

𝑆
𝑡 according to

model C (strain equations (168a), (168b), and (168c)), while
the corresponding ones formodels A, B are presented in [151].
In (170a) and (170b) 𝛼𝑖, 𝛽𝑖 (𝑖 = 1, 2, 3) are functions specified
at the bar ends, while the given boundary conditions are the
most general ones for the problem at hand, including also
the elastic support. Finally, the expressions of the externally
applied loading (𝑚𝑡, 𝑚𝑤) with respect to the components of
the traction vector (or the Cauchy stress tensor)may be easily
resolved as

𝑚𝑡 (𝑥) = ∫
Γ

[𝑡𝑦 (−𝑧) + 𝑦𝑡𝑧] 𝑑𝑠, (172a)

𝑚𝑤 (𝑥) = −∫
Γ

𝑡𝑥𝜙
𝑃
𝑆 𝑑𝑠. (172b)

Since an incremental-iterative approach is adopted for the
problem at hand, the incremental version of (169a) and (169b)
is written down as

𝑑Δ𝑆𝑀
𝑃
𝑡

𝑑𝑥
+

𝑑Δ𝑆𝑀
𝑆
𝑡

𝑑𝑥
= −Δ𝑚𝑡,

(173a)

𝑑Δ𝑆𝑀𝑤

𝑑𝑥
+ Δ𝑆𝑀

𝑆
𝑡 = Δ𝑚𝑤, (173b)

where Δ(⋅) denotes incremental quantities (over time), while
the incremental stress resultants are given by virtue of (171a),
(171b), (171c), (147), and (149) as

Δ𝑆𝑀𝑤 = 𝐸𝐶𝑆(Δ𝜃
𝑃
𝑥)


+ Δ𝑆𝑀

pl
𝑤 , (174a)

Δ𝑆𝑀
𝑃
𝑡 = 𝐺𝐼

𝑃
𝑡 Δ𝜃


𝑥 + Δ𝑆𝑀

𝑃pl
𝑡 , (174b)

Δ𝑆𝑀
𝑆
𝑡 = −𝐺𝐼

𝑆
𝑡 ((Δ𝜃

𝑃
𝑥)


− Δ𝜃


𝑥) + Δ𝑆𝑀

𝑆 pl
𝑡 , (174c)

where 𝐼
𝑃
𝑡 , 𝐶𝑆 are the primary torsion (St. Venant) and

warping constants, defined from (72b) and (72a), respectively,
while 𝐼

𝑆
𝑡 is the secondary torsion constant given as

𝐼
𝑆
𝑡 = 𝜅𝑥 ∫

Ω

[(
𝜕𝜙

𝑃
𝑆

𝜕𝑦
)

2

+ (
𝜕𝜙

𝑃
𝑆

𝜕𝑧
)

2

]𝑑Ω (model C) (175)
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andΔ𝑆𝑀
pl
𝑤 ,Δ𝑆𝑀

𝑃pl
𝑡 ,Δ𝑆𝑀

𝑆 pl
𝑡 are plastic quantities defined as

Δ𝑆𝑀
pl
𝑤 = −𝐸∫

Ω

(Δ𝜀
pl
𝑥𝑥𝜙

𝑃
𝑆 ) 𝑑Ω, (176a)

Δ𝑆𝑀
𝑃pl
𝑡 =−𝐺∫

Ω

[Δ𝛾
pl
𝑥𝑦 (

𝜕𝜙
𝑃
𝑆

𝜕𝑦
−𝑧)+Δ𝛾

pl
𝑥𝑧 (

𝜕𝜙
𝑃
𝑆

𝜕𝑧
+𝑦)]𝑑Ω,

(176b)

Δ𝑆𝑀
𝑆 pl
𝑡 =−𝐺

𝐼
𝑆
𝑡

𝐶𝑆

∫
Ω

(Δ𝛾
pl
𝑥𝑦

𝜕𝜙
𝑆
𝑆

𝜕𝑦
+Δ𝛾

pl
𝑥𝑧

𝜕𝜙
𝑆
𝑆

𝜕𝑧
)𝑑Ω (model C)

(176c)

while the expressions of Δ𝑆𝑀
𝑆
𝑡

pl and 𝐼
𝑆
𝑡 for models A, B and

the details of the derivation of expression (174c) are presented
in [151]. Substituting (174a), (174b), and (174c) in (173a), and
(173b) and forming the incremental version of the boundary
conditions (170a) and (170b), the following boundary value
problem is obtained:

− 𝐺 (𝐼
𝑃
𝑡 + 𝐼

𝑆
𝑡 ) Δ𝜃


𝑥 + 𝐺𝐼

𝑆
𝑡 (Δ𝜃

𝑃
𝑥)



= Δ𝑚𝑡 +
𝑑Δ𝑆𝑀

𝑃pl
𝑡

𝑑𝑥
+

𝑑Δ𝑆𝑀
𝑆 pl
𝑡

𝑑𝑥
inside the bar

(177a)

− 𝐸𝐶𝑆(Δ𝜃
𝑃
𝑥)


+ 𝐺𝐼

𝑆
𝑡 ((Δ𝜃

𝑃
𝑥)


− Δ𝜃


𝑥)

= −Δ𝑚𝑤 +
𝑑Δ𝑆𝑀

pl
𝑤

𝑑𝑥
+ Δ𝑆𝑀

𝑆 pl
𝑡 inside the bar,

(177b)

𝛼1Δ𝑆𝑀
tot
𝑡 + 𝛼2Δ𝜃𝑥 = Δ𝛼3 at the bar ends 𝑥 = 0, 𝑙,

(178a)

𝛽1Δ𝑆𝑀𝑤 + 𝛽2(Δ𝜃
𝑃
𝑥)


= Δ𝛽3 at the bar ends 𝑥 = 0, 𝑙.

(178b)

In order to avoid the third order derivative of Δ𝜃
𝑃
𝑥 appearing

in (177b), a one dimensional independent warping parameter
𝜂𝑥 is set equal to the primary angle of twist per unit length,
thus the boundary value problem of the above equations is
reformulated as

− 𝐺 (𝐼
𝑃
𝑡 + 𝐼

𝑆
𝑡 ) Δ𝜃


𝑥 + 𝐺𝐼

𝑆
𝑡 Δ𝜂


𝑥

= Δ𝑚𝑡 +
𝑑Δ𝑆𝑀

𝑃pl
𝑡

𝑑𝑥
+

𝑑Δ𝑆𝑀
𝑆 pl
𝑡

𝑑𝑥
inside the bar

(179a)

− 𝐸𝐶𝑆Δ𝜂

𝑥 + 𝐺𝐼

𝑆
𝑡 (Δ𝜂𝑥 − Δ𝜃


𝑥)

= −Δ𝑚𝑤 +
𝑑Δ𝑆𝑀

pl
𝑤

𝑑𝑥
+ Δ𝑆𝑀

𝑆 pl
𝑡 inside the bar,

(179b)

𝛼1Δ𝑆𝑀
tot
𝑡 + 𝛼2Δ𝜃𝑥 = Δ𝛼3 at the bar ends 𝑥 = 0, 𝑙,

(180a)

𝛽1Δ𝑆𝑀𝑤 + 𝛽2Δ𝜂𝑥 = Δ𝛽3 at the bar ends 𝑥 = 0, 𝑙. (180b)

Dropping the plastic quantities of the above equations, the
boundary value problem of the examined problem under
elastic conditions is formulated.

From the above presentation and the examined example
problems presented in [151] it is concluded that

(i) both St. Venant and warping shear stresses are
evaluated from the solution of two boundary value
problems formulated under elastic conditions;

(ii) STMD effect is negligible in inelastic nonuniform
torsional analysis of open thin-walled cross section
bars;

(iii) STMD effect decreases torsional rigidity of closed
shaped section bars under nonuniform torsion;

(iv) modification of compatible strains (model A) with
the inclusion of torsional shear correction factor
(model B) and secondary warping function (model
C) decreases torsional rigidity and results in better
modelling of bars under inelastic nonuniform torsion,
especially in predicting cross sectional plasticity pat-
terns and stress distributions.

11. Concluding Remarks

In this paper both the static and dynamic analyses of the
geometrically linear or nonlinear, elastic or elastoplastic
nonuniform torsion problems of bars of constant or variable
arbitrary cross section are presented together with the cor-
responding research efforts and the conclusions drawn from
examined cases with great practical interest. In the presented
analyses, the bar is subjected to arbitrarily distributed or
concentrated twisting and warpingmoments along its length,
while its edges are supported by the most general torsional
boundary conditions. The analysis of the aforementioned
problems is complete by presenting the evaluation of the
torsion and warping constants of the bar, its displacement
field, its stress resultants together with the torsional shear
stresses and the warping normal and shear stresses at any
internal point of the bar.

Having in mind the disadvantages of the 3D FEM solu-
tions and more specifically the difficulties

(i) in support modeling,
(ii) in discretizing a complex structure,
(iii) in discretizing a structure including thin-walled

members (shear locking and membrane locking),
(iv) in the increased number of degrees of freedom lead-

ing to severe or unrealistic computational time,
(v) in the reduced oversight of the 3D FEM solution com-

pared with that of the beamlike structures employing
stress resultants,
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and the fact that the use of shell elements cannot give accurate
results since the warping of the walls of a cross section cannot
be taken into account (midlinemodel), the importance of the
presented beamlike analyses becomes more evident.
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querschnitt,” Der Stahlbau, vol. 21, no. 12, pp. 225–232, 1952.

[11] F. W. Bornscheuer, “Beispiel und formelsammlung zur span-
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[15] K. H. Roik, Vorlesungen Über Stahlbau (Grundlagen), Wilhelm
Ernst & Sohn, Berlin, Germany, 1978.

[16] E. Ramm and T. J. und Hofmann, Der Ingenieurbau: Grund-
wissen, -Baustatik/BaudynamikErnst & Sohn, Berlin, Germany,
1995.

[17] F. Gruttmann, W. Wagner, and R. und Sauer, “Zur berechnung
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