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The paper deals with spatially homogeneous anisotropic Bianchi type II, VIII , and IX dark energy cosmological models filled
with perfect fluid in the framework of Saez-Ballester (1986) theory, and Einstein’s general relativity. Assuming that the two sources
interact minimally and therefore their energy momentum tensors are conserved separately, we have considered different cases and
presented anisotropic as well as isotropic cosmological models. Some important physical and geometrical features of the models,
thus obtained, have been discussed.

1. Introduction

Saez and Ballester [1] formulated a scalar tensor theory of
gravitation in which the metric is coupled with a dimen-
sionless scalar field in a simple manner. This coupling gives
a satisfactory description of the weak fields. In spite of the
dimensionless character of the scalar field an antigravity
regime appears. This theory also suggests a possible way to
solve missing matter problem in nonflat FRW cosmologies.

The field equations given by Saez-Ballester [1] for the
combined scalar and tensor fields (using geometrized units
with c = 1, 8𝜋G = 1) are
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and the scalar field 𝜙 satisfies the equation
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where𝐺
𝑖𝑗
= 𝑅
𝑖𝑗
−(1/2)𝑅𝑔

𝑖𝑗
is an Einstein tensor,𝑅 is the scalar

curvature, 𝜔 and 𝑟 are constants, and 𝑇
𝑖𝑗
is the stress energy

tensor of the matter.
The energy conservation equation is

𝑇
𝑖𝑗

,𝑗
= 0. (3)

The study of cosmological models in the framework of
scalar tensor theories has been the active area of research
for the last few decades. In particular, Rao et al. [2] and Rao
et al. [3, 4] are some of the authors who have investigated
several aspects of the cosmological models in Saez-Ballester
[1] scalar tensor theory. Naidu et al. [5–8] have discussed
various aspects of Bianchi space times in Saez-Ballester [1]
scalar tensor theory.

Recent observations of type Ia supernovae (SN Ia) [9–13],
galaxy redshift surveys [14], cosmic microwave background
radiation (CMBR) data [15, 16], and large scale structure [17]
strongly suggest that the observable universe is undergoing
an accelerated expansion. Observations also suggest that
there had been a transition of the universe from the earlier
deceleration phase to the recent acceleration phase [18].
The cause of this sudden transition and the source of the
accelerated expansion are still unknown. Measurements of
CMBR anisotropies, most recently by the WMAP satellite,
indicate that the universe is very close to flat. For a flat
universe, its energy density must be equal to a certain critical
density, which demands a huge contribution from some
unknown energy stuff.Thus, the observational effects like the
cosmic acceleration, sudden transition, flatness of universe,
and many more need explanation. It is generally believed
that some sort of “dark energy” (DE) is pervading the whole
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universe. It is a hypothetical form of energy that permeates
all of space and tends to increase the rate of expansion of the
universe [19]. The most recent WMAP observations indicate
that DE accounts for 72% of the total mass energy of the
universe [20]. However, the nature of DE is still a mystery.

Many cosmologists believe that the simplest candidate for
the DE is the cosmological constant (Λ) or vacuum energy
since it fits the observational data well. During the cosmo-
logical evolution, the Λ term has the constant energy density
and pressure 𝑝(de) = −𝜌(de), where the superscript (de) stands
for DE. However, one has the reason to dislike the cosmo-
logical constant since it always suffers from the theoretical
problems such as the “fine-tuning” and “cosmic coincidence”
puzzles [21]. That is why the different forms of dynamically
changing DE with an effective equation of state (EoS),𝜔(de) =
𝑝
(de)
/𝜌
(de)

< −1/3, have been proposed in the literature. Oth-
er possible forms of DE include quintessence (𝜔(de) > −1)

[22], phantom (𝜔
(de)

< −1) [23], and so forth. While the
possibility 𝜔(de) ≪ −1 is ruled out by current cosmological
data from SN Ia (Supernovae Legacy Survey, Gold sam-
ple of Hubble Space Telescope) [13, 24], CMBR (WMAP,
BOOMERANG) [25, 26] and large scale structure (Sloan
Digital Sky Survey) [27] data, the dynamically evolving DE
crossing the phantom divide line (PDL) (𝜔(de) = −1) is mildly
favored. SN Ia data combined with CMBR anisotropy and
galaxy clustering statistics suggest that −1.33 < 𝜔(de) < −0.79
(see [28]).

Most of the models with constant DP have been studied
by considering perfect fluid or ordinary matter in the uni-
verse. But the ordinary matter is not enough to describe the
dynamics of an accelerating universe as mentioned earlier.
This motivates the researchers to consider the models of the
universe filled with some exotic type of matter such as the
DE along with the usual perfect fluid. Recently, some dark
energy models with constant DP have been investigated by
Kumar and Singh [29], Akarsu and Kilinc [30–32], Yadav et
al. [33], A. K. Yadav and L. Yadav [34], Pradhan et al. [35],
and Rao et al. [36, 37]. Reddy et al. [38] have discussed five
dimensional dark energy models in a Saez-Ballester [1] scalar
tensor theory.

In this paper, we will discuss minimally interacting
perfect fluid and dark energy Bianchi type II, VIII, and
IX space-times in a scalar tensor theory of gravitation
proposed by Saez and Ballester [1] and general theory of
gravitation.

2. Metric and Field Equations

Weconsider spatially homogeneous Bianchi type II, VIII, and
IX metrics in the form

𝑑𝑠
2
= −𝑑𝑡

2
+ 𝑅
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2
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2
[𝑑𝜑 + ℎ (𝜃) 𝑑𝜙]

2
,

(4)

where 𝜃, 𝜙, and 𝜑 are the Eulerian angles. Also 𝑅 and 𝑆 are
functions of 𝑡 only.

It represents

Bianchi type II if 𝑓(𝜃) = 1 and ℎ(𝜃) = 𝜃
Bianchi type VIII if 𝑓(𝜃) = cosh 𝜃 and ℎ(𝜃) = sinh 𝜃
Bianchi type IX if 𝑓(𝜃) = sin 𝜃 and ℎ(𝜃) = cos 𝜃

The energy momentum tensor is given by

𝑇
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, (5)

where 𝑇(𝑚)𝑖
𝑗

and 𝑇(de)𝑖
𝑗

are the energy momentum tensors of
ordinary matter and DE, respectively, and are given by

𝑇
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𝑗
= diag [−𝜌(𝑚), 𝑝(𝑚), 𝑝(𝑚), 𝑝(𝑚)]

= diag [−1, 𝑤(𝑚), 𝑤(𝑚), 𝑤(𝑚)] 𝜌(𝑚),
(6)
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= diag [−𝜌(de), 𝑝(de), 𝑝(de), 𝑝(de)]

= diag [−1, 𝑤(de), 𝑤(de), 𝑤(de)] 𝜌(de),
(7)

where 𝜌(𝑚) and 𝑝(𝑚) are the energy density and pressure
of the perfect fluid component or ordinary baryonic matter
while 𝑤(𝑚) = 𝑝(𝑚)/𝜌(𝑚) is its EoS parameter. Similarly, 𝜌(de)

and 𝑝
(de) are the energy density and pressure of the DE

componentwhile𝑤(de) = 𝑝(de)/𝜌(de) is the correspondingEoS
parameter.

Now with the help of (5) to (7), the field equation (1) for
the metric (4) can be written as
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The conservation equation yields
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(12)

where𝐻 is themean Hubble parameter.

3. Solutions of the Field Equations

In order to solve the field equations completely, we assume
that the perfect fluid and DE components interact minimally.
Therefore, the energy momentum tensors of the two sources
may be conserved separately.
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The energy conservation equation 𝑇(𝑚)𝑖𝑗
;𝑗

= 0 of the perf-
ect fluid leads to
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+ 3 (1 + 𝑤
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𝐻 = 0, (13)

whereas the energy conservation equation 𝑇(de)𝑖𝑗
;𝑗

= 0 of the
DE component yields
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Following Akarsu and Kilinc [30], we assume that the EoS
parameter of the perfect fluid is a constant, that is,
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𝑝
(𝑚)
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= cons tan 𝑡, (15)

while𝑤(de) has been allowed to be a function of time since the
current cosmological data from SN Ia, CMB, and large scale
structures mildly favor dynamically evolving DE crossing the
phantom divide line (PDL).

Now, we assume that the shear scalar (𝜎) in the models is
proportional to expansion scalar (𝜃).

This condition leads to

𝑆 = 𝑅
𝑛
, (16)

where 𝑅 and 𝑆 are the metric potentials and 𝑛 is a positive
constant.

Since we are looking for a model explaining an expand-
ing universe with acceleration, we also assume that the
anisotropic distribution of DE ensures the present accelerat-
ing universe. Thus (8) to (12) may be rewritten as
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The third term of (21) arises due to the deviation from 𝑤
(de)

while the first two terms of (21) are deviation free part of
𝑇
(de)𝑖
𝑗

. According to (21), the behavior of 𝜌(de) is controlled by
the deviation free part of EoS parameter of DE but deviation
will affect 𝜌(de) indirectly, since as can be seen later, they affect
the value of EoS parameter. But we are looking for physically
viable models of the universe consistent with observations.
Hence we constrained 𝜉(𝑡) and 𝛾(𝑡) by assuming the special

dynamics which are consistent with (21). The dynamics of
skewness parameter on 𝑥-axis or 𝑦-axis 𝛾 and 𝑧-axis 𝜉 are
given by
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where𝑚 is the dimensionless constant that parameterizes the
amplitude of the deviation from 𝑤

(de) and can be given real
values.

From (17) and (18), we get
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3.1. Bianchi Type II (𝛿 = 0)Cosmological Model. If 𝛿 = 0, (24)
can be written as
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where 𝑘
3
and 𝑘
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are integrating constants.

From (13), we get the energy density of the perfect fluid
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From (19) and (26)–(29), we get the dark energy density
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From (22) and (30), we get the skewness parameter
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From (23) and (30), we get the skewness parameter
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From (17) and (26)–(31), we get the EoS parameter of DE
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follows:
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The overall density parameterΩ is given by
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where 𝐴
𝑚
is the average anisotropy parameter.

The metric (4), in this case, can be written as
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Thus the metric (36) together with (28)–(33) constitutes a
Bianchi type II perfect fluid dark energy cosmological model
in Saez and Ballester [1] theory of gravitation.

Also we observe that the metric (36) together with (28)–
(33) constitutes a Bianchi type II perfect fluid dark energy
cosmological model in general relativity with 𝑘

3
= 0.

3.2. Bianchi Type VIII (𝛿 = −1) Cosmological Model. If 𝛿 =
−1, (24) can be written as

�̈�

𝑅

+ 𝐶
1

�̇�
2

𝑅
2
+

1

(𝑛 − 1) 𝑅
2
+

𝑅
2𝑛−4

(𝑛 − 1)

= 0, 𝑛 ̸= 1. (37)

From (37), for 𝑛 = 2 and with suitable substitution, we get

�̇�
2
= 𝐶
2

2
− 𝐶
2

3
𝑅
2
, (38)

where𝐶
1
= (9−16𝑚)/3, 𝐶

2

2
= 3/(16𝑚−9), and𝐶2

3
= 3/(12−

16𝑚), 𝑚 ̸= 3/4, 9/16.
From (38), we get

𝑅 = (

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡) . (39)

From (16) and (39), we get

𝑆 = [(

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡)]

2

. (40)
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From (11), (16), and (39) we get

𝜙
(𝑟+2)/2

= [

𝑟 + 2

2

(

−𝐶
4

3

(

𝐶
3

𝐶
2

)

4

cot (𝐶
3
𝑡)

× (cosec2 (𝐶
3
𝑡) + 2) + 𝐶

5
)] ,

𝑟 ̸= − 2,

(41)

where 𝐶
4
and𝐶

5
are integrating constants.

From (13), we get the energy density of the perfect fluid

𝜌
(𝑚)

= 𝜌
0
[(

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡)]

−4(1+𝑤
(𝑚)
)

, (42)

where 𝜌
0
is a constant of integration.

From (19) and (39)–(42), we get the dark energy density

𝜌
(de)

=

1

4𝐶
2

2

[20𝐶
2

2
𝐶
2

3
cot2 (𝐶

3
𝑡) − 4𝐶

2

3
cosec2 (𝐶

3
𝑡)

− 𝐶
2

2
+ 2𝜔 𝐶

2

4
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−8

−4𝜌
0
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−4(1+𝑤
(𝑚)
)

] .

(43)

From (22) and (43), we get the skewness parameter

𝛾 = 32𝑚𝐶
2

2
𝐶
2

3
cot2 (𝐶

3
𝑡)

× [60𝐶
2

2
𝐶
2

3
cot2 (𝐶

3
𝑡) − 12𝐶

2

3
cosec2 (𝐶

3
𝑡) − 3𝐶

2

2

+ 6𝜔𝐶
2

4
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−8

−12𝜌
0
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−4(1+𝑤
(𝑚)
)

]

−1

.

(44)

From (23) and (43), we get the skewness parameter

𝜉 = 32𝑚𝐶
2

2
𝐶
2

3
cot2 (𝐶

3
𝑡)

× [12𝐶
2

3
cosec2 (𝐶

3
𝑡) + 3𝐶

2

2
− 60𝐶

2

2
𝐶
2

3
cot2 (𝐶

3
𝑡)

− 6𝜔𝐶
2

4
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−8

+12𝜌
0
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−4(1+𝑤
(𝑚)
)

]

−1

.

(45)

From (17) and (39)–(44), we get the EoS parameter of DE

𝑤
(de)

= − [3𝐶
2

2
(1−12𝐶

2

3
)+4𝐶

2

2
𝐶
2

3
cot2 (𝐶

3
𝑡) (12+8𝑚)

+ 12𝑤
(𝑚)
𝜌
0
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−4(1+𝑤
(𝑚)
)

−6𝜔𝐶
2

4
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−8

]

× [60𝐶
2

2
𝐶
2

3
cot2 (𝐶

3
𝑡) − 12𝐶

2

3
cosec2 (𝐶

3
𝑡)

− 3𝐶
2

2
+ 6𝜔𝐶

2

4
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−8

−12𝜌
0
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−4(1+𝑤
(𝑚)
)

]

−1

.

(46)

The density parameters of perfect fluid and DE are as follows:

Ω
(𝑚)

=

𝜌
(𝑚)

3𝐻
2

=

3𝜌
0

16𝐶
2

3

tan2 (𝐶
3
𝑡) ((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−4(1+𝑤
(𝑚)
)

,

Ω
(de)

=

𝜌
(de)

3𝐻
2
=

15

16

−

3

16𝐶
2

2

sec2 (𝐶
3
𝑡)

−

3𝜌
0

16𝐶
2

3

tan2 (𝐶
3
𝑡) ((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−4(1+𝑤
(𝑚)
)

.

(47)

The overall density parameterΩ is given by

Ω = Ω
(𝑚)
+ Ω
(de)

= [

15

2

−

3

2𝐶
2

2
sec2 (𝐶

3
𝑡)]𝐴

𝑚
, (48)

where 𝐴
𝑚
is the average anisotropy parameter.

The metric (4), in this case can be written as

𝑑𝑠
2
= − 𝑑𝑡

2
+ ((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

2

(𝑑𝜃
2
+ cosh2𝜃𝑑𝜙2)

+ ((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

4

(𝑑𝜑 + sinh 𝜃𝑑𝜙)2.

(49)

Thus the metric (49) together with (41)–(46) constitutes a
Bianchi type VIII perfect fluid dark energy cosmological
model in Saez and Ballester [1] theory of gravitation.

Also we observe that the metric (49) together with (41)–
(46) constitutes a Bianchi type VIII perfect fluid dark energy
cosmological model in general relativity with 𝐶

4
= 0.
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3.3. Bianchi Type IX (𝛿 = 1) Cosmological Model. If 𝛿 = 1,
(24) can be written as

�̈�

𝑅

+ 𝐶
1

�̇�
2

𝑅
2
−

1

(𝑛 − 1) 𝑅
2
+

𝑅
2𝑛−4

(𝑛 − 1)

= 0, 𝑛 ̸= 1. (50)

From (50), for 𝑛 = 2 and with suitable substitution, we get

�̇�
2
= 𝐶
2

2
− 𝐶
2

3
𝑅
2
, (51)

where𝐶
1
= (9−16𝑚)/3, 𝐶2

2
= 3/(9−16𝑚), and𝐶2

3
= 3/(12−

16𝑚), 𝑚 ̸= 3/4, 9/16.
From (51), we get

𝑅 = (

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡) . (52)

From (16) and (52), we get

𝑆 = [(

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡)]

2

. (53)

From (11), (16), and (52) we get

𝜙
(𝑟+2)/2

= [

𝑟 + 2

2

(

−𝐶
4

3

(

𝐶
3

𝐶
2

)

4

cot (𝐶
3
𝑡)

× (cosec2 (𝐶
3
𝑡)+2)+𝐶

5
)] , 𝑟 ̸= − 2,

(54)

where 𝐶
4
and𝐶

5
are integrating constants. One has

From (13), we get the energy density of the perfect fluid

𝜌
(𝑚)

= 𝜌
0
[(

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡)]

−4(1+𝑤
(𝑚)
)

, (55)

where 𝜌
0
is a constant of integration.

From (19) and (52)–(55), we get the dark energy density

𝜌
(de)

=

1

4𝐶
2

2

[20𝐶
2

2
𝐶
2

3
cot2 (𝐶

3
𝑡) + 4𝐶

2

3
cos 𝑒𝑐2 (𝐶

3
𝑡)

− 𝐶
2

2
+ 2𝜔 𝐶

2

4
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−8

−4𝜌
0
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−4(1+𝑤
(𝑚)
)

] .

(56)

From (22) and (56), we get the skewness parameter

𝛾 = 32𝑚𝐶
2

2
𝐶
2

3
cot2 (𝐶

3
𝑡)

× [60𝐶
2

2
𝐶
2

3
cot2 (𝐶

3
𝑡) + 12𝐶

2

3
cos 𝑒𝑐2 (𝐶

3
𝑡)

− 3𝐶
2

2
+ 6𝜔𝐶

2

4
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−8

−12𝜌
0
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−4(1+𝑤
(𝑚)
)

]

−1

.

(57)

From (23) and (56), we get the skewness parameter

𝜉 = 32𝑚𝐶
2

2
𝐶
2

3
cot2 (𝐶

3
𝑡)

× [12𝜌
0
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−4(1+𝑤
(𝑚)
)

−12𝐶
2

3
cosec2 (𝐶

3
𝑡)+3𝐶

2

2
−60𝐶

2

2
𝐶
2

3
cot2 (𝐶

3
𝑡)

−6𝜔𝐶
2

4
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−8

]

−1

.

(58)

From (17) and (52)–(57), we get the EoS parameter of DE

𝑤
(de)

=− [3𝐶
2

2
(1−12𝐶

2

3
)+4𝐶

2

2
𝐶
2

3
cot2 (𝐶

3
𝑡) (12+8𝑚)

+ 12𝑤
(𝑚)
𝜌
0
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−4(1+𝑤
(𝑚)
)

−6𝜔𝐶
2

4
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−8

]

× [12𝐶
2

3
cosec2 (𝐶

3
𝑡)

− 12𝜌
0
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−4(1+𝑤
(𝑚)
)

− 3𝐶
2

2
+ 60𝐶

2

2
𝐶
2

3
cot2 (𝐶

3
𝑡)

+6𝜔𝐶
2

4
𝐶
2

2
((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−8

]

−1

.

(59)

The density parameters of perfect fluid and DE are as follows:

Ω
(𝑚)

=

𝜌
(𝑚)

3𝐻
2

=

3𝜌
0

16𝐶
2

3

tan2 (𝐶
3
𝑡) ((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−4(1+𝑤
(𝑚)
)

,

Ω
(de)

=

𝜌
(de)

3𝐻
2
=

15

16

+

3

16𝐶
2

2

sec2 (𝐶
3
𝑡)

−

3𝜌
0

16𝐶
2

3

tan2 (𝐶
3
𝑡) ((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

−4(1+𝑤
(𝑚)
)

.

(60)

The overall density parameterΩ is given by

Ω = Ω
(𝑚)
+ Ω
(de)

= [

15

2

+

3

2𝐶
2

2

sec2 (𝐶
3
𝑡)]𝐴

𝑚
, (61)

where 𝐴
𝑚
is the average anisotropy parameter.
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The metric (4), in this case, can be written as

𝑑𝑠
2
= − 𝑑𝑡

2
+ ((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

2

(𝑑𝜃
2
+ sin 𝜃𝑑𝜙2)

+ ((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

4

(𝑑𝜑 + cos 𝜃 𝑑𝜙)2.

(62)

Thus the metric (62) together with (54)–(59) constitutes a
Bianchi type IX perfect fluid dark energy cosmologicalmodel
in Saez and Ballester [1] theory of gravitation.

Also we observe that the metric (62) together with (54)–
(59) constitutes a Bianchi type IX perfect fluid dark energy
cosmological model in general relativity with 𝐶

4
= 0.

3.4. Isotropic Cosmological Models. To get isotropic cosmo-
logical models, let us assign the value unity to 𝑛 in (16) and
then we get

𝑅 = 𝑆, (63)

where 𝑅 and 𝑆 are the metric potentials.
Using (63), the field equations (17)–(20) can be written as

2

̈𝑆

𝑆

+

̇𝑆
2

𝑆
2
+

1

4𝑆
2
−

𝜔

2

𝜙
𝑟 ̇
𝜙
2

= −𝑤
(𝑚)
𝜌
(𝑚)
− (𝑤
(de)

+ 𝛾) 𝜌
(de)
,

(64)

2

̈𝑆

𝑆

+

̇𝑆
2

𝑆
2
+

𝛿

𝑆
2
−

3

4𝑆
2
−

𝜔

2

𝜙
𝑟 ̇
𝜙
2

= −𝑤
(𝑚)
𝜌
(𝑚)
− (𝑤
(de)

+ 𝜉) 𝜌
(de)
,

(65)

3

̇𝑆
2

𝑆
2
+

𝛿

𝑆
2
−

1

4𝑆
2
+

𝜔

2

𝜙
𝑟 ̇
𝜙
2
= 𝜌
(𝑚)
+ 𝜌
(de)
, (66)

̈
𝜙 + 3

̇
𝜙 ̇𝑆

𝑆

+

𝑟

2𝜙

̇
𝜙
2
= 0. (67)

From (64) and (65), we get

3𝑚 ̇𝑆
2
+ (𝛿 − 1) = 0. (68)

3.5. Bianchi Type II and VIII Cosmological Models in Isotropic
Form. From (68), we get

𝑅 = 𝑆 = (𝐶
6
𝑡 + 𝐶
7
) , (69)

where 𝐶
6
= ((1 − 𝛿)/3𝑚)

1/2 and𝐶
7
are constants.

From (67) and (69) we get

𝜙
(𝑟+2)/2

=

𝑟 + 2

2

(𝐶
9
−

𝐶
8

2(𝐶
6
𝑡 + 𝐶
7
)
2
) , 𝑟 ̸= − 2, (70)

where 𝐶
8
and 𝐶

9
are integrating constants.

From (13), we get the energy density of the perfect fluid

𝜌
(𝑚)

= 𝜌
0
(𝐶
6
𝑡 + 𝐶
7
)
−3(1+𝑤

(𝑚)
)
, (71)

where 𝜌
0
is a constant of integration.

From (66), (69), and (71), we get the dark energy density

𝜌
(de)

= 3𝐶
2

6
+

(4𝛿 − 1)

4

(𝐶
6
𝑡 + 𝐶
7
)
−2

+

𝜔𝐶
2

8

2

(𝐶
6
𝑡 + 𝐶
7
)
−6
− 𝜌
0
(𝐶
6
𝑡 + 𝐶
7
)
−3(1+𝑤

(𝑚)
)
.

(72)

From (22) and (72), we get the skewness parameter

𝛾 = − 𝑚𝐶
6

2
[3𝐶
6

2
+

(4𝛿 − 1)

4

(𝐶
6
𝑡 + 𝐶
7
)
−2

+

𝜔𝐶
2

8

2

(𝐶
6
𝑡 + 𝐶
7
)
−6

−𝜌
0
(𝐶
6
𝑡 + 𝐶
7
)
−3(1+𝑤

(𝑚)
)
]

−1

.

(73)

From (23) and (72), we get the skewness parameter

𝜉 = 2𝑚𝐶
6

2
[3𝐶
2

6
+

(4𝛿 − 1)

4

(𝐶
6
𝑡 + 𝐶
7
)
−2

+

𝜔𝐶
2

8

2

(𝐶
6
𝑡 + 𝐶
7
)
−6

−𝜌
0
(𝐶
6
𝑡 + 𝐶
7
)
−3(1+𝑤

(𝑚)
)
]

−1

.

(74)

From (64) and (69)–(73), we get the EoS parameter of DE

𝑤
(de)

= − [(1 − 𝑚)𝐶
2

6
+

1

4

(𝐶
6
𝑡 + 𝐶
7
)
−2

−

𝜔𝐶
2

8

2

(𝐶
6
𝑡 + 𝐶
7
)
−6

+𝜌
0
𝑤
(𝑚)
(𝐶
6
𝑡 + 𝐶
7
)
−3(1+𝑤

(𝑚)
)
]

× [3𝐶
2

6
+

(4𝛿 − 1)

4

(𝐶
6
𝑡 + 𝐶
7
)
−2

+

𝜔𝐶
2

8

2

(𝐶
6
𝑡 + 𝐶
7
)
−6

−𝜌
0
(𝐶
6
𝑡 + 𝐶
7
)
−3(1+𝑤

(𝑚)
)
]

−1

.

(75)

The density parameters of perfect fluid and DE are as follows:

Ω
(𝑚)

=

𝜌
(𝑚)

3𝐻
2

=

𝜌
0

3𝐶
2

6

(𝐶
6
𝑡 + 𝐶
7
)
−(1+3𝑤

(𝑚)
)
,

Ω
(de)

=

𝜌
(de)

3𝐻
2

= (𝐶
6
𝑡 + 𝐶
7
)
2
−

5

12𝐶
6

2
+

𝜔𝐶
2

8

6𝐶
2

6

(𝐶
6
𝑡 + 𝐶
7
)
−4

−

𝜌
0

3𝐶
2

6

(𝐶
6
𝑡 + 𝐶
7
)
−(1+3𝑤

(𝑚)
)
.

(76)
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The overall density parameterΩ is given by

Ω = Ω
(𝑚)
+ Ω
(de)

= (𝐶
6
𝑡 + 𝐶
7
)
2
−

5

12𝐶
2

6

+

𝜔𝐶
2

8

6𝐶
2

6

(𝐶
6
𝑡 + 𝐶
7
)
−4
.

(77)

The metric (4), in this case, can be written as

𝑑𝑠
2
= − 𝑑𝑡

2
+ (𝐶
6
𝑡 + 𝐶
7
)
2
[𝑑𝜃
2
+ 𝑓 (𝜃) 𝑑𝜙

2
]

+ (𝐶
6
𝑡 + 𝐶
7
)
2
[𝑑𝜑 + ℎ (𝜃) 𝑑𝜙]

2
.

(78)

Themetric (78) together with (70) to (75) constitutes Bianchi
type II and VIII perfect fluid dark energy cosmological
models in isotropic form of Saez and Ballester [1] theory of
gravitation, respectively, with 𝛿 = 0, 𝑓(𝜃) = 1, and ℎ(𝜃) = 𝜃
and 𝛿 = 0,𝑓(𝜃) = cosh 𝜃 and ℎ(𝜃) = sinh 𝜃.

Also we can observe that the metric (78) together with
(70) to (75) constitutes Bianchi type II and VIII perfect fluid
dark energy cosmological models in isotropic form of general
relativity with 𝐶

8
= 0 respectively for 𝛿 = 0, 𝑓(𝜃) =

1, and ℎ(𝜃) = 𝜃 and 𝛿 = −1,𝑓(𝜃) = cosh 𝜃 and ℎ(𝜃) = sinh 𝜃.

3.6. Bianchi Type IX (𝛿 = 1) Cosmological Model in Isotropic
Form. From (68), if 𝛿 = 1, we get

𝑅 = 𝑆 = cons tan 𝑡 (𝑠𝑎𝑦 𝐶
10
) (79)

From (67) and (79), we get

𝜙
(𝑟+2)/2

= [

𝑟 + 2

2

(𝐶
11
𝑡 + 𝐶
12
)] . (80)

The metric (4), in this case, can be written as

𝑑𝑠
2
= − 𝑑𝑡

2
+ 𝐶
2

10
(𝑑𝜃
2
+ sin 𝜃 𝑑𝜙2)

+ 𝐶
2

10
(𝑑𝜑 + cos 𝜃𝑑𝜙)2.

(81)

The metric (81) together with (80) constitutes flat cosmolog-
ical model in Saez and Ballester [1] theory of gravitation.

4. Some Other Important Features of
the Models

4.1. Bianchi Type II Anisotropic Cosmological Model (𝛿 = 0).
The spatial volume for the model (36) is

𝑉 = 𝑎
3
= (𝑘
1
𝑡 + 𝑘
2
)
(𝑛+2)/(2−𝑛)

. (82)

The expression for expansion scalar 𝜃 calculated for the flow
vector 𝑢𝑖 is given by

𝜃 = 3𝐻 = (

𝑛 + 2

2 − 𝑛

)

𝑘
1

(𝑘
1
𝑡 + 𝑘
2
)

(83)

and the shear 𝜎 is given by

𝜎
2
=

1

2

(

3

∑

𝑖=1

𝐻
2

𝑖
−

1

3

𝜃
2
) = (

𝑛 − 1

2 − 𝑛

)

2
𝑘
2

1

3(𝑘
1
𝑡 + 𝑘
2
)
2
. (84)

The deceleration parameter 𝑞 is given by

𝑞 =

𝑑

𝑑𝑡

(

1

𝐻

) − 1 =

4 (1 − 𝑛)

(𝑛 + 2)

, 𝑛 ̸= 1, 2& − 2. (85)

The recent observations of SN Ia reveal that the present uni-
verse is accelerating and the value of deceleration parameter
lies somewhere in the range −1 < 𝑞 < 0. From (85), we can
see that for 𝑛 > 2, 𝑞 is negative, which may be attributed to
the current accelerated expansion of the universe.

The components of Hubble parameter 𝐻
𝑥
, 𝐻
𝑦
, and𝐻

𝑧

are given by

𝐻
𝑥
= 𝐻
𝑦
=

�̇�

𝑅

= (

1

2 − 𝑛

)

𝑘
1

(𝑘
1
𝑡 + 𝑘
2
)

,

𝐻
𝑧
=

̇𝑆

𝑆

= (

𝑛

2 − 𝑛

)

𝑘
1

(𝑘
1
𝑡 + 𝑘
2
)

.

(86)

Therefore the generalized mean Hubble parameter (𝐻) is

𝐻 =

1

3

(𝐻
𝑥
+ 𝐻
𝑦
+ 𝐻
𝑧
) = (

𝑛 + 2

2 − 𝑛

)

𝑘
1

3 (𝑘
1
𝑡 + 𝑘
2
)

. (87)

The average anisotropy parameter is defined by

𝐴
𝑚
=

1

3

3

∑

𝑖=1

(

Δ𝐻
𝑖

𝐻

)

2

=

2(𝑛 − 1)
2

(𝑛 + 2)
2
, (88)

where Δ𝐻
𝑖
= 𝐻
𝑖
− 𝐻 (𝑖 = 1, 2, 3).

A cosmological diagnostic pair {𝑟, 𝑠} called state finder as
proposed by Sahni et al. [39] is given by

𝑟 =

⃛𝑎

𝑎𝐻
3
= (1 +

3 (𝑛 − 2)

(𝑛 + 2)

)(1 +

6 (𝑛 − 2)

(𝑛 + 2)

) ,

𝑠 =

𝑟 − 1

3 (𝑞 − (1/2))

=

1 − (1 + 3 (𝑛 − 2) / (𝑛 + 2)) (1 + 6 (𝑛 − 2) / (𝑛 + 2))

9 ((𝑛 − 2) / (𝑛 + 2) + 1/2)

.

(89)
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Thedynamics of state finder {𝑟, 𝑠}depends on 𝑛. It follows that
in the derived model, one can choose the pair of state finder,
which can successfully differentiate between a wide variety
of DEmodels including cosmological constant, quintessence,
phantom, quintom, the Chaplygin gas, braneworld models,
and interacting DE models. For example if we put 𝑛 = 2,
the state finder pair will be {1, 0} which yields the Λ𝐶𝐷𝑀
(cosmological constant cold dark matter) model.

4.2. Bianchi Type VIII (𝛿 = −1) and IX (𝛿 = 1) Anisotropic
Cosmological Models. Thespatial volume for both the models
(49) and (62) is

𝑉 = 𝑎
3
= ((

𝐶
2

𝐶
3

) sin (𝐶
3
𝑡))

4

𝑓 (𝜃) , (90)

where𝑓(𝜃) = cosh 𝜃 and sin 𝜃 for Bianchi type VIII and IX,
respectively.

The expression for expansion scalar 𝜃 and the shear 𝜎 for
the models (49) and (62) are given by

𝜃 = 3𝐻 = 4𝐶
3
cot (𝐶

3
𝑡) ,

𝜎
2
=

1

2

(

3

∑

𝑖=1

𝐻
2

𝑖
−

1

3

𝜃
2
) =

𝐶
2

3
cot2 (𝐶

3
𝑡)

3

.

(91)

The deceleration parameter 𝑞 for the models (49) and (62) is
given by

𝑞 =

𝑑

𝑑𝑡

(

1

𝐻

) − 1 =

3

4

sec2 (𝐶
3
𝑡) − 1. (92)

From (92), we can observe that the deceleration parameter
𝑞 is always negative and hence they represent accelerating
universes.

The components of the Hubble parameter 𝐻
𝑥
, 𝐻
𝑦
, and

𝐻
𝑧
for the models (49) and (62) are given by

𝐻
𝑥
= 𝐻
𝑦
=

�̇�

𝑅

= 𝐶
3
cot (𝐶

3
𝑡) ,

𝐻
𝑧
=

̇𝑆

𝑆

= 2𝐶
3
cot (𝐶

3
𝑡) .

(93)

Therefore the generalized mean Hubble parameter (𝐻) is

𝐻 =

1

3

(𝐻
𝑥
+ 𝐻
𝑦
+ 𝐻
𝑧
) =

4

3

𝐶
3
cot (𝐶

3
𝑡) . (94)

The average anisotropy parameters for the models (49) and
(62) are defined by

𝐴
𝑚
=

1

3

3

∑

𝑖=1

(

Δ𝐻
𝑖

𝐻

)

2

=

1

8

, (95)

where Δ𝐻
𝑖
= 𝐻
𝑖
− 𝐻 (𝑖 = 1, 2, 3).

A cosmological diagnostic pair {𝑟, 𝑠} called state finder as
proposed by Sahni et al. [39] is given by

𝑟 =

⃛𝑎

𝑎𝐻
3
=

−1

8

(1 + 9tan2𝐶
3
𝑡) ,

𝑠 =

𝑟 − 1

3 (𝑞 − (1/2))

=

−1

2

sec2𝐶
3
𝑡

(tan2𝐶
3
𝑡 − 1)

.

(96)

4.3. Bianchi Type II (𝛿 = 0) and VIII (𝛿 = −1) Cosmological
Models in Isotropic Form. Thespatial volume for the above
models is given by

𝑉(𝐶
6
𝑡 + 𝐶
7
)
3
. (97)

The expression for expansion scalar 𝜃 calculated for the flow
vector 𝑢𝑖 is given by

𝜃 = 3𝐻 =

3𝐶
6

(𝐶
6
𝑡 + 𝐶
7
)

(98)

and the shear 𝜎 is given by

𝜎
2
=

1

2

(

3

∑

𝑖=1

𝐻
2

𝑖
−

1

3

𝜃
2
) =

−3𝐶
6

2

(𝐶
6
𝑡 + 𝐶
7
)
2
. (99)

The deceleration parameter 𝑞 is given by

𝑞 =

𝑑

𝑑𝑡

(

1

𝐻

) − 1 = 0. (100)

The components of Hubble parameter 𝐻
𝑥
, 𝐻
𝑦
, and𝐻

𝑧
are

given by

𝐻
𝑥
= 𝐻
𝑦
= 𝐻
𝑧
=

𝐶
6

(𝐶
6
𝑡 + 𝐶
7
)

. (101)

Therefore the generalized mean Hubble parameter (𝐻) is

𝐻 =

1

3

(𝐻
𝑥
+ 𝐻
𝑦
+ 𝐻
𝑧
) =

𝐶
6

(𝐶
6
𝑡 + 𝐶
7
)

. (102)

The average anisotropy parameter is

𝐴
𝑚
=

1

3

3

∑

𝑖=1

(

Δ𝐻
𝑖

𝐻

)

2

= 0, (103)

where Δ𝐻
𝑖
= 𝐻
𝑖
− 𝐻 (𝑖 = 1, 2, 3).

5. Conclusions

In this paper, we have presented spatially homogeneous
anisotropic Bianchi type II, VIII and IX as well as isotropic
space times filled with perfect fluid and DE possessing
dynamical energy density in Saez-Ballester [1] scalar-tensor
theory of gravitation and general relativity. Studying the
interaction between the ordinary matter and DE will open
up the possibility of detecting DE. For Bianchi type II
cosmological model, we observe that at 𝑡 = −𝑘

2
/𝑘
1
, the

spatial volume vanishes while all other parameters diverge for
1 < 𝑛 < 2. Thus the derived model starts expanding with big
bang singularity at 𝑡 = −𝑘

2
/𝑘
1
which can be shifted to 𝑡 = 0 by

choosing 𝑘
2
= 0. The model has point type singularity at 𝑡 =

−𝑘
2
/𝑘
1
when 0 < 𝑛 < 2 (𝑛 ̸= 1). Also the model has cigar type

singularity at 𝑡 = −𝑘
2
/𝑘
1
when 𝑛 < 0 and also for 𝑛 > 2. For

Bianchi type VIII and IX cosmological models, we observe
that the spatial volume increases as time increases and also
the models have no initial singularity at 𝑡 = 0. The expansion
scalar 𝜃 and the shear scalar 𝜎 decrease as time increases. In



10 ISRN Astronomy and Astrophysics

the derivedmodels, the EoS parameter ofDE𝑤(de) is obtained
as time varies and it is evolving with negative sign which may
be attributed to the current accelerated expansion of universe.

For the isotropic cosmological models (78), we observe
that the spatial volume increases as time increases and also
the models have no initial singularity at 𝑡 = −𝐶

7
/𝐶
6
. Thus

the derived models start expanding with big bang singularity
at 𝑡 = −𝐶

7
/𝐶
6
which can be shifted to 𝑡 = 0 by choosing

𝐶
7
= 0.The expansion scalar 𝜃, shear scalar𝜎, and theHubble

parameter 𝐻 decrease as time increases. Since 𝑞 = 0, the
expansion of the isotropic universes proceeds at a constant
rate. It may be noted that Bianchi type II, VIII, and IX dark
energy cosmologicalmodels filledwith perfect fluid represent
the cosmos in its early stage of evolution and isotropicmodels
represent the present universe.
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