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A theoretical investigation concerning the influence of externally imposed periodic body acceleration on the flow of blood through
a time-dependent stenosed arterial segment by taking into account the slip velocity at the wall of the artery has been carried out. A
mathematical model is developed by treating blood as a non-Newtonian fluid obeying the Casson fluid model. The pulsatile flow
is analyzed by considering a periodic pressure gradient and the inertial effects as negligibly small. A suitable generalized geometry
for time-dependent stenosis is taken into account. Perturbation method is used to solve the coupled implicit system of nonlinear
differential equations that govern the flow of blood. Analytical expressions for the velocity profile, volumetric flow rate, and wall
shear stress are obtained. A thorough quantitative analysis has beenmade through numerical computations of the variables involved
in the analysis that are of special interest in this study. The computational results are presented graphically. The results for different
values of the parameters involved in the problem under consideration presented here show that the flow is appreciably influenced
by slip velocity in the presence of periodic body acceleration.

1. Introduction

There are number of evidences available in the scientific
literatures that vascular fluid dynamics plays a major role in
the development and progression of arterial diseases. Local
narrowing in the lumen of an arterial segment is commonly
referred to as stenosis. This occurs due to deposition of vari-
ous substances like cholesterol on the endothelium of arterial
wall. When an obstruction is developed in an artery, one of
themost serious consequences is the increased resistance and
the associated reduction of the blood flow to the particular
vascular bed supplied by the artery.

Thus, the presence of a stenosis leads to stroke, heart
attack, and serious circulatory disorders. Different studies on
the flow of blood through arterial segments with obstruction
have been carried out experimentally and theoretically by
several investigators [1–7]. The assumption of Newtonian
behavior of blood is acceptable for high shear rate flow
through larger arteries [4]. But, blood, being a suspension
of cells in plasma, exhibits non-Newtonian behavior at low
shear rate ( ̇𝛾 < 10/𝑠) in small diameter arteries (0.02–
0.1mm) [8]. Several studies were performed to analyze the

steady flow of blood, treating it as a Newtonian fluid [9, 10].
It is well known that blood flow in the human circulatory
system is caused by the pumping action of the heart, which
in turn produces a pulsatile pressure gradient throughout the
system [11]. Human heart is a muscular pump and due to
contraction and expansion of heart muscles, there produces
a pressure difference in its systolic and diastolic conditions,
popularly known as pressure pulse which physicians check at
the wrist. The cyclic nature of heart pump creates pulsatile
conditions in all arteries. The ejects and fills with blood in
alternating cycles are called systolic and diastolic. Blood is
pumped out of the heart during systolic, whereas the heart
rests during diastole and no blood is ejected. Pressure and
flow rate are characteristic in pulsatile shapes that vary in
different parts of the arterial system.Thus, several researchers
have studied pulsatile flowof blood, treating it as aNewtonian
fluid [12–14]. Long et al. [8] numerically investigated the
pulsatile flow behaviour of blood in the poststenotic region
by considering inlet diameter as 8mm, prestenotic length
48mm, poststenosis domain 180mm, and stenosis length
16.07mm. Clark [1] performed the experimental studies of
the pulsatile flow in a model of aortic stenosis taking the
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Reynolds number 740 and 2000. Nagarani and Sarojamma
[15] developed a mathematical model of pulsatile flow of
Casson fluid for blood flow through stenosed narrow arteries.
They used perturbation technique to solve their problem.
Siddiqui et al. [16] mathematically analyzed the flow of blood
through narrow arteries by considering Herschel-Bulkley
fluid model as well as Casson fluid model.

In our daily life, we often face some external body
acceleration, such as traveling in high velocity vehicles and
aircrafts. In various sports during the performance, a high
acceleration/vibration suddenly takes place. These types of
situations undoubtedly affect the normal flow of blood which
lead to headache, vomiting tendency, loss of vision, abnor-
mality in pulse rate, and so forth. Therefore, it is necessary to
maintain such type of body accelerations to avoid these types
of health hazards. Due to physiological importance of body
acceleration, many theoretical investigations are developed
for the flow of blood under the influence of body acceleration
with and with out stenosis. Sud and Sekhon [17] made an
analysis on blood flow under the time-dependent acceler-
ation. They pointed out that the high blood velocity and
high shear rate are capable of harming the circulation which
is produced under the influence of such time-dependent
acceleration. Sud and Sekhon [18] also analyzed the blood
flow through a model of the human arterial system under
the influence of periodic acceleration.They observed that the
body acceleration has an enhancing effect on the flow rate.
Chaturani and Palanisamy [19] investigated the pulsatile flow
of blood under the influence of periodic body acceleration
by treating blood as a Power-law fluid. Majhi and Nair [20]
studied the pulsatile flow of blood under the influence of
body acceleration by assuming blood as a third grade fluid.
Shit and Roy [21] examined the effect of externally imposed
body acceleration and magnetic field on pulsatile flow of
blood through an arterial segment having stenosis with no-
slip velocity condition.

Misra et al. [22] conducted a theoretical study concerning
blood flow through a stenosed arterial segment wherein they
considered no-slip condition at the vessel wall. There are,
however, numerous situations where there may be a partial
slip between the fluid and the boundary. For many fluids, the
motion of the particulate fluid is still governed by the Navier-
Stokes equations, but the usual no-slip condition at the
boundary should be replaced by the slip condition [2]. Misra
and Shit [23] carried out the role of slip velocity in blood flow
through stenosed arteries. Several authors [24, 25] suggested
the presence of a red blood cell occurring in slip condition at
the vessel wall. Recently, Ponalagusamy [26] and Biswas and
Chakraborty [27, 28] have developed mathematical models
for blood flow through stenosed arterial segment, by taking a
velocity slip condition at the constricted wall. Thus, it seems
that consideration of a velocity slip at the stenosed vessel wall
will be quite rational in blood flow modeling. However, the
effect of body acceleration on pulsatile flow of blood through
an arterial segment having time-dependent stenosis in the
presence velocity-slip has not been considered so far to the
best of our knowledge.

Themotivation of this paper is to study the unsteady flow
of blood through an arterial segment with time-dependent
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Figure 1: Schematic diagram of the model geometry.

stenosis in the presence of velocity slip. The analysis is
carried out by employing appropriate analytical methods and
some important predictions have been made on the basis
of the present study. In order to illustrate the applicability
of the theoretical analysis, the derived analytical expressions
have been computed for a specific situation, with an aim to
observe the variation of some quantities of special interest.
The computed values are reported graphically.

2. Formulation of the Problem

Let us consider an axially symmetric incompressible laminar
pulsatile and fully developed flow of blood through an
arterial segment with time-dependent stenosis as shown in
Figure 1. Although the modelling of blood flow in arteries
may appear to be more intuitive by considering tube flow, it
is worthwhile mentioning that the flow in a tube resembles
the flow behavior in a channel in many situations [29, 30].
With this rationale, the present problem is formulated by
considering flow through a channel. Body acceleration and
slip effect are taken into account for the present problem.
Blood flowing in arteries is considered here as a suspension
of erythrocytes (red blood cells) in plasma. It is assumed
that the fluid is uniformly dense throughout. Here blood is
represented by Casson fluid model. The length of the artery
is assumed to be large enough as compared to its radius so
that at the entrance and exit sections, special wall effects can
be neglected. It has been reported that the radial velocity is
negligibly small for a low Reynolds number flow in a narrow
artery with stenosis [31].

With the above considerations, the equations that govern
the flow of blood may be put in the form

𝜌
𝜕𝑢
󸀠

𝜕𝑡󸀠
= −

𝜕𝑝󸀠

𝜕𝑧󸀠
−

1

𝑟󸀠
𝜕

𝜕𝑟󸀠
(𝑟
󸀠
𝜏
󸀠
) + 𝐺
󸀠
(𝑡
󸀠
) , (1)

0 =
𝜕𝑝
󸀠

𝜕𝑟󸀠
, (2)

where 𝑢󸀠 is the axial component of blood velocity, 𝑝󸀠 is the
pressure, 𝜌 is the density of blood, 𝜏󸀠 is the shear stress, and
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𝐺󸀠(𝑡󸀠) is the body acceleration. The constitutive equation of
Casson fluid (which represents the blood) is given by

−
𝜕𝑢󸀠

𝜕𝑟󸀠
=

1

𝜇
(𝜏
󸀠1/2

− 𝜏
1/2

𝑦
)
2

, 𝑟
󸀠

0
≤ 𝑟
󸀠
≤ 𝑅
󸀠
, (3)

𝜕𝑢󸀠

𝜕𝑟󸀠
= 0, 0 ≤ 𝑟

󸀠
≤ 𝑟
󸀠

0
, (4)

where 𝜏
𝑦
is the yield stress and 𝜇 is the coefficient of viscosity.

Let us consider a generalized geometry of time-depend-
ent single stenosis (cf. Figure 1) as

𝑅
󸀠
(𝑧
󸀠
, 𝑡
󸀠
) = 𝑅

0

[
[
[

[

1 −
𝜖
󸀠 (1 − 𝑒−𝑡

󸀠
/𝑇
󸀠

)

𝑅
0
𝑙󸀠𝑛
0

𝑛𝑛/(𝑛−1)

𝑛 − 1

× (𝑙
󸀠𝑛−1

0
(𝑧
󸀠
− 𝑑
󸀠
) − (𝑧

󸀠
− 𝑑
󸀠
)
𝑛

)
]
]
]

]

,

𝑑
󸀠
≤ 𝑧
󸀠
≤ 𝑙
󸀠

0
+ 𝑑
󸀠

(5)

in which 𝑅󸀠(𝑧󸀠, 𝑡󸀠) is the radius of the arterial segment in the
stenotic region at an axial distance 𝑧󸀠 at a time 𝑡󸀠, 𝑅

0
is the

radius of a normal portion of the artery, 𝑙󸀠
0
is the length of

the stenosis, 𝑑󸀠 indicates the location, 𝑛 is a parameter that
determines the shape of the stenosis, and 𝜖󸀠 is the maximum
height of the stenosis located at

𝑧
󸀠
= 𝑑
󸀠
+

𝑙󸀠
0

(𝑛1/(𝑛−1))
. (6)

The ratio of the height of the stenosis to the radius of the
normal portion of the artery is considered to be much less
than unity.

The boundary conditions for the present problemmay be
put mathematically in the form

𝑢
󸀠
= 𝛽
󸀠 𝜕𝑢
󸀠

𝜕𝑟󸀠
at 𝑟
󸀠
= 𝑅
󸀠
(𝑧
󸀠
) ,

𝜏
󸀠 is finite at 𝑟

󸀠
= 0,

(7)

where 𝛽
󸀠 denotes the slip length.

The periodic body acceleration in axial direction is given
by

𝐺
󸀠
(𝑡
󸀠
) = 𝑎
0
cos (𝜔󸀠

1
𝑡
󸀠
+ 𝜙) , (8)

where 𝑎
0
is the amplitude, 𝜔󸀠

1
= 2𝜋𝑓󸀠

1
, 𝑓󸀠
1
is the frequency

in Hz, is assumed to be small so that the wave effect can be
neglected, and 𝜙 is the lead angle of 𝐺

󸀠(𝑡󸀠)with respect to the
heart action.

Since the pressure gradient is a function of 𝑧󸀠 and 𝑡󸀠, we
can take

−
𝜕𝑝󸀠 (𝑧󸀠, 𝑡󸀠)

𝜕𝑧󸀠
= 𝐴
0
+ 𝐴
1
cos (𝜔󸀠

2
𝑡
󸀠
) , (9)

where𝐴
0
and𝐴

1
, respectively, are the steady component and

the amplitude of the fluctuating component of the pressure
gradient and 𝜔

󸀠

2
= 2𝜋𝑓󸀠

2
, 𝑓󸀠
2
is the pulse frequency in Hz.

Let us introduce the following nondimensional variables:

𝑧 =
𝑧
󸀠

𝑅
0

, 𝑅 =
𝑅󸀠

𝑅
0

, 𝑟 =
𝑟󸀠

𝑅
0

, 𝑑 =
𝑑󸀠

𝑅
0

,

𝑙
0
=

𝑙󸀠
0

𝑅
0

, 𝑟
0
=

𝑟󸀠
0

𝑅
0

, 𝜖 =
𝜖󸀠

𝑅
0

,

𝜏 =
2𝜏󸀠

𝐴
0
𝑅
0

, 𝜃 =
2𝜏
𝑦

𝐴
0
𝑅
0

, 𝜔 =
𝜔󸀠
1

𝜔󸀠
2

,

𝑡 = 𝜔
󸀠

2
𝑡
󸀠
, 𝑇 = 𝜔

󸀠

2
𝑇
󸀠
, 𝐵 =

𝑎
0

𝐴
0

,

𝑒 =
𝐴
1

𝐴
0

, 𝑢 =
4𝑢󸀠𝜇

𝐴
0
𝑅2
0

, 𝛼
2
=

𝑅2
0
𝜔󸀠
2
𝜌

𝜇
, 𝛽 =

𝛽󸀠

𝑅
0

.

(10)

Using the nondimensional variables defined in (10), (1), (3),
and (4), respectively, reduces to

𝛼
2 𝜕𝑢

𝜕𝑡
= 4 (1 + 𝑒 cos 𝑡) + 4𝐵 cos (𝜔𝑡 + 𝜙) −

2

𝑟

𝜕 (𝑟𝜏)

𝜕𝑟
, (11)

𝜕𝑢

𝜕𝑟
= 0 0 ≤ 𝑟 ≤ 𝑟

0
, (12)

𝜏
1/2

= 𝜃
1/2

+
1

√2
(−

𝜕𝑢

𝜕𝑟
)

1/2

𝑟
0
≤ 𝑟 ≤ 𝑅. (13)

Similarly, the boundary conditions (7) are also transformed
to

𝑢 = 𝛽
𝜕𝑢

𝜕𝑟
at 𝑟 = 𝑅 (𝑧) , (14)

𝜏 is finite at 𝑟 = 0, (15)

where

𝑅 (𝑧, 𝑡) = 1 −
𝜖 (1 − 𝑒

−𝑡/𝑇)

𝑙𝑛
0

𝑛𝑛/(𝑛−1)

𝑛 − 1

× (𝑙
𝑛−1

0
(𝑧 − 𝑑) − (𝑧 − 𝑑)

𝑛
) , 𝑑 ≤ 𝑧 ≤ 𝑙

0
+ 𝑑.

(16)

3. Analytical Solution

Considering the Womersley parameter to be small (𝛼2 ≪ 1),
the axial velocity component𝑢, shear stress 𝜏, plug core radius
𝑟
0
, and plug core velocity 𝑢

𝑝
are expressed in the following

form:

𝑢 = 𝑢
0
+ 𝛼
2
𝑢
1
+ ⋅ ⋅ ⋅, (17)

𝜏 = 𝜏
0
+ 𝛼
2
𝜏
1
+ ⋅ ⋅ ⋅, (18)

𝑟
0
= 𝑟
00

+ 𝛼
2
𝑟
10

+ ⋅ ⋅ ⋅, (19)

𝑢
𝑝
= 𝑢
0𝑝

+ 𝛼
2
𝑢
1𝑝

+ ⋅ ⋅ ⋅. (20)
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Using (17) and (18) in (11), we get

𝜕 (𝑟𝜏
0
)

𝜕𝑟
= 2𝑟𝑔 (𝑡) , (21)

𝜕𝑢
0

𝜕𝑡
= −

2

𝑟

𝜕 (𝑟𝜏
1
)

𝜕𝑟
, (22)

where 𝑔(𝑡) = (1 + 𝑒 cos 𝑡) + 𝐵 cos(𝜔𝑡 + 𝜙).
Integrating (21) and using the boundary condition (15),

we obtain

𝜏
0
= 𝑟
2
𝑔 (𝑡) . (23)

Using (17) and (18), (12) can be written as

−
𝜕𝑢
0

𝜕𝑟
= 2 (𝜃 + 𝜏

0
− 2√𝜃𝜏

0
) , (24)

−
𝜕𝑢
1

𝜕𝑟
= 2𝜏
1
(1 − √

𝜃

𝜏
0

) . (25)

Substituting (17) in (14), we obtain

𝑢
0
= 𝛽

𝜕𝑢
0

𝜕𝑟
at 𝑟 = 𝑅, (26)

𝑢
1
= 𝛽

𝜕𝑢
1

𝜕𝑟
at 𝑟 = 𝑅. (27)

Using (23) and the boundary condition (26), the solution of
(24) yields,

𝑢
0
= 𝑔 (𝑅

2
− 𝑟
2
) −

8√𝜃𝑔

3
(𝑅
3/2

− 𝑟
3/2

)

+ 2𝜃 (𝑅 − 𝑟) − 2𝛽𝑔𝑅 + 4√𝑅𝑔𝜃 − 2𝛽𝜃.

(28)

Plug velocity can be obtained from (28) by putting 𝑟 = 𝑟
00
as

𝑢
0𝑝

= 𝑔 (𝑅
2
− 𝑟
2

00
) −

8√𝜃𝑔

3
(𝑅
3/2

− 𝑟
3/2

00
)

+ 2𝜃 (𝑅 − 𝑟
00
) − 2𝛽𝑔𝑅 + 4√𝑅𝑔𝜃 − 2𝛽𝜃.

(29)

Using the relation (28) and boundary condition (15) in (22),
we obtain the expression for 𝜏

1
as

𝜏
1
=

𝑔󸀠𝑅3

8
[2 (

𝑟

𝑅
) − (

𝑟

𝑅
)
3

−
3

8
√

𝜃

𝑔𝑅

×(7 (
𝑟

𝑅
) − 4(

𝑟

𝑅
)
5/2

)]

−
𝑔󸀠𝛽𝑅

2
(1 − √

𝜃

𝑔𝑅
) 𝑟.

(30)

Using (23) and (30) and the boundary condition (27), from
(25), we obtain the expression for 𝑢

1
as

𝑢
1
=

𝑔󸀠𝑅4

8
[(

𝑟

𝑅
)
4

− 4(
𝑟

𝑅
)
2

+ 3 + √
𝜃

𝑔𝑅

× (
16

3
(

𝑟

𝑅
)
2

−
424

127
(

𝑟

𝑅
)
7/2

+
16

3
(

𝑟

𝑅
)
3/2

−
1144

147
)

+
𝜃

𝑔𝑅
(
128

63
(

𝑟

𝑅
)
3

−
64

9
(

𝑟

𝑅
)
3/2

+
320

63
)]

+
𝑔󸀠𝑅𝛽

2
[2𝑅(√

𝜃

𝑔𝑅
− 1)

× ((1 −
8

7
√

𝜃

𝑔𝑅
)𝑅 − 𝛽(1 − √

𝜃

𝑔𝑅
))

− (1 − √
𝜃

𝑔𝑅
) (𝑅
2
− 𝑟
2
) +

4

3
√

𝜃

𝑔

×(1 − √
𝜃

𝑔𝑅
) (𝑅
3/2

− 𝑟
3/2

)] .

(31)

The expression for 𝑢
1𝑝
can be obtained from (31) when 𝑟 = 𝑟

10

as

𝑢
1𝑝

=
𝑔󸀠𝑅4

8
[(

𝑟
10

𝑅
)
4

− 4(
𝑟
10

𝑅
)
2

+ 3 + √
𝜃

𝑔𝑅

× (
16

3
(
𝑟
10

𝑅
)
2

−
424

127
(
𝑟
10

𝑅
)
7/2

+
16

3
(
𝑟
10

𝑅
)
3/2

−
1144

147
) +

𝜃

𝑔𝑅

× (
128

63
(
𝑟
10

𝑅
)
3

−
64

9
(
𝑟
10

𝑅
)
3/2

+
320

63
)]

+
𝑔
󸀠𝑅𝛽

2
[2𝑅(√

𝜃

𝑔𝑅
− 1)

× ((1 −
8

7
√

𝜃

𝑔𝑅
)𝑅 − 𝛽(1 − √

𝜃

𝑔𝑅
))

− (1 − √
𝜃

𝑔𝑅
) (𝑅
2
− 𝑟
2

10
) +

4

3
√

𝜃

𝑔

×(1 − √
𝜃

𝑔𝑅
) (𝑅
3/2

− 𝑟
3/2

10
)] .

(32)
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The total velocity distribution can be written as

𝑢 = 𝑔 (𝑅
2
− 𝑟
2
) −

8√𝜃𝑔

3
(𝑅
3/2

− 𝑟
3/2

)

+ 2𝜃 (𝑅 − 𝑟) − 2𝛽𝑔𝑅 + 4√𝑅𝑔𝜃 − 2𝛽𝜃 +
𝛼2𝑔󸀠𝑅4

8

×
[
[

[

(
𝑟

𝑅
)
4

− 4(
𝑟

𝑅
)
2

+ 3 + √
𝜃

𝑔𝑅

× (
16

3
(

𝑟

𝑅
)
2

−
424

127
(

𝑟

𝑅
)
7/2

+
16

3
(

𝑟

𝑅
)
3/2

−
1144

147
)

+
𝜃

𝑔𝑅
(
128

63
(

𝑟

𝑅
)
3

−
64

9
(

𝑟

𝑅
)
3/2

+
320

63
)
]
]

]

+
𝑔󸀠𝑅𝛽

2
[2𝑅(√

𝜃

𝑔𝑅
− 1)

× ((1 −
8

7
√

𝜃

𝑔𝑅
)𝑅 − 𝛽(1 − √

𝜃

𝑔𝑅
))

− (1 − √
𝜃

𝑔𝑅
) (𝑅
2
− 𝑟
2
) +

4

3
√
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(33)

The nondimensional volumetric flow rate 𝑄 is given by

𝑄 (𝑡) = 4∫
𝑅

0
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(34)

where 𝑄 = 𝑄󸀠/(𝜋𝐴
0
𝑅4
0
/2𝜇), 𝑄󸀠 is the volumetric flow rate.

In dimensionless form, resistance to the flow is given by

𝜆 (𝑡) =
𝑃
0
− 𝑃
𝐿

𝑄
=

𝐿 (1 + 𝑒 cos (𝑡 + 𝜙))

𝑄
, (35)

where 𝑃 = 𝑃
0
at 𝑧 = 0 and 𝑃 = 𝑃

𝐿
at 𝑧 = 𝐿.

4. Results and Discussion

With a view to illustrate the applicability of the mathematical
model developed and analyzed in the preceding sections,
the analytical expressions for the axial velocity profile, wall
shear stress, and volumetric flow rate are presented by taking
into account the velocity-slip condition at the arterial wall.
In order to get a proper insight into the flow behaviour of
blood through a time-dependent stenosed arterial segment
under body acceleration, the variations of 𝑢, 𝑄, 𝜏, and 𝜆

have been estimated and the computed results are presented
in graphical form. The flowing blood is modeled as Casson
fluid model. The governing equations of the flow are solved
using perturbation analysis with the assumption that the
Womersley frequency parameter is small which is valid for
physiological situations in small blood vessels. In our analysis,
the value of the shape parameter (𝑛) of the stenosis is taken to
be 2.Themaximumheight of the stenosis is generally taken as
0.3 and only to pronounce its effect, we have taken the range
from 0.0 to 0.6.The values of the nondimensional yield stress
𝜃 for the blood of the normal subject are between 0.01 and
0.03 and in diseased state, it is quite high and in such a case,
the value of the yield stress is taken to lie between 0.1 and 0.4.
The velocity slip parameter is taken between −2.0 and −0.5.
The pressure gradient parameter (𝑒) is taken in the range 0.1–
0.4. For this problem, the value of pulsatile Reynolds number
is taken as 0.05. To discuss the effects of the body acceleration
parameter 𝐵 on the various flow quantities, its value is taken
in the range between 0.0 and 0.8.

Figures 2–6 give an idea of the axial velocity distribution
in the case of blood flow in the vicinity of the stenotic portion
of the arterial segment under the purview of the present
study.The presence of velocity slip at the wall alters the blood
velocity significantly as shown in Figure 2. We observe from
this figure that blood velocity decreases as the slip length
increases. It is interesting to note that at 𝑧 = 1.0 (i.e., at the
throat the stenosis) and at a particular time 𝑡 = 𝜋/4, for large
values of slip length (𝛽 = −1.0, −1.2) axial velocity increases
with the radial distance, whereas the reverse trend is observed
for 𝛽 = −0.5, −0.8. Figure 3 represents the axial velocity
distribution at a particular time 𝑡 = 𝜋/4 with the radial
distance for different values of body acceleration parameter𝐵.
It is seen that at the throat of the stenosis (i.e., 𝑧 = 1.0), axial
velocity monotonically decreases with the radial distance.
From the same figure, we observed that the body acceleration
parameter 𝐵 brings quantitative as well as qualitative changes
in velocity profiles. It reveals that the velocity increases as
the the body acceleration parameter increases. This result
supports the phenomenon that body acceleration reduces the
flow resistance and so the velocity of blood flow increases
with the increase in body acceleration. Figure 4 gives the
distribution of the axial velocity at the onset of the stenosis for
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different values of yield stress.This figure depicts that velocity
decreases with increasing the yield stress. It is also noted
that velocity profile oscillates with time. Figure 5 depicts the
distribution of the velocity at the throat of the stenosis with
time for different values of the height of the stenosis. It has
been observed from this figure that for any value of 𝜖, the
maximum value attains on the axis of symmetry. Figure 6
illustrates the velocity distribution at 𝑧 = 1.5 for different
values of the pressure gradient parameter 𝑒.This figure reveals
that velocity increases as the pressure gradient parameter 𝑒

increases when 𝑡 ∈ [0.0, 0.95], [4.1, 7.4], and so on, whereas
the reverse trend is observed in rest of the time intervals.
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The distributions of flow rate for different values of
velocity slip, yield stress, body acceleration parameter, and
pressure gradient parameter have also been computed. The
results are plotted and presented graphically through Figures
7–9. Figure 7 reveals that the volumetric flow rate increases
as the values of the velocity slip increases. It can also be noted
that in the stenotic region, initially the velocity increases
along with the axis of the artery attaining its maximum and
then it decreases monotonically. Onemay note from Figure 8
that for any values of yield stress 𝜃, flow rate oscillates with
time. It has been seen from the same figure that for each
oscillation, trough/crest is maximum for minimum value of
yield stress. Figure 9 gives the variation of volumetric flow
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rate with pressure gradient parameter 𝑒, for different values
of body acceleration parameter 𝐵. This figure shows that flow
rate decreases with pressure gradient parameter 𝑒, whereas
the flow rate increases as the body acceleration parameter
increases. Therefore, the pressure gradient parameter 𝑒 has a
linear relation with flow rate 𝑄 with decreasing trend.

The computational results for the wall shear stress com-
puted on the basis of the present study are presented in
Figures 10–12 for different values of the parameters 𝛽, 𝐵,
and 𝜃, respectively. Figure 10 shows that for any values of 𝛽,
the wall shear stress oscillates with time. Also it has been
observed from this figure that the wall shear stress decreases
as the velocity-slip increases when 𝑡 ∈ [1.5, 3.2], [4.5, 6.1] and
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Figure 8: Variation of volumetric flow rate for different values of 𝜃
when 𝑛 = 2, 𝑒 = 0.2, 𝐵 = 0.4, 𝛼2 = 0.05, 𝜖 = 0.3, 𝜔 = 2.0, 𝜙 = 0.0,
𝛽 = −0.5, and 𝑡 = 𝜋/4.
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so on, while the trend is reversed in rest of the time intervals.
Figure 11 depicts the distribution of wall shear stress for dif-
ferent values of body acceleration parameter𝐵. Onemay note
from this figure that the period of oscillation increases as the
body acceleration parameter decreases. Figure 12 represents
the wall shear stress distribution in the stenotic region for
different values of yield stress. This figure indicates that the
wall shear stress decreases as 𝜃 increases. We also observed
that the maximum wall shear stress occurs at the throat of
the stenosis.

The variation of flow resistance with the height of stenosis
is shown in Figure 13 for different values of slip velocity
parameter 𝛽. The results presented in this figure reveal
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that the flow resistance increases with the increase in the
stenosis height and that as the velocity slip increases, the
flow resistance decreases. Figure 14 gives the variation of
flow resistance with the maximum height of the stenosis for
different values of the body acceleration parameter 𝐵. This
figure shows that the body acceleration has a reducing effect
on the flow resistance.

5. Concluding Remarks

The present analysis deals with a theoretical investigation of
blood flow characteristics through a narrow and time-
dependent stenosed artery in the presence of body
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acceleration and velocity slip by treating it as a Casson
fluid model. Using the appropriate boundary conditions,
analytical expressions for the velocity, wall shear stress, and
flow resistance have been estimated. The computational
results were presented graphically for different values of the
parameters involved in the present problem under considera-
tion. Figure 15 shows the comparison of our results with those
of computer generated results [32] in order to validate the
present mathematical model. For the purpose of comparison,
both the studies have been naturally brought to the same
platform, by disregarding the slip effects and by considering𝑇

being very small for the present study, while for the previous
study the inclination angle has been considered to be zero.
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The present study bears the potential to examine the
complex flow behavior of blood under the simultaneous
influence of different factors like the size of the stenosis,
body acceleration parameter, pressure gradient parameter,
and the velocity slip. The observations made on the basis
of the present study are quite significant. The investigation
shows that the blood velocity increases as body acceleration
parameter increases. This fact is harmful for the heart.

Caro et al. [33] made a conjecture that the arterial disease
atheroma develops in the regions where the mean wall shear
stress is relatively low. Experimental studies also revealed
that low velocity regions are prone to the development of
atherosclerosis/further deposition.

Themain objective in our present study has been to assess
the role of velocity slip in blood flow through arteries and to
determine those regions where the velocity is low and also the
regionswhere thewall shear stress is low.Thus the study bears
the potential to further explore the causes and development
of arterial diseases like atherosclerosis and atheroma.

An increase in the size of stenoses causes enhancement of
the resistance to blood flow through the arteries in the brain,
heart, and other organs of the body. This may lead to stroke,
heart attack, and various other cardiovascular diseases.

Nomenclature

𝑢󸀠: Velocity of blood
𝑝󸀠: Pressure
𝜏󸀠: Shear stress
𝜏
𝑦
: Yield stress

𝑡: Time
𝑑󸀠: The distance of the onset of stenosis from

entrance
𝐺󸀠(𝑡󸀠): Body acceleration
𝑙󸀠
0
: Length of stenosis

𝑟󸀠
0
: Radius of plug

𝑅
0
: Radius of the pericardial surface of normal

portion of the arterial segment
𝑅󸀠: Radius of the endothelium of the stenosed

portion
𝑛 (≥ 2): Shape parameter of stenosis
𝜖󸀠: Maximum height of the stenosis
𝜇: Coefficient of viscosity
𝜌: Density of blood
𝛽󸀠: Slip coefficient
𝜔󸀠
1
: Angular frequency

𝑎
0
: Amplitude of acceleration

𝜙: Phase difference
𝑓
2
: Pulse frequency

𝛼2: Womersley parameter
𝑒: Pressure gradient parameter
𝜃: Nondimensional yield stress
𝐵: Body acceleration parameter
𝛽: Slip length.
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