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A mathematical model for the nonlinear enzymatic reaction process is discussed. An approximate analytical expression of
concentrations of substrate, enzyme, and free enzyme-product is obtained using homotopy perturbation method (HPM). The
main objective is to propose an analytical solution, which does not require small parameters and avoid linearization and physically
unrealistic assumptions.Theoretical results obtained can be used to analyze the effect of different parameters. Satisfactory agreement
is obtained in the comparison of approximate analytical solution and numerical simulation.

1. Introduction

The importance of biocatalytic processes and reactions for
organic synthesis and the pharmaceutical food and cosmetics
industry has been constantly growing during the last few
years [1, 2]. From a synthetic point of view, enzymes are
highly efficient catalysts for an extremely broad palette of
reactions [3]. Enzymes of one type, but fromdifferent origins,
are specialized for substrates, positions in substrates, and
products [4]. Enzyme reactions do not follow the law of mass
action directly. The rate of the reaction only increases to a
certain extent as the concentration of substrate increases.The
maximum reaction rate is reached at high substrate concen-
tration due to enzyme saturation.This is in contrast to the law
ofmass action that states that the reaction rate increases as the
concentration of substrate increases [5]. Various simplified
analytical models have been developed over the last 20 years.
In brief, the analysis involves the construction and solution
of reaction/diffusion differential equations, resulting in the
development of approximate analytical expressions for [6, 7]
nonlinear enzyme catalyzed reaction processes.

The simplest model that explains the kinetic behaviour of
enzyme reactions is the classic 1913 model of Michaelis and
Menten [8] which is widely used in biochemistry for many
types of enzymes. The Michaelis-Menten model is based on
the assumption that the enzyme binds the substrate to form

an intermediate complex which then dissociates to form the
final product and release the enzyme in its original form.The
schematic representation of this two-step process is given by

E + S
𝑘
1

↔

𝑘
−1

C
𝑘
2

→ E + P, (1)

where 𝑘1, 𝑘−1, and 𝑘2 are constant parameters associated
with the rates of the reaction.Note that it is generally assumed
that the second step of the reaction equation (1) is irreversible.
In reality, this is not always the case. Typically, reaction
rates are measured under the condition that the product is
continually removed, which prevents the reverse reaction of
the second step from occurring effectively.

In this paper we have derived an expression for con-
centration of substrate, enzyme-substrate, and free enzyme-
product with nonmechanism based enzyme inactivation, in
terms of dimensionless reaction diffusion parameters 𝜀, 𝜆1,
𝜆2, and 𝜆3 using homotopy perturbation method (HPM).
Comparative study of the same with numerical simulation is
presented.

2. Mathematical Formulation of the Problems

If a small amount of enzyme is used and all but one substrate
is kept constant, then the rate of the enzymatically catalyzed
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reaction depends on the substrate concentration and initial
rate as in the equation 𝜐 = 𝜐max[S]/(K𝑀 + [S]), given by [9],
where𝐾𝑀 is the Michaelis constant:𝐾𝑀 = (𝑘−1 +𝑘2)/𝑘1. The
typical notation of the enzyme catalyzed reaction with one
substrate can be given as [10]

A + E
𝑘
1

↔

𝑘
2

X
𝑘
3

↔

𝑘
4

P + E, (2)

where A is substrate, E is enzyme, X is enzyme-substrate
complex, and P is free enzyme product.The kinetic equations
consist of

𝑑 [A]

𝑑𝑡

= 𝑘2 [X] − 𝑘1 [A] [E] , (3a)

𝑑 [E]
𝑑𝑡

= (𝑘2 + 𝑘3) [X] − (𝑘1 [A] + 𝑘4 [P]) [E] , (3b)

𝑑 [P]
𝑑𝑡

= 𝑘3 [X] − 𝑘4 [P] [E] , (3c)

with a conservation relation given in [6]:

[E] + [X] = [E]total. (4)

It is obvious that the derivative of a substrate with
respect to time gives the rate. Thus, the rate is a func-
tion of compounds [V], [A] (intracellular and extracellular),
enzyme concentrations E and kinetic parameter 𝑘. However,
the enzyme concentration is hidden in the kinetic constants
in the parameter vector 𝑘; herewith, we can write V as a
function of [V], [A], and [P]; that is, V = V([A], [V], 𝑘) [11].

The more general form of (3a)–(3c) can be written in the
form of

𝑑 [A]

𝑑𝑡

= ]2 − ]1, (5a)

𝑑 [E]
𝑑𝑡

= ]2 + ]3 − ]1 − ]4, (5b)

𝑑 [X]
𝑑𝑡

= ]1 + ]4 − ]2 − ]3, (5c)

𝑑 [P]
𝑑𝑡

= ]3 − ]4. (5d)

The form of rate equations is as follows:

]
1

= 𝑘1 [A] [E] , ]2 = 𝑘2 [X] ,

]3 = 𝑘3 [X] , ]4 = 𝑘4 [P] [E] .
(6)

The initial condition at 𝑡 = 0 are as follows:

[A] = A0, [E] = E0, [X] = 0, [P] = 0. (7)

The concentration of the reactants in (5a)–(5d) is denoted by
lower case letters

𝑠 = [A] , 𝑒 = [E] , 𝑐 = [X] , 𝑝 = [P] , (8)

The law of mass action leads to the system of following non-
linear kinetic equations [12]:

𝑑𝑠

𝑑𝑡

= −𝑘1𝑠𝑒 + 𝑘2𝑐,
(9a)

𝑑𝑒

𝑑𝑡

= −𝑘1𝑠𝑒 + 𝑘2𝑐 + 𝑘3𝑐 − 𝑘4𝑝𝑒,
(9b)

𝑑𝑝

𝑑𝑡

= 𝑘3𝑐 − 𝑘4𝑝𝑒,
(9c)

𝑑𝑐

𝑑𝑡

= 𝑘1𝑠𝑒 − 𝑘2𝑐 − 𝑘3𝑐 + 𝑘4𝑝𝑒,
(9d)

with the boundary conditions being
𝑠 (0) = 𝑠0, 𝑒 (0) = 𝑒0, 𝑝 (0) = 0, 𝑐 (0) = 0.

(10)

Adding (9b) and (9c), we get
𝑑𝑒

𝑑𝑡

+

𝑑𝑐

𝑑𝑡

= 0. (11)

Using the initial conditions (10) we obtain
𝑒 (𝑡) + 𝑐 (𝑡) = 𝑒0. (12)

With this, the system of ordinary differential equations
reduces to the following three differential equations:

𝑑𝑠

𝑑𝑡

= −𝑘1𝑠 (𝑒0 − 𝑐) + 𝑘2𝑐,
(13a)

𝑑𝑐

𝑑𝑡

= 𝑘1𝑠 (𝑒0 − 𝑐) − (𝑘2 + 𝑘3) 𝑐 + 𝑘4𝑝 (𝑒0 − 𝑐) , (13b)

𝑑𝑝

𝑑𝑡

= 𝑘3𝑐 − 𝑘4𝑝 (𝑒0 − 𝑐) . (13c)

With initial conditions 𝑠(0) = 𝑠0, 𝑐(0) = 0, and 𝑝(0) = 0.
By introducing the following set of nondimensional variables
and parameters,

𝜏 =

𝑘1𝑒0𝑡

𝜀

, 𝑢 (𝜏) =

𝑠 (𝑡)

𝑠0

, V (𝜏) =
𝑐 (𝑡)

𝑠0

, (14)

𝑤 (𝜏) =

𝑝 (𝑡)

𝑠0

, 𝜆1 =

𝑘2

𝑘1𝑠0

, 𝜆2 =

𝑘3

𝑘1𝑠0

, (15)

𝜆3 =

𝑘4

𝑘1

, 𝜀 =

𝑒0

𝑠0

, 𝜂 = 𝜆1 + 𝜆2, (16)

the system of (13a)–(13c) and the initial conditions (10) can
be represented in dimensionless form as follows:

𝑑𝑢

𝑑𝜏

= −𝜀𝑢 + 𝑢V + 𝜆1V, (17a)

𝑑V

𝑑𝜏

= 𝜀𝑢 − 𝜂V + 𝜆3𝜀𝑤 − 𝑢V − 𝜆3V, (17b)

𝑑𝑤

𝑑𝜏

= 𝜆2V − 𝜆3𝜀𝑤 + 𝜆3V𝑤, (17c)

with
𝑢 (0) = 1, V (0) = 0, 𝑤 (0) = 0. (18)
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3. Implementation of the HPM

We indicate how (33)–(35) in this paper are derived. To find
the solution of (14)–(16), we first construct a homotopy as
follows:

(1 − 𝑝) [

𝑑𝑢

𝑑𝜏

+ 𝜀𝑢] + 𝑝 [

𝑑𝑢

𝑑𝜏

+ 𝜀𝑢 − 𝑢V − 𝜆1V] = 0, (19)

(1 − 𝑝) (

𝑑V

𝑑𝜏

+ 𝜂V)

+ 𝑝(

𝑑V

𝑑𝜏

+ 𝜂V − 𝜀𝑢 − 𝜆3𝜀𝑤 + 𝑢V + 𝜆3V𝑤) = 0,

(20)

(1−𝑝) (

𝑑𝑤

𝑑𝜏

+𝜆3𝜀𝑤)+𝑝(

𝑑𝑤

𝑑𝜏

+ 𝜆3𝜀𝑤 − 𝜆2V − 𝜆3V𝑤) = 0.

(21)

And the initial approximations are as follows:

𝑢 (0) = 1, V (0) = 0, 𝑤 (0) = 0. (22)

Approximate solutions of (33)–(35) are

𝑢 = 𝑢0 + 𝑝𝑢1 + 𝑝
2
𝑢2 + 𝑝

3
𝑢3 + ⋅ ⋅ ⋅ (23)

V = V0 + 𝑝V1 + 𝑝
2V2 + 𝑝

3V3 + ⋅ ⋅ ⋅ (24)

𝑤 = 𝑤0 + 𝑝𝑤1 + 𝑝
2
𝑤2 + 𝑝

3
𝑤3 + ⋅ ⋅ ⋅ . (25)

Substituting (23)–(25) into (19)–(21), respectively, and com-
paring the coefficients of like powers of 𝑝, we can obtain
the following differential equations for the concentration of
substrate:

𝑝
0
:

𝑑𝑢0

𝑑𝜏

+ 𝜀𝑢0 = 0,

𝑝
1
:

𝑑𝑢1

𝑑𝜏

+ 𝜀𝑢1 − 𝑢0V0 − 𝜆1V0 = 0,

𝑝
2
:

𝑑𝑢2

𝑑𝜏

+ 𝜀𝑢2 − (𝑢0V1 + 𝑢1V0) − 𝜆1V1 = 0.

(26)

For enzyme substrate concentration V,

𝑝
0
:

𝑑V0
𝑑𝜏

+ 𝜂V0 = 0,

𝑝
1
:

𝑑V1
𝑑𝜏

+ 𝜂V1 − 𝜀𝑢0 − 𝜆3𝜀𝑤0 + 𝑢0V0 + 𝜆3V0𝑤0 = 0,

𝑝
2
:

𝑑V2
𝑑𝜏

+ 𝜂V2 − 𝜀𝑢1 − 𝜆3𝜀𝑤1 + 𝑢0V1

+ 𝑢1V0 + 𝜆3 (V0𝑤1 + V1𝑤0) = 0.

(27)

For product concentration 𝑤

𝑝
0
:

𝑑𝑤0

𝑑𝜏

+ 𝜆3𝜀𝑤0 = 0,

𝑝
1
:

𝑑𝑤1

𝑑𝜏

+ 𝜆3𝜀𝑤1 − 𝜆2V0 − 𝜆3V0𝑤0 = 0,

𝑝
2
:

𝑑𝑤2

𝑑𝜏

+ 𝜆3𝜀𝑤2 − 𝜆2V1 − 𝜆3 (V0𝑤1 + V1𝑤0) = 0,

𝑝
3
:

𝑑𝑤2

𝑑𝜏

+ 𝜆3𝜀𝑤3 − 𝜆2V2 − 𝜆3 (V0𝑤2 + V1𝑤1 + V2𝑤0) = 0.

(28)

Solving (26)–(28), and using the boundary conditions (22),
we can find the following results:

𝑢0 (𝜏) = 𝑒
−𝜀𝜏

,

𝑢1 (𝜏) = 0,

𝑢2 (𝜏) =

1

(𝜂 − 𝜀)

[−𝑒
−2𝜀𝜏

+ 𝑒
−𝜀𝜏

] +

𝜀

𝜂 (𝜂 − 𝜀)

[𝑒
−(𝜂+𝜀)

− 𝑒
−𝜀𝑡

]

+

𝜆1𝜀𝜏 𝑒
−𝜀𝜏

(𝜂 − 𝜀)

+

𝜆1𝜀

(𝜂 − 𝜀)

[𝑒
−𝜂𝜏

− 𝑒
−𝜀𝜏

] ,

V0 (𝜏) = 0,

V1 (𝜏) =
𝜀

𝜂 − 𝜀

[𝑒
−𝜀𝜏

− 𝑒
−𝜂𝜏

] ,

V2 (𝜏) =
𝜀 [𝑒
−𝜂𝜏

− 𝑒
−2𝜀𝜏

]

(𝜂 − 𝜀) (2𝜀 − 𝜂)

+

[𝑒
−(𝜀+𝜂)𝜏

− 𝑒
−𝜂𝜏

]

(𝜂 − 𝜀)

,

𝑤0 (𝜏) = 0,

𝑤1 (𝜏) = 0,

𝑤2 (𝜏) =

𝜆2𝜀

(𝜂 − 𝜀)

[

(𝑒
−𝜀𝜏

− 𝑒
−𝜆
3
𝜀𝜏
)

(𝜆3 − 1) 𝜀

−

(𝑒
−𝜂𝜏

− 𝑒
−𝜆
3
𝜀𝜏
)

(𝜆2𝜀 − 𝜂)

] ,

𝑤3 (𝜏) =

𝜆2 [𝑒
−2𝜀𝜏

− 𝑒
−𝜆
3
𝜀𝜏
]

(𝜀 − 𝜂) (𝜂 − 2𝜀) (𝜆3 − 2)

−

𝜆2 [𝑒
−(𝜀+𝜂)𝜏

− 𝑒
−𝜆
3
𝜀𝜏
]

(𝜀 − 𝜂) (𝜆3 − 𝜀 − 𝜂)

−

𝜆2𝜀 [𝑒
−𝜂𝜏

− 𝑒
−𝜆
3
𝜀𝜏
]

(𝜀 − 𝜂) (𝜂 − 2𝜀) (𝜆3𝜀 − 𝜂)

+

𝜆2 [𝑒
−𝜂𝜏

− 𝑒
−𝜆
3
𝜀𝜏
]

(𝜀 − 𝜂) (𝜆3𝜀 − 𝜂)

.

(29)

According to the HPM, we can conclude that

𝑢 (𝜏) = lim
𝑝→1

𝑢 (𝜏) = 𝑢0 + 𝑢1 + 𝑢2, (30)

V (𝜏) = lim
𝑝→1

V (𝜏) = V0 + V1 + V2, (31)

𝑤 (𝜏) = lim
𝑝→1

𝑤 (𝜏) = 𝑤0 + 𝑤1 + 𝑤2 + 𝑤3. (32)

Substitute (29) in (30)-(31) we obtain (33)–(35) in the text.

4. Analytical Solution of Substrate,
Enzyme, Enzyme-Substrate Complex, and
Free Enzyme Product Using HPM

Non-linear phenomena play a crucial role in applied math-
ematics and chemistry. Construction of particular exact
solutions for these equations remains an important problem.
Finding exact solutions that have a physical, chemical, or
biological interpretation is of fundamental importance. The
investigation of exact solution of non-linear equation is
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interesting and important. In the past, many authors mainly
had paid attention to study solution of non-linear equations
by using various methods, variational iteration method [13],
and homotopy perturbation method [14–17].

The homotopy perturbationmethod has been extensively
worked out over a number of years by numerous authors.
The idea has been used to solve nonlinear boundary value
problems [15], integral equations [18–20], Klein-Gordon and
Sine-Gordon equations [21], Emden-Flower type equations
[22], and many other problems. This wide variety of appli-
cations shows the power of the HPM to solve functional
equations. The HPM is unique in its applicability, accuracy
and efficiency. The HPM [23] uses the imbedding parameter
𝑝 as a small parameter, and only a few iterations are needed to
search for an asymptotic solution. Using this method, we can
obtain the following solution to (14)–(16) (see the appendix):

𝑢 (𝜏) = 𝑒
−𝜀𝜏

+

[−𝑒
−2𝜀𝜏

+ 𝑒
−𝜀𝜏

]

(𝜂 − 𝜀)

+

𝜀 [𝑒
−(𝜂+𝜀)

− 𝑒
−𝜀𝜏

]

𝜂 (𝜂 − 𝜀)

+

𝜆1𝜀𝜏 𝑒
−𝜀𝜏

(𝜂 − 𝜀)

+

𝜆1𝜀 [𝑒
−𝜂𝜏

− 𝑒
−𝜀𝜏

]

(𝜂 − 𝜀)

,

(33)

V (𝜏) =
𝜀

𝜂 − 𝜀

[𝑒
−𝜀𝜏

− 𝑒
−𝜂𝜏

] +

𝜀 [𝑒
−𝜂𝜏

− 𝑒
−2𝜀𝜏

]

(𝜂 − 𝜀) (2𝜀 − 𝜂)

+

[𝑒
−(𝜀+𝜂)𝜏

− 𝑒
−𝜂𝜏

]

(𝜂 − 𝜀)

,

(34)

𝑤 (𝜏) =

𝜆2𝜀

(𝜂 − 𝜀)

[

(𝑒
−𝜀𝜏

− 𝑒
−𝜆
3
𝜀𝜏
)

(𝜆3 − 1) 𝜀

−

(𝑒
−𝜂𝜏

− 𝑒
−𝜆
3
𝜀𝜏
)

(𝜆2𝜀 − 𝜂)

]

+

𝜆2 [𝑒
−2𝜀𝜏

− 𝑒
−𝜆
3
𝜀𝜏
]

(𝜀 − 𝜂) (𝜂 − 2𝜀) (𝜆3 − 2)

−

𝜆2 [𝑒
−(𝜀+𝜂)𝜏

− 𝑒
−𝜆
3
𝜀𝜏
]

(𝜀 − 𝜂) (𝜆3 − 𝜀 − 𝜂)

−

𝜆2𝜀 [𝑒
−𝜂𝜏

− 𝑒
−𝜆
3
𝜀𝜏
]

(𝜀 − 𝜂) (𝜂 − 2𝜀) (𝜆3𝜀 − 𝜂)

+

𝜆2 [𝑒
−𝜂𝜏

− 𝑒
−𝜆
3
𝜀𝜏
]

(𝜀 − 𝜂) (𝜆3𝜀 − 𝜂)

.

(35)

Equations (33)–(35) represent the analytical expression of
the dimensionless substrate concentration 𝑢(𝜏), dimension-
less enzyme-substrate concentration V(𝜏), and dimension-
less free enzyme product concentration 𝑤(𝜏) for all values
of parameters 𝜀, 𝜆1, 𝜆2 and 𝜆3. For steady condition, the
differential equations (17a)–(17c) become as follows:

−𝜀𝑢 + 𝑢V + 𝜆1V = 0,

𝜀𝑢 − 𝜂V + 𝜆3𝜀𝑤 − 𝑢V − 𝜆3V = 0,

𝜆2V − 𝜆3𝜀𝑤 + 𝜆3V𝑤 = 0.

(36)

Solving the above equations, we can obtain the concen-
trations of substrate 𝑢, enzyme substrate complex V, and
product free enzyme 𝑤 as follows: 𝑢 = 0, V = 0, 𝑤 = 0.
When 𝜏 tends to infinity, the analytical expression corre-
sponding to the substrate concentration 𝑢, enzyme substrate
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Figure 1: Profile of the normalized concentrations of substrate 𝑢 is
calculated using (33) for various values of dimensionless parameters
𝜀, 𝜆1, 𝜆2, and 𝜆3. Solid line: (33); dotted line: numerical simulation.

concentration V and free enzyme product concentration 𝑤

from (33)–(35) confirm the validity of mathematical analysis.

5. Results and Discussion

The substrate concentration versus time is plotted in Figures
1 and 2 using (33). From Figures 1(a) and 1(b), it is observed
that the dimensionless substrate concentration 𝑢 decreases.
When parameters 𝜆1 = 𝜆2 = 𝜆3 = 0.001, the dimensionless
substrate concentration 𝑢 gradually decreases as the value
of parameter 𝜀 increases and reaches the steady state when
𝜏 ≥ 0.5.When 𝜆1 = 𝜆2 = 𝜆3 = 1, the concentration decreases
rapidly as 𝜀 increases. 𝑢 ≈ 1 when 𝜀 ≤ 0.1. In Figure 2, it
is inferred that the concentration decreases as dimensionless
time 𝜏 increases and reaches its minimum when 𝜏 = 1. The
graph is shown for various values of 𝜆1 when 𝜆2 = 𝜆3 =

0.001, 𝜀 = 1.
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Figure 2: Profile of the normalized concentrations of substrate
𝑢 is calculated using (33) for various values of dimensionless
parameter 𝜆1. Solid line: (33); dotted line: numerical simulation.

Figures 3 and 4 are plotted using (34), dimensionless
time 𝜏 as abscissa, and enzyme concentration V as ordinate.
From Figures 3(a) and 3(b), it is observed that the enzyme
concentration increases when 𝜏 ≤ 0.2 and reaches the steady
state value when 𝜏 > 0.2. The graph is shown for various
values of the parameter 𝜀, when 𝜆1 = 𝜆2 = 𝜆3 = 0.001

and 0.01. From Figure 4, it is inferred that enzyme
concentration V reaches its maximum between the time
0.03–0.09, and reaches the steady state when 𝜏 ≥ 0.5.

Figures 5 and 6 shows the free enzyme product con-
centration versus time for various values of parameter 𝜆

using (35). From Figures 5(a)-5(b), it is inferred that product
concentration 𝑤 increases very slowly as the time increases.
The graphs are shown for various values of the parameter 𝜀,
when 𝜆1 = 𝜆2 = 𝜆3 = 0.001 and 0.01. In Figure 6, it is
noted that the product concentration increases slowly and
reaches the steady state at 𝜏 ≥ 0.3. Profile of dimensionless
concentrations 𝑢, V, and 𝑤 versus the dimensionless time 𝜏

using (33), (34), and (35) for the fixed values of the parameters
is plotted in Figure 7. From this figure, it is inferred that the
concentration of substrate decreases, whereas the concentra-
tion of enzyme increases. But for all time the concentration
of free enzyme-product have at most constant value.

6. Conclusion

Approximate analytical solutions to the system of non-
linear reaction equations in enzyme reaction mechanism are
presented using homotopy perturbation method. A simple,
straight forward, and a new method of estimating the con-
centrations of substrate, enzyme-substrate, and product are
derived.This solution procedure can be easily extended to all
kinds of system of coupled non-linear equations with various
complex boundary conditions in enzyme-substrate nonlinear
reaction diffusion processes.
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Figure 3: Profile of dimensionless enzyme concentration V is
calculated using (34) for various values of dimensionless parameters
𝜀, 𝜆1, 𝜆2 and 𝜆3. Solid line: (34); dotted line: numerical simulation.
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Solid line: (34); dotted line: numerical simulation.
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Figure 5: Profile of dimensionless free enzyme product concentra-
tion 𝑤 is calculated using (35) for various values of dimensionless
parameters 𝜀, 𝜆1, 𝜆2 and 𝜆3. Solid line: (35); dotted line: numerical
simulation.

Appendix

Numerical Simulation Program for (14)–(16)
function graphmain3
options = odeset (“RelTol”, 1𝑒 − 6, “Stats”, “on”);
% initial conditions
𝑋0 = [1; 0; 0];
𝑡 span = [0, 5];
tic
[𝑡, 𝑋] = ode45 (@TestFunction, 𝑡 span, 𝑋0, options);
toc
figure
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Figure 6: Profile of dimensionless free enzyme product concen-
tration V is calculated using (35) for various values of dimensionless
parameter 𝜆3. Solid line: (35); dotted line: numerical simulation.
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Figure 7: Profile of dimensionless concentrations 𝑢, V, and𝑤 versus
the dimensionless time 𝜏 using (33), (34), and (35) for the fixed
values of the parameters 𝜆1, 𝜆2, 𝜆3, and 𝜀. Solid line: (33), (34), and
(35); dotted line: numerical simulation.

hold on
plot (𝑡, 𝑋(:, 1), “−” )
plot (𝑡, 𝑋(:, 2),“−”)
plot (𝑡, 𝑋(:, 3),“∗”)
legend (“𝑥1”,“𝑥2”,“𝑥3”)
𝑦 label (“𝑥”)
𝑥 label (“𝑡”)
return
function [𝑑𝑥 𝑑𝑡] = TestFunction (𝑡, 𝑥)

𝑒 = 1; 𝑐1 = 0.1; 𝑐2 = 0.001; 𝑐3 = 0.1;
𝑑𝑥 𝑑𝑡(1) = −𝑒 ∗ 𝑥(1) + 𝑥(1) ∗ 𝑥(2) + 𝑐1 ∗ 𝑥(2);
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𝑑𝑥 𝑑𝑡(2) = 𝑒 ∗ 𝑥(1) − 𝑐1 ∗ 𝑥(2) − 𝑐2 ∗ 𝑥(2)+ 𝑐3 ∗ 𝑒 ∗

𝑥(3) − 𝑥(1) ∗ 𝑥(2) − 𝑐3 ∗ 𝑥(2) ∗ 𝑥(3);
𝑑𝑥 𝑑𝑡(3) = 𝑐2∗𝑥(2) − 𝑐3∗ 𝑒∗𝑥(3) + 𝑐3∗𝑥(2) ∗𝑥(3);
𝑑𝑥 𝑑𝑡 = 𝑑𝑥 𝑑𝑡,
return

Nomenclature and Units

[E]: Enzyme concentration (𝜇M)
[C]: Enzyme-substrate complex (𝜇M)
[S]: Substrate concentration (𝜇M)
[E0]: Initial enzyme concentration (𝜇M)
𝐾𝑀: Michaelis-Menten constant
[S0]: Initial substrate concentration (𝜇M)
𝑘1, 𝑘2, 𝑘3: Positive rate constants (none)
𝜆1, 𝜆2, 𝜆3, 𝜀: Reaction diffusion parameter (none)
𝑢: Dimensionless substrate concentration

(none)
V: Dimensionless enzyme substrate

concentration (none)
𝑤: Dimensionless product concentration

(none)
𝑡: Time (sec)
𝜏: Dimensionless time (none).
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