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Cystic fibrosis is one of the most common inherited diseases and is caused by a mutation in a membrane protein, the cystic fibrosis
transmembrane conductance regulator (CFTR).This protein serves as a chloride channel and regulates the viscosity ofmucus lining
the ducts of a number of organs. Although much has been learned about the consequences of mutations on the energy landscape
and the resulting disrupted folding pathway of CFTR, a level of understanding needed to correct the misfolding has not been
achieved. The most common mutations of CFTR are located in one of two nucleotide binding domains, namely, the nucleotide
binding domain 1 (NBD1). We model NBD1 using a nested graph model. The vertices in the lowest layer each represent an atom in
the structure of an amino acid residue, while the vertices in the mid layer each represent the residue. The vertices in the top layer
each represent a subdomain of the nucleotide binding domain. We use this model to quantify the effects of a single point mutation
on the protein domain. We compare the wildtype structure with eight of the most common mutations. The graph-theoretic model
provides insight into how a single point mutation can have such profound structural consequences.

1. Introduction

Cystic fibrosis is the most common genetic disorder in the
Caucasian population. Cystic fibrosis (CF) is caused by a
single point mutation in the cystic fibrosis membrane con-
ductance regulator (CFTR) protein [1–4]. CFTR is a chloride
channel located in the apical membrane of epithelial cells
and plays a fundamental role in transepithelial salt and water
movement [5]. A mutation of this protein affects a number
of organs in the body such as lungs, pancreas, reproductive
organs, and colon. The viscosity of the mucus that lines the
ducts of these organs is altered by the increased salt levels
resulting in sticky mucus plugs that disrupt the normal func-
tion of these organs. A mutation in the CFTR protein occurs
in approximately one in every twenty individuals in the
Caucasian population and there are more than one thousand
nine hundred different reportedmutations of CFTR resulting
in different levels of severity of clinical consequences [6].
Although there are a large number of reported mutations of

CFTR, the deletion of phenylalanine at position 508 (ΔF508)
occurs inmore than 90%of the CF population [7].TheΔF508
mutation prevents the correct folding of the protein and
consequential degradation [7, 8]. Thus, this mutation results
in one of the more severe phenotypes. Once considered a
fatal disease, knowledge about the mechanisms and clinical
consequences of the mutations of this membrane protein has
raised the expected life span to nearly forty years. Despite the
extended life expectancy, the quality of life for people with
cystic fibrosis is still very affected and the variation in life
expectancy is very pronounced.

CFTR is a member of the ATP-Binding Cassette (ABC)
transporters. There are forty-nine human ABC transporters,
including the multidrug resistance protein (MDR) which
thwarts many efforts to utilize chemotherapy to treat various
cancers [9]. Similar to most ABC transporters, CFTR con-
tains two membrane spanning domains and two nucleotide
binding domains (NBD1 and NBD2). CFTR also contains
a regulatory domain (R) which none of the other ABC
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transporters have [9]. It is well known that the role of CFTR
is multifaceted, serving as both a transporter and an ion
channel and regulating the activity of other channels such as
the epithelial sodium channel, ENaC [10]. Control of CFTR
channel activity is modulated by the phosphorylation of the
R domain by protein kinase A. Although a great deal has
been learned about the control of CFTR channel gating by
phosphorylation and ATP binding/hydrolysis, details about
the specific interactions remain unknown and may require
the knowledge of the complete 3D structure of the entire
protein [11–14]. Due to the size of the protein, this has proven
to be difficult.

It is interesting to note that when ΔF508 is successfully
folded in vitro, there is very little change in the energy
landscape and the folded protein is relatively stable [15].
Thus a great deal of the focus on the treatment of cystic
fibrosis is directed towards finding a means by which the
protein can escape the degradation tag [1, 16, 17]. This
approach alone has proven to be difficult and most likely
insufficient because the key question remains: Why is the
deletion of this particular amino acid, F508, so catastrophic?
In [6] it was demonstrated that self-chaperoning activity is
diminished as a consequence of the missing phenylalanine
residue. Furthermore, it has been shown that cross-linking
between NBD1 which contains F508 and a cytoplasmic loop
between two of the membrane spanning helices is critical to
the gating mechanism and this is disrupted by the deletion
of ΔF508 [3]. Consequently, novel methods that employ a
combination of knowledge about the energy landscape and
structural information coupled with functional attributes are
needed.

A mutation that results in the absence of a single residue
in a protein structure has a profound local effect, but how
this local perturbation manifests to a global one as in the
case of ΔF508 remains unclear. Protein structures in general
are replete with mutations that result in a single amino acid
substitution or deletion, many of which cause no disruption
in the synthesis and functionality of the protein. It is still not
clearly understood how and why each of these mutations of
CFTR, ΔF508 in particular, causes such a profound effect. To
address the key question, how the deletion of phenylalanine at
position 508 results in the complete loss of function of CFTR,
we build a graph-theoretic model of NBD1, the domain
containing ΔF508. With the vertex-weighted hierarchical
graph representation of the protein domainNBD1, we present
a method to model the effect of a single point mutation of
a protein. Using the hierarchical, vertex-weighted graph, we
define novel combinatorial descriptors based on these vertex-
weights. We employ these graph-theoretic measures to quan-
tify the consequences of nine mutations of CFTR’s NBD1,
including ΔF508. Each mutation results in a distinct set of
graph-theoretic measures that are both local and global and
capture the underlying structural “network” consequences
of the mutation. Our model reveals a process by which a
local change can produce a significant global change. Once
we identify the combinatorial measure at the global level
that distinguishes a particular mutation, we can reverse our
steps to the lower level to see which structural changes in the
intermediate level were responsible for these global changes.

Earlier efforts to model proteins as networks with graphs
were introduced in [18, 19]. In an earlier work byHaynes et al.,
we introduced the use of the domination number of a graph to
quantify a biomolecule [20].Weused the dominationnumber
and variations of the domination number to classify small
tree graphs (4–6 vertices) as either RNA-like or not RNA-like.
We found the domination number of a graph to be a better
means to quantify the structural properties of secondaryRNA
structure than the second smallest eigenvalue utilized by the
RNA database RAG [21]. In [22], we use the domination
number, coupled with other graph invariants, to quantify the
amino acid residue structures in order to build a predictive
model for protein-ligand binding affinity. Although both of
these were successful, the authors noted the shortcomings of
graphical invariants as molecular descriptors. Namely, in all
graphical invariants, the weights of the vertices are assumed
to be one. In fact, the reason that these measures are called
invariants is because they are invariant under isomorphism.
However, two vertex-weighted graphs whose (nonweighted)
structures are isomorphic may have different values when
thesemeasures incorporate the vertex-weights.Themeasures
that we define, although derived fromwell-established graph-
ical invariants [23, 24], are no longer invariant under iso-
morphism since the weights of the vertices are incorporated
into the definition of the measure. Consequently we have
termed these values combinatorial descriptors. Our method
of building nested vertex-weighted graphs is described
below.

2. Materials and Methods

2.1. Overview of Graph-Theoretic Model. We model NBD1
with a series of nested graphs. First, each of the twenty
most common amino acids is the modeled as a graph. Given
an amino acid, the backbone and central carbon atom are
represented by a single vertex and each of the atoms in the
corresponding amino acid residue structure is represented
by a vertex. Vertices in the residue are weighted by the
nearest integer value of the mass of the corresponding atom.
Edges are determined by molecular bonds and hydrogen
atoms are ignored. Using each of these hydrogen suppressed
models of the twenty most common amino acids, we obtain
twenty corresponding vectors of descriptors based on the
graph-theoretic measures: weighted domination, weighted
diameter, circumference and weighted periphery. We also
use a measure of polarity found in [25] and a measure of
hydrophobicity found in [26].These measures were used and
can be found in [22].

We next partition the sequence of CFTR that corresponds
to the NBD1 domain into eight subsequences. In particular,
we obtain the following subsequences denoted by 𝑆

𝑖
: 𝑆
1
, 𝑆
2
,

𝑆
3
, 𝑆
4
, 𝑆
5
, 𝑆
6
, 𝑆
7
, and 𝑆

8
. In determining these subsequences,

we are guided by the secondary structures of the protein. Each
subsequence contains one and only one type of secondary
structure, either a beta strand, an alpha helix, or a loop.
The loop regions may contain turns, a 3/10-helix or an alpha
helix with no more than 6 residues. The corresponding
subsequences of each subdomain are provided in Table 1.
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Table 1: Subsequences of the sequence for NBD1 of CFTR.

Subdomain Subsequence Subdomain Subsequence

𝑆
1

ISFCSQFSWIMPGT
𝑆
5

KDNIVLGEGGITLS
488–501 536–549

𝑆
2

IKENIIFGVSYD
𝑆
6

EGQQAKISLARAVY
502–513 550–563

𝑆
3

EYRYRSVIKA
𝑆
7

KDADLYLLDSPFG
514–523 564–576

𝑆
4

CQLEEDISKFAE
𝑆
8

YLDVLTTEKEIFESCVCKL
524–535 577–594

...

...
...Amino acid

Domain substructure

CFTR-NBD1𝐿

𝐿

𝑉

𝐺

𝐺1
𝐺2

𝐺3

𝐺4

𝐺5

𝐺7

𝐺8

𝐺6 = ⟨𝑆1, . . . , 𝑆𝑚⟩

𝐹 = ⟨𝑓1, . . . , 𝑓𝑛⟩

𝐿 = ⟨𝑙1, . . . , 𝑙𝑛⟩

Figure 1: The nested graph model.

We model the structure corresponding to each 𝑆
𝑖
as a

graph to obtain eight graphs which we denote by 𝐺
𝑖
. The

vertices of 𝐺
𝑖
, each, represent a residue in the sequence

𝑆
𝑖
and edges are determined by a proximity measure of eight

angstroms. The distance endpoints are determined by the
center of mass of each residue in the 3D structure provided
in 2BBO [27] in the Protein Data Bank [28]. For example,
the subdomain graph 𝐺

2
which contains F508 is given in

Figure 2. At the highest level, we represent the NBD1 as a
single graph with eight vertices, one for each subdomain
graph 𝐺

𝑖
. Each graph 𝐺

𝑖
is represented by a vertex and edges

are determined by proximity in the 3D structure provided
in [27]. The edges of the NBD1 CFTR Graph, or simply the
domain graph 𝐺, are based on a proximity measure where
the distance endpoints are determined by a threshold distance
between any two residues of each subdomain. In conclusion,
the nested graph has three layers. At the lowest level we have
a collection of twenty small vertex-weighted graphs, one for
each of the twenty most common amino acids. At the middle
level, we have a collection of eight vertex-weighted graphs,
𝐺
𝑖
in which each vertex represents an amino acid and the

weights of the vertices are the combinatorial descriptors of the
amino acid graphs at the lower level. At the highest level, we
have a vertex-weighted graph𝐺 that represents the nucleotide
binding domain NBD1. The vertices, each, represent one
of the subdomain graphs 𝐺

𝑖
and the weights assigned to

these vertices are derived from the vertex-weighted graph
descriptors of each𝐺

𝑖
. Using these measures we obtain a final

set of graph-theoretic-based measures for the domain graph
𝐺 of NBD1. This modeling scheme is illustrated in Figure 1.

Having obtained a set of measures for the wildtype NBD1
domain, we select eight disease causing mutations found
in the Cystic Fibrosis Mutation Databank [6] that occur
in NBD1. Given that we have selected eight mutations to
model, we now obtain a set of graph-theoretic measures for
each mutation in the following way. To measure the global
structural effect of a single point mutation, we first make
the corresponding change at the residue level. This change
affects one of the subdomains 𝑆

𝑖
. We obtain a new subdomain

graph𝐺
𝑖
of the effected subdomain by utilizing I-TASSER, an

online protein folding server [29]. For example, in Figure 2,
we show𝐺

2
containing F508 and the graphwith the predicted

structural changes as a consequence of deleting F508.
For each mutation, we obtain a new graph for the

subdomainwhere themutation occurred. Note that an amino
acid switch mutation produces a graph that contains a
different residue together with different set of combinatorial
descriptors. Since both the structure of 𝐺

𝑖
and possibly a

vertex-weight for one vertex in𝐺
𝑖
have changed, this changes

the corresponding vector of vertex-weights for the vertex 𝐺
𝑖

in 𝐺. In this way we incorporate the graph-theoretic changes
of a single point mutation with the predicted structural
change by using the vertex-weights at each level. The edge
set of the domain graph 𝐺 remains unchanged, but the
weights of the vertices are adjusted according to the structural
(both vertex and edge) changes of the underlying subdomain
graphs. Since our measures are based on vertex-weights, we
obtain a new set of values associated with each mutation.
These, together with the wildtype, provide a set of measures
for nine distinct graphs. Using MATLAB [30], we calculate
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502I
503K

504Q

505N

506I

513D

512Y

511S

510V

509G
508F

507I

502I
503K

504Q
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506I

513D

512Y

511S

510V

509G 507I

Figure 2: Subdomain graph 𝐺
2
with 508F and without 508F.

the differences of these nine distinct domain graphmeasures.
We describe this process in more detail in the sections below.

2.2. Level One: The Amino Acid Graphs. We represent each
of the hydrogen suppressed residue structures as a rooted,
vertex-weighted graph.The central carbon atom of the amino
acid serves as the root and the atomicmassesmeasured to the
nearest integer value serve as the vertex-weights.We quantify
the weighted graphical structure using combinatorial mea-
sures from graph theory. In a combinatorial optimization set-
ting, graphmeasures are typically defined by determining the
maximum (minimum) values under a specified constraint.
For example, a set of vertices is said to dominate a graph if
all remaining vertices are adjacent to at least one vertex in the
dominating set. Trivially, the entire vertex set is a dominating
set; thus the optimal set is one of minimum cardinality. We
adjust the definitions of three combinatorial measures to
include the weights of the vertices and use these measures as
biomolecular descriptors. We provide the definitions of these
vertex-weighted combinatorial measures as follows.

(i) Weighted domination number: a vertex set 𝑆 of a
graph𝐺 is a set of vertices with the property that every
vertex in the vertex set of 𝐺 not in 𝑆 adjacent to at
least one vertex in 𝑆 is a dominating set of vertices. A
minimum dominating set in a vertex-weighted graph
is dominating set whose vertex sum is a minimum.
The weighted domination number is this minimum
sum.

(ii) Weighted diameter: the distance between two vertices
𝑢 and V is the length of the shortest path from 𝑢
to V, which is equivalent to the number of vertices
encountered along the shortest graph traversal from
𝑢 to V, not including 𝑢 as an encounter. The weighted
distance is theminimumweight among all paths from
𝑢 to V where the minimumweight is the smallest sum
of the weights of the vertices encountered along the
graph traversal from 𝑢 to V, not adding the weight of
𝑢. The weighted diameter of a graph is the maximum

weight among all minimumweighted distances in the
graph.

(iii) Weighted periphery: a vertex whose distance from
the center of a graph is maximum is known as a
peripheral vertex. In this work, the graphs we use
to model the residue chains were considered to be
rooted at the central carbon atomof the backbone and
we measured from the root as opposed to the center.
Thus the periphery is the maximum weight among all
vertices whose distance from the root is maximum.

We did not use the vertex-weights for the circumference,
the fourth measure.

(i) Circumference: a cycle in a graph is a path whose
begin (start) vertex equals the end vertex. Note that
the standard graph-theoretic definition of a path
requires that no vertex be repeated in the traversal of
the path; hence in a cycle we make the exception for
the begin/end vertex. The circumference of a graph is
the length (or number of vertices) in the largest cycle
of the graph. If a graph does not have a cycle, then we
say that it has circumference number zero.

2.3. Level Two: The Subdomain Graphs 𝐺
𝑖
of NBD1. We

represent each of these eight subsequences as a graph by
reading in the 3D coordinates of the subsequence from the
Protein Data Bank of the structure found in [27]. Each
vertex represents a residue and the edges between residues
are determined by a maximum threshold of 8 angstroms
where the endpoints of the edges are the corresponding
centers ofmass of each residue. Table 1 contains the respective
subsequences for each subdomain. In order to model a single
pointmutation, we replace a given amino acidwith a different
amino acid, or we delete a single amino acid. This new
sequence of the subdomain determined by the mutation
is then submitted to I-TASSER to obtain a predicted 3D
structure of themutated subdomain.Therefore, a single point
mutation affects one and only one of the eight subdomain
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graphs. The predicted structure is used to create the new
subdomain graph 𝑆

𝑖
corresponding to the mutation. A large

number of measures were calculated for each 𝑆
𝑖
based on

the size and structure of these subdomain graphs. For this
studywe had selected a number ofmeasures and used these as
weights for the vertices of the domain graph 𝐺. We use these
to define combinatorial measures for the 𝐺.

2.4. Level Three: The NBD1 Domain Graph 𝐺. The domain
graph has eight vertices, one for each subdomain as defined
in the above section. Edges are based on proximity of the 3D
structure. Rather than using the centers of mass as we did for
both levels one and two, here we use the backbone as refer-
ence points, and if any two alpha carbons arewithin threshold
proximity, we apply an edge. Combinatorial descriptors for
the domain graph are defined to measure the effects, both
local and global, of themutation.We rely onmuch of thework
in Chemical GraphTheory for the selection of our measures.
For example, many of the classical topological indices utilize
the number of distinct paths of length 3 or overlapping
paths of length 3 [31, 32]. We also select graphical invariants
whose measures can reflect structural changes, even in a very
small graph.The first combinatorial descriptor we define later
measures the edge density. All of the definitions that we used
for the combinatorial descriptors for this work are given as
follows.

2.4.1. Total Circumference Degree Ratio Minimum Degree.
Each of the vertices in the subdomain graphs are labeled with
the circumferencemeasure of the corresponding residue.The
total circumference is the sum of these vertex-weights. The
ratio of this subdomain total circumference to the subdomain
degree in 𝐺 is the vertex-weight of each (subdomain graph)
vertex in 𝐺. The vertices of each 𝐺

𝑖
are weighted with this

ratio.The circumference weighted degree of a vertex V in 𝐺 is
defined to be the sum of the weights of the neighbors of V and
theminimum circumference weighted degree of𝐺 is denoted
by 𝛿
∑𝐶/ deg.

Note. We do not consider any vertex to be in its own
neighborhood. If a mutation occurs in a subdomain graph
causing a change to that vertex-weight, it will not affect
this measure of that subdomain. Rather the measure will
be reflected in a change among its proximity neighbors. We
define similar weighted degree measures below.

2.4.2. Total Hydrophobic Maximum Degree. Each vertex in
the subdomain graphs 𝐺

𝑖
is labeled with the hydrophobic

measure of the underlying residue graph.The total hydropho-
bic measure for 𝐺

𝑖
is the sum of these vertex-weights. The

weighted degree of a vertex V in 𝐺 is the sum of the weights
of the neighbors of V in 𝐺. The maximum (total hydrophobic
weighted) degree in 𝐺 is denoted by Δ

∑𝐻
.

2.4.3. Total Hydrophobic Minimum Degree. Each vertex in
the subdomain graphs 𝐺

𝑖
is labeled with the hydrophobic

measure of the underlying residue graph.The total hydropho-
bic measure for 𝐺

𝑖
is the sum of these vertex-weights. The

weighted degree of a vertex V in 𝐺 is the sum of the weights
of the neighbors of V in 𝐺. The minimum (total hydrophobic
weighted) degree in 𝐺 is denoted by 𝛿

∑𝐻
.

2.4.4. Total Polarizability Maximum Degree. Each vertex in
the subdomain graphs 𝐺

𝑖
is labeled with the polarizability

measure of the underlying residue graph. The total polariz-
abilitymeasure for 𝐺

𝑖
is the sum of these vertex-weights. The

weighted degree of a vertex V in𝐺 is the sum of the weights of
the neighbors of V in 𝐺. The maximum (total polarizability-
weighted) degree in 𝐺 is denoted by Δ

∑𝑃
.

2.4.5. Total Polarizability Minimum Degree. Each vertex in
the subdomain graphs 𝐺

𝑖
is labeled with the polarizability

measure of the underlying residue graph. The total polariz-
abilty measure for 𝐺

𝑖
is the sum of these vertex-weights. The

weighted degree of a vertex V in𝐺 is the sum of the weights of
the neighbors of V in 𝐺. The minimum (total polarizability-
weighted) degree in 𝐺 is denoted by 𝛿

∑𝑃
.

2.4.6. Total of the Edge/Vertex Ratio. Each vertex in 𝐺 is
weighted with the ratio of edges to vertices in the underlying
subdomain graph. The sum of the vertices in 𝐺 is the overall
weight of the graph which we denote by Σ𝑒/V.

2.4.7. Minimum Triangular Edge/Vertex-Weight. There are
fourteen triangles in 𝐺. The weight of a triangle is the
sum of the vertex-weights defining the triangle. We use the
edge/vertex ratio for the vertex-weights as before mentioned
and find the minimum weighted triangle in 𝐺 which we
denote by 𝜔

𝑒/V.

2.4.8. Minimum Clique-Weighted 𝑃
3
. We weight the vertices

with the clique number of the underlying subdomain graph.
The clique number of a graph is the order (number of vertices)
of the largest complete subgraph. We then assign weights to
the edges of the domain graph where the edge weight is the
sum of the two end vertices. We now define the weight of a
path of length two (or 𝑃

3
) as the sum of the edge weights in

the𝑃
3
. For example, the subdomain graphs 𝑆

1
, 𝑆
9
, and 𝑆

8
have

clique numbers 4, 4, and 5, respectively, and so the two edges
have weights 8 and 9 and the path has weight 17. Note that this
approach gives more “weight” to the central vertex, which is
intentional. We denote this by 𝑃𝜔

3
.

2.4.9. MinimumDouble Domination Center. The eccentricity
value of a vertex V in a graph is 𝑡 if every vertex can be reached
from V within a distance of 𝑡 and not from any value less
than 𝑡. The subgraph induced by the set of all vertices with
minimum eccentricity in the graph is called the center of
the graph. The vertices of the subdomain graph are labeled
with the residue domination number and then the weighted
domination number of the subdomain graph is calculated
andbecomes theweight of the vertex in the domain graph.We
define the average weight of the center of the domain graph
using this double-domination measure and we denote it by
𝐶
𝛾
.
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Table 2: Combinatorial descriptors.

Δ
∑𝐻

𝛿
∑𝐻

Δ
∑𝑃

𝛿
∑𝑃

𝛿
∑𝐶/ deg 𝜔

𝑒/V ∑𝑒/V 𝑃
𝜔

3
𝐶
𝛾

Δ𝐼
𝑑

𝑝

WT 16.7 −22.5 14.754 7.57 6.857 6.447 21.602 17 36 14.855
ΔI507 12.2 −22.0 14.568 7.38 6.857 6.030 21.390 17 36 14.521
ΔF508 13.9 −22.0 14.464 7.28 6.307 6.030 21.390 17 36 14.455
G542A 16.7 −22.0 14.800 7.62 6.857 6.447 21.245 11 36 15.355
S549N 16.7 −22.0 14.826 7.64 6.857 6.447 21.387 17 36 14.730
S549I 16.7 −22.0 14.878 7.69 6.857 6.447 21.459 11 36 15.355
S549R 16.7 −22.0 14.983 7.80 6.857 6.447 21.459 17 36 14.730
G551D 14.0 −24.7 14.754 7.68 6.857 6.447 22.102 17 12 14.855
R560T 20.5 −18.2 14.754 7.39 6.857 6.447 22.102 17 36 14.855

2.4.10. Periphery Diameter Maximum Influence. Each vertex
in the subdomain graph is weighted by the corresponding
periphery value of the underlying residue. The weighted
diameter of the subdomain graph is calculated and then
this value is assigned to the corresponding vertex in the
domain graph 𝐺. We determine the maximum weighted
degree divided by the number of edges incident to each vertex
to measure this periphery-diameter maximum influence,
denoted by Δ𝐼𝑝

𝑑
.

2.5. Modeling the Mutations. To model a single point muta-
tion, such as the substitution mutation G542A, we find that
542 is in 𝑆

5
. We change the residue in the specified position

542 from the amino acid G to A in 𝑆
5
and submit this short

sequence to I-TASSER [29]. We use the returned predicted
coordinates to construct the new 𝐺

5
subdomain graph.Thus,

only one of the subdomain graphs will change, namely, 𝐺
5
.

Or, as in the case of Figure 2, we submit the sequence of
𝑆
2
without 508F to I-TASSER to obtain the 3D coordinates

of the resulting predicted structure of ΔF508-𝑆
2
. We are

therefore using the knowledge of the biophysical properties
incorporated by the I-TASSER algorithm rather than simply
relabeling the graph. Now that we have the predicted struc-
tural change, we incorporate the graph-theoretic change.
Using the amino acid descriptors described earlier, we relabel
the vertex with the new associated vector and recalculate
the combinatorial measures of that subdomain using the
combinatorial descriptors defined before to produce a new
vector to be associatedwith that subdomain. Consequently, in
the domain graph, the subdomain (vertex) receives a new set
of values and we then recompute the measures of the NBD1
domain graph 𝐺. The values for each of the nine graphs are
given in Table 2.

3. Results and Discussion

To analyze the results from the changes in the combinatorial
measures due to a single point mutation, we employed
MATLAB. We first calculate the p-distance for the data
using the Euclidean distance measure. Using these results,
we determined the default linkage and the corresponding
dendrogram that is shown in Figure 3. The first resulting

5
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G
54
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S5
49

N

S5
49

I

S5
49

R

G
55

1D

R5
60

T

Δ
I5

07

Δ
F5

08
Figure 3: Dendrogram using all of the combinatorial measures.

dendrogram reveals that G551D has graphical consequences
more distinct than the other mutations due to its relative
distance from all of the other mutations.

It is well known that the consequences of G551Dmutation
on CFTR are distinct from ΔF508 [6]. Whereas CFTR is
altogether absent from the membrane surface in patients
with ΔF508, this is not the case for patients with the
G551D mutation. The protein CFTR is present at the surface;
however, the G551D-CFTR gating mechanism is faulty and
thus the clinical consequences are similar. To correct the
G551D defect, one needs to find a small molecule that
can increase the efficiency of the gating mechanism which
proved to be more easily addressed. At this time, G551D is
the only mutation for which there exists a treatment that
addresses the molecular consequences of the mutation rather
than the clinical outcomes. Vertex Pharmaceuticals recently
received FDA approval for a drug (ivacaftor) marketed as
Kalydco, which uses a small molecule stabilizer of the mutant
protein [33]. There are no other treatments available for the
remaining mutations, although a combinatorial library of
small molecules potential correctors exists for CFTR.

Also of interest in the resulting dendrogram is the
association of S549I with G542A, rather than with S549R
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Figure 4: Dendrogram without the combinatorial measures based
on double domination.

and S549N. To further investigate S549I, we use different
combinations of descriptors and the consequences of these
variations. In Figure 4, we show the result of removing
the minimum double domination center measure from the
model. In doing so, we now find that S549I is closely
associated with G551D.

This points to an advantage of quantifying the mutations
by combinatorial measures since we can now return to the
measures to see which graph-theoretic properties are driving
these distinctions. Removing one of the particular measures
that brings S549I closer to G551D allows us to investigate
exactly which amino acid residues are key in the changed
measure. Consequently, since there is an effective treatment
for G551D, we can reveal what must be addressed in order
for this treatment to also be effective for S549I. In particular,
by employing the principles of reverse engineering, we can
identify which residues are critical for the calculation of the
minimum double domination center. The effects of ivacaftor
on CFTR channel gating and chloride transport were tested
in cells expressing different CFTR gating mutations, among
them S549N and S549R [33]. Ivacaftor was effective in
addressing defects in CFTR channel gating but not nearly
as effective as the correction achieved in G551D. Our model
predicts that S541I is a more likely candidate to be corrected
by ivacaftor since a slight adjustment in the combinatorial
measures resulted in a closer association of S549IwithG551D.
Our model may also help determine which small molecules
will be more effective for the S549N and S549R mutations.

Futureworkwill include a complete list of vertices and the
corresponding residues that participate in the calculation of
the minimum double domination center 𝐶

𝛾
as well as other

associations that can be found.The results we report here are
preliminary, but we feel that they are worth reporting due to
the novelty of the approach. Perhaps the greatest distinction
of themodel is the realization that the structural properties of
proteins can be quantified by graph-theoretic measures that
are based solely on combinatorial optimization methods and
these quantities do not rely on biophysical or biochemical
properties. Thus, when these methods are coupled together,
more information can be obtained than by either one alone.

An increased understanding of the effects of a single-point
mutation will help guide molecular targets for future drug
design efforts.

Much of the emphasis in computational biology and
computational chemistry involves the mining of large data
sets in response to the deluge of data coming from the biolog-
ical sciences arena. Necessarily, these modeling schemes and
resulting algorithms do not transcend well to small data sets.
Small data sets with very high similarity among the elements
in the set cannot be mined using algorithms intended for
large, more diverse sets. There has been a call, from the
pharmaceutical industries especially, formore computational
models that are designed for smaller, highly similar sets.
High-throughput analysis may successfully reduce tens of
thousands of potential small molecules down to hundreds
of candidates. But given the high cost of clinical trials and
the high rate of failure of many of these trials, additional
models designed specifically for further refinement are a
topic of research interest in structure-based drug design.
With this work, we propose that combinatorial graph theory
can be effectively utilized to define biomolecular descriptors
when graphical invariants aremodified to incorporate vertex-
weights.These vertex-weights are not to be considered labels;
rather they should contain structural information, especially
with respect to the particular biomolecule under study.

4. Conclusion

Knowledge regarding the consequences of ΔF508 and other
mutations is essential for the rational design of drugs for the
treatment of cystic fibrosis. We have shown that meaningful
information can be obtained by adding graph-theoretic
modeling to the toolbox. This information, together with
strategies to determine changes in the energy landscape, will
help address the consequences of this mutation as well as
provide a guide for applying this approach to other diseases
caused by a single point mutation or possibly a small set of
mutations.

Nucleotide binding domains of ATP-binding proteins
are highly conserved and contain a well-described set of
motifs. The most commonly occurring mutation that causes
cystic fibrosis is located in the nucleotide binding domain
1 of the cystic fibrosis transmembrane conductance regu-
lator. In order to guide the rational design of a corrector
molecule for the mutant cystic fibrosis protein, more must
be learned about the consequences of the mutation on the
protein domain. It is now understood that the deletion of
phenylalanine at 508 causes a number of disruptions, but
the exact mechanisms are not fully understood. We expect
that the information revealed in this work will provide a new
direction in the work to find a cure for cystic fibrosis.

Given that the definitions are motivated by graphical
invariants in graph theory such as in [23, 24] together with
those defined in chemical graph theory [31, 32] and given
the extensive amount of graphical invariants in mathematics,
there exists a wealth of resources for novel combinatorial
descriptors that can be utilized as quantifiers for biomolecular
structures.
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Abbreviations

CF: Cystic fibrosis
CFTR: Cystic fibrosis transmembrane conductance

regulator
NBD1: Nucleotide binding domain 1
ΔF508: The deletion of phenylalanine at position

508.

Acknowledgment

The authors of this paper thank the authors of I-TASSER for
their protein structure prediction tool.

References

[1] K. Roberts, P. Cushing, P. Boisguerin, D. Madden, and B.
Donald, “Computational Design of a PDZ domain peptide
inhibitor that rescues CFTR activity,” PLOS Computational
Biology, vol. 8, no. 4, Article ID e1002477, 2012.

[2] A. Aleksandrov, P. Kota, L. Cui et al., “Allosteric modulation
balances thermodynamic stability and restores function of
ΔF508 CFTR,” Journal of Molecular Biology, vol. 419, pp. 41–60,
2012.

[3] A. W. R. Serohijos, T. Hegedus, A. A. Aleksandrov et al.,
“Phenylalanine-508mediates a cytoplasmic-membrane domain
contact in the CFTR 3D structure crucial to assembly and
channel function,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 105, no. 9, pp. 3256–
3261, 2008.

[4] L. He, A. A. Aleksandrov, A. W. R. Serohijos et al., “Multiple
membrane-cytoplasmic domain contacts in the cystic fibrosis
transmembrane conductance regulator (CFTR) mediate regu-
lation of channel gating,” Journal of Biological Chemistry, vol.
283, no. 39, pp. 26383–26390, 2008.

[5] T. C.Hwang andD.N. Sheppard, “Gating of the CFTRCl- chan-
nel by ATP-driven nucleotide-binding domain dimerisation,”
Journal of Physiology, vol. 587, no. 10, pp. 2151–2161, 2009.

[6] The Cystic Fibrosis Mutation Database, http://www.genet.sick-
kids.on.ca/.

[7] A. W. R. Serohijos, T. Hegedus, J. R. Riordan, and N.
V. Dokholyan, “Diminished self-chaperoning activity of the
ΔF508 mutant of CFTR results in protein misfolding,” PLoS
Computational Biology, vol. 4, no. 2, Article ID e1000008, 2008.

[8] A. A. Aleksandrov, P. Kota, L. A. Aleksandrov et al., “Regulatory
insertion removal restores maturation, stability and function of
ΔF508 CFTR,” Journal of Molecular Biology, vol. 401, no. 2, pp.
194–210, 2010.

[9] D. B. Luckie, J. H. Wilterding, M. Krha, and M. E. Krouse,
“CFTR and MDR: ABC transporters with homologous struc-
ture but divergent function,” Current Genomics, vol. 4, no. 3, pp.
109–121, 2003.

[10] B. K. Berdiev, Y. J. Qadri, and D. J. Benos, “Assessment of the
CFTR and ENaC association,”Molecular BioSystems, vol. 5, no.
2, pp. 123–227, 2009.

[11] G. Seavilleklein, N. Amer, A. Evagelidis et al., “PKC phospho-
rylationmodulates PKA-dependent binding of the R domain to
other domains of CFTR,” American Journal of Physiology—Cell
Physiology, vol. 295, no. 5, pp. C1366–C1375, 2008.

[12] H.A. Lewis, X. Zhao, C.Wang et al., “Impact of theΔF508muta-
tion in first nucleotide-binding domain of human cystic fibrosis

transmembrane conductance regulator on domain folding and
structure,” Journal of Biological Chemistry, vol. 280, no. 2, pp.
1346–1353, 2005.

[13] S. Y. Huang, D. Bolser, H. Y. Liu, T. C. Hwang, and X. Zou,
“Molecular modeling of the heterodimer of human CFTR’s
nucleotide-binding domains using a protein-protein docking
approach,” Journal of Molecular Graphics and Modelling, vol. 27,
no. 7, pp. 822–828, 2009.

[14] T. Hegedus, A. W. R. Serohijos, N. V. Dokholyan, L. He, and
J. R. Riordan, “Computational studies reveal phosphorylation-
dependent changes in the unstructured R domain of CFTR,”
Journal ofMolecular Biology, vol. 378, no. 5, pp. 1052–1063, 2008.

[15] X. Wang, J. Matteson, Y. An et al., “COPII-dependent export of
cystic fibrosis transmembrane conductance regulator from the
ER uses di-acidic exit code,” Journal of Cell Biology, vol. 167, no.
1, pp. 65–74, 2004.

[16] M. F. N. Rosser, D. E. Grove, and D. M. Cyr, “The use of small
molecules to correct defects in CFTR folding, maturation, and
channel activity,”Current Chemical Biology, vol. 3, no. 1, pp. 100–
111, 2009.

[17] N. Pedemonte, G. L. Lukacs, K. Du et al., “Small-molecule cor-
rectors of defective ΔF508-CFTR cellular processing identified
by high-throughput screening,” Journal of Clinical Investigation,
vol. 115, no. 9, pp. 2564–2571, 2005.

[18] A. del Sol, H. Fujihashi, D. Amoros, and R. Nussinov, “Residues
crucial for maintaining short paths in network communication
mediate signaling in proteins,” Molecular Systems Biology, vol.
2, Article ID 2006.0019, 2006.

[19] M. Habibi, C. Eslahchi, M. Sadeghi, and H. Pezashk, “The
interpretation of protein structures based on graph theory and
contact map,” Open Access Bioinformatics, vol. 2, pp. 127–137,
2010.

[20] T. Haynes, D. Knisley, E. Seier, and Y. Zou, “A quantitative
analysis of secondary RNA structure using domination based
parameters on trees,” BMC Bioinformatics, vol. 7, article 108,
2006.

[21] RAG: RNA-As-Graphs, http://www.biomath.nyu.edu/.
[22] D. Knisley and J. Knisley, “Predicting protein-protein interac-

tions using graph invariants and a neural network,” Computa-
tional Biology and Chemistry, vol. 35, no. 2, pp. 108–113, 2011.

[23] D.West, Introduction to GraphTheory, Prentice Hall, New York,
NY, USA, 1996.

[24] J. Bondy and U. S. R. Murty,GraphTheory, Springer, New York,
NY, USA, 2010.

[25] M. Charton and B. I. Charton, “The structural dependence of
amino acid hydrophobicity parameters,” Journal of Theoretical
Biology, vol. 99, no. 4, pp. 629–644, 1982.

[26] J. Kyte and R. F. Doolittle, “A simple method for displaying
the hydropathic character of a protein,” Journal of Molecular
Biology, vol. 157, no. 1, pp. 105–132, 1982.

[27] H. A. Lewis, C. Wang, X. Zhao et al., “Structure and dynamics
of NBD1 from CFTR characterized using crystallography and
hydrogen/deuterium exchange mass spectrometry,” Journal of
Molecular Biology, vol. 396, no. 2, pp. 406–430, 2010.

[28] The Protein Databank, http://www.pdb.org/.
[29] I-TASSER, http://zhanglab.ccmb.med.umich.edu/I-TASSER/.
[30] MATLAB, http://www.mathworks.com/products/matlab/in-

dex.html.
[31] D. Bonchev and D. H. Rouvray, Chemical GraphTheory:Theory

and Fundamentals, Gordon and Breach, New York, NY, USA,
1991.



Computational Biology Journal 9

[32] N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton,
Fla, USA, 2nd edition, 1992.

[33] H. Yu, B. Burton, C. Huang et al., “Ivacaftor potentiation of
multiple CFTR channels with gating mutations,” Journal of
Cystic Fibrosis, vol. 11, no. 3, pp. 237–245, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Anatomy 
Research International

Peptides
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Molecular Biology 
International 

Genomics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Signal Transduction
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Evolutionary Biology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Biochemistry 
Research International

Archaea
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Genetics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporation
http://www.hindawi.com

Nucleic Acids
Journal of

Volume 2014

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Enzyme 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Microbiology


