
Hindawi Publishing Corporation
ISRN Operations Research
Volume 2013, Article ID 948541, 9 pages
http://dx.doi.org/10.1155/2013/948541

Research Article
A Heuristic Approach to 𝑛 × 𝑚 Flow Shop Scheduling
Problem in Which Processing Times Are Associated with
Their Respective Probabilities with No-Idle Constraint

Deepak Gupta and Harminder Singh

Department of Mathematics, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133-207, India

Correspondence should be addressed to Harminder Singh; harminder.cheema85@gmail.com

Received 20 June 2013; Accepted 30 July 2013

Academic Editors: P. Ekel and X.-M. Yuan

Copyright © 2013 D. Gupta and H. Singh. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper is an attempt to study general 𝑛 × 𝑚 flow shop scheduling problem in which processing time of jobs is associated with
probabilities under no-idle constraint. The objective of this paper is to develop a heuristic algorithm to 𝑛 ×𝑚 flowshop scheduling
so that no machine remains idle during working for any given sequence of jobs. The proposed algorithm is simple, and easy to
understand and provides an important tool in many practical situations for minimizing the expected hiring cost of the machines
for a fixed sequence of job processing. A numerical illustration is also given to justify the proposed algorithm.

1. Introduction

In flow shop scheduling problems, the objective is to obtain
a sequence of jobs which when processed on the machines
will optimize some well-defined criteria. Every job will go on
thesemachines in a fixed order ofmachines.The research into
flow shop problems has drawn a great attention in the last
decadeswith the aim to increase the effectiveness of industrial
production. Johnson [1] gave procedure for finding the opti-
mal schedule for 𝑛-jobs, two-machine flow-shop problem
with minimization of the makespan (i.e., total elapsed time)
as the objective. Ignall and Scharge [2] applied Branch and
Bound technique for obtaining a sequence which minimizes
the total flow time. In addition Adiri and Pohoryles [3] eluci-
dated no-idle scheduling to minimize the sum of completion
time. Rajendran and Chaudhuri [4] have given conditions to
obtain a sequence which minimizes total flow time subject
to minimum makespan in a two-stage flow shop problem.
Szwarc [5], Yoshida and Hitomi [6], Anup [7], and so forth,
derived the optimal algorithm for two/three or multistage
flow shop problems taking into account the various con-
straints and criteria. Singh et al. [8] associated probabilities
with processing time and setup time in their studies. Later,
Gupta et al. [9] andGupta and Singh [10] studied 𝑛×2 general
flow shop problem tominimize rental cost under a predefined

rental policy in which the probabilities have been associated
with processing time on each machine and other scheduling
problems by considering various parameters like transporta-
tion, idle/waiting operator, and so forth. Narain and Bagga
[11–13] studied the flow shopproblemwith the objective being
total rental cost. The total rental cost is minimized when idle
time on all the machines is zero.

Under the no-idle situation, machines work continuously
without any break; that is, machines should not remain
idle once they start processing the first job. The no-idle
situation arises in real life world, when machines have to be
hired to complete an assignment. Minimization of the total
expected hiring cost of the machines would be the objective
in these type of situations. The total expected hiring cost of
the machines will be at a minimum when idle times on the
machines areminimum.Hence, the total expected hiring cost
of the machines will be minimum when the idle times of all
the machines are zero and under no-idle situation each
machine is to be hired for time that is equal to the sumof proc-
essing times of all the jobs on it. We are extending the study
done by Gupta Deepak including the concept of no-idle
scheduling by associating probabilities to the processing time
of the jobs. The present paper is an attempt to study the nm
general flow shop scheduling with an objective to develop a
heuristic algorithm such that no machine remains idle.

2 ISRN Operations Research

2. Practical Situation

Many applied and experimental situations exist in our day-to-
day working in factories and industrial production concerns,
and so forth, in which different jobs are processed on various
machines in a fixed order. For example, in a foundry work-
shop, the drawing of iron round, cutting, heating, forging,
machining, finishing, and packing of finished articles have a
fixed order of processing that cannot be altered. Various prac-
tical situations also occur in real life when one has got the
assignments but does not have one’s ownmachine or does not
have enoughmoney or does not want to take risk of investing
huge amount of money to purchasemachine. Under such cir-
cumstances, the machine has to be taken on rent in order to
complete the assignments.Hiring ofmachines is an affordable
and quick solution in various production, which is presently
constrained by the availability of limited funds due to the
recent global economic recession. Hiring enables saving
working capital, gives option for having the equipment, and
allows upgradation to new technology.

3. Notations and Definitions

The various notations used throughout the paper are as fol-
lows:

𝑆: given fixed sequence of jobs,
𝑀𝑗: machine 𝑗, 𝑗 = 1, 2, 3, . . . , 𝑚,
𝑎𝑖,𝑗: processing time of 𝑖th job on machine𝑀𝑗,
𝑝𝑖,𝑗: probability associated to the processing time 𝑎𝑖,𝑗,
𝐴 𝑖,𝑗: expected processing time of 𝑖th job on machine
𝑀𝑗,
𝑡𝑖,𝑗(𝑆): completion time of 𝑖th job of sequence 𝑆 on
machine𝑀𝑗,
𝐼𝑖,𝑗(𝑆): idle time of machine 𝑀𝑗 for 𝑖th job in the
sequence 𝑆,
𝐼
𝐼
𝑖,𝑗(𝑆): idle time of machine 𝑀𝑗 for 𝑖th job in the
sequence 𝑆 when machine𝑀𝑗 starts at latest time 𝐿𝑗.

Definition 1. Completion time of 𝑖th job on machine 𝑀𝑗 is
denoted by 𝑡𝑖,𝑗 and is defined as

𝑡𝑖,𝑗 = max (𝑡𝑖−1,𝑗, 𝑡𝑖,𝑗−1) + 𝑎𝑖,𝑗 × 𝑝𝑖,𝑗 for 𝑗 ≥ 2,

= max (𝑡𝑖−1,𝑗, 𝑡𝑖,𝑗−1) + 𝐴 𝑖,𝑗,
(1)

where 𝐴 𝑖,𝑗 = expected processing time of 𝑖th job on machine
𝑗.

Definition 2. Completion time of 𝑖th job on machine 𝑀𝑗
when𝑀𝑗 starts processing jobs at time 𝐿𝑗 is denoted by 𝑡𝐼𝑖,𝑗
and is defined as

𝑡
𝑖
𝑖,𝑗 = 𝐿𝐽

𝐼

∑

𝐾=1

𝐴𝐾,𝑗 =

𝐼

∑

𝐾=1

𝐼𝑘,𝑗 +

𝐼

∑

𝐾=1

𝐴𝑘,𝑗,

𝐼𝑖,𝑗 = max (𝑡𝑖,𝑗−1 − 𝑡𝑖−1,𝑗, 0) for 𝑗 ≥ 2.

(2)

Also,

𝑡
𝑖
𝑖,𝑗 = max (𝑡𝑖,𝑗, 𝑡

𝑖
𝑖−1,𝑗) + 𝐴 𝑖,𝑗. (3)

Theorem3. The time at whichmachine𝑀𝑟 should be taken on
rent (or starts processing jobs) to have zero idle time on𝑀𝑟 is

𝐻𝑟 = max
1≤𝑘≤𝑛
{𝑌𝑘} , 𝑟 = 2, 3, . . . , 𝑚 (4)

where

𝑌𝑘 = 𝑡
𝑙
(𝑘,𝑟−1) −

𝑘−1

∑

𝑖=1

𝑝𝑖,𝑟𝑋𝑎𝑖𝑟 for 𝑘 > 1,

𝑌𝑘 = 𝑡
𝑙
𝑘,𝑟−𝐼 −

𝑘−1

∑

𝑖=1

𝐴 𝑖𝑟,

𝑌1 = 𝑡
𝑙
(1,𝑟−1).

(5)

Proof. Proof is based on mathematical induction. It will be
shown that if machine𝑀𝑟 starts processing jobs at time 𝐻𝑟,
then the idle time of𝑀𝑟 is zero as

For 𝑟 = 2,
𝐻2 = max1≤𝑘≤𝑛{𝑌𝑘}
Let 𝑌𝑞 = max1≤𝑘≤𝑛{𝑌𝑘}
Therefore, 𝑌𝑞 ≥ 𝑌𝑘 for 𝑘 = 1, 2, 3, . . . , 𝑛.
For 𝑘 = 1, 𝑌𝑞 ≥ 𝑌1
Which implies𝐻2 ≥ 𝑡

𝑙
(1,1) or

𝑡
𝑙
(1,1) ≤ 𝐻2. (6)

From (6), if machine𝑀2 is taken on rent at time 𝐻2, then it
will start processing the first job without waiting. Therefore,
idle time of machine 𝑀2 for first job is zero when it starts
processing jobs at time𝐻2 as

𝑌𝑞 ≥ 𝑌𝑘 for 𝑘 = 2, 3, . . . , 𝑛.

𝑌𝑞 ± ∑
𝑘−1
𝑖=1 𝐴 𝑖,2 ≥ 𝑌𝑘 + ∑

𝑘−1
𝑖=1 𝐴 𝑖,2

that is𝐻2 + ∑
𝑘−1
𝑖=1 𝐴 𝑖,2 ≥ 𝑡

𝑙
(𝑘,1) − ∑

𝑘−1
𝑖=1 𝐴 𝑖,2 + ∑

𝑘−1
𝑖=1 𝐴 𝑖,2

that is 𝑡𝑙(𝑘−1,2) ≥ 𝑡
𝑙
(𝑘,1) or

𝑡
𝑙
(𝑘,1) ≤ 𝑡

𝑙
(𝑘−1,2) for 𝑘 = 2, 3, . . . , 𝑛. (7)

Therefore, 𝐼𝑙(𝑘,2) = max[𝑡𝑙(𝑘,1) − 𝑡
𝑙
(𝑘−1,2), 0].

From (7),

𝐼
𝑙
(𝑘,2) = 0 for 𝑘 = 2, 3, . . . , 𝑛.
Therefore, the result holds for 𝑟 = 2.
Let the result hold for 𝑟 = 5.
Now we will also show that the result is also true for
𝑟 = 𝑠 + 1.

ISRN Operations Research 3

But

𝐻𝑠+1 = max1≤𝑘≤𝑛{𝑌𝑘}.
Let 𝑌𝑡 = max1≤𝑘≤𝑛{𝑌𝑘}.

Therefore, 𝑌𝑡 ≥ 𝑌1, that is,𝐻𝑠+1 ≥ 𝑡
𝑙
(𝑠,1)

𝑡
𝑙
(𝑠,1) ≤ 𝐻𝑠+1. (8)

From (8), if machine𝑀𝑠+1 is taken on rent at time𝐻𝑠+1, then
it will start processing the first job without waiting.Therefore,
idle time ofmachine𝑀𝑠+1 for the first job is zerowhen it starts
processing jobs at time𝐻𝑠+1.

For 𝑘 = 2, 3, . . . , 𝑛.
𝑌𝑡 ≥ 𝑌𝑘

which implies 𝑌𝑡 + ∑
𝑘−1
𝑖=1 𝐴 𝑖,𝑠+1 ≥ 𝑌𝑘 + ∑

𝑘−1
𝑖=1 𝐴 𝑖,𝑠+1

𝐻𝑠+1 +∑
𝑘−1
𝑖=1 𝐴 (𝑖,𝑠+1) ≥ 𝑡

𝑙
(𝑘,𝑠) −∑

𝑘−1
𝑖=1 𝐴 𝑖,𝑠+1 +∑

𝑘−1
𝑖=1 𝐴 𝑖,𝑠+1

which implies
𝑡
𝑙
(𝑘−1,𝑠+1) ≥ 𝑡

𝑙
(𝑘,𝑠)

𝑡
𝑙
(𝑘,𝑠) ≤ 𝑡

𝑙
(𝑘−1,𝑠+1) for 𝑘 = 2, 3, . . . , 𝑛. (9)

Therefore, 𝐼𝑙(𝑘,𝑠+1) = max[𝑡𝑙(𝑘,𝑠) − 𝑡
𝑙
(𝑘−1,𝑠+1), 0]

From (9),
𝐼
𝑙
(𝑘,𝑠+1) = 0 for 𝑘 = 2, 3, . . . , 𝑛.
Therefore, the result is true for 𝑟 = 𝑠 + 1 also.

Assumptions. (1) No machine processes more than one job at
a time.

(2) Preemption of jobs is not allowed.
(3) Machines never breakdown during the scheduling

process.
(4) Each job is processed through each of the machines

once and only once.
(5) All the jobs and the machines are available at the

beginning of the processing.
(6) Jobs are independent of each other.

4. Algorithm

The algorithm given in this paper provides the procedure to
determine the times at which machines should be hired so
that the idle time becomes zero, minimizing total expected
hiring cost under the given policy.

Step 1. Calculate the expected processing time𝐴 𝑖,𝑗 = 𝑎𝑖,𝑗×𝑝𝑖,𝑗;
for all 𝑖, 𝑗 = 1, 2, 3, . . . , 𝑚.

Step 2. For the fixed given sequence 𝑆, prepare the in-out
table for the machine pair (𝑀𝑗,𝑀𝑗+1), 𝑗 = 1, 2, 3, . . . , 𝑚−1 as
two-machine flow shop sequence problem.

Step 3. Compute𝐾𝑗+1 for themachine pair (𝑀𝑗,𝑀𝑗+1) by the
formula

𝐾𝑗+1 = 𝑡𝑛,𝑗+1 −

𝑛

∑

𝑖=1

𝐴 𝑖,𝑗+1, 𝑗 = 1, 2, 3, . . . , 𝑚 − 1. (10)

Step 4. Calculate latest time 𝐿𝑗 for the machine pair
(𝑀𝑗,𝑀𝑗+1) by the formula

𝐻𝑗 = 𝐻𝑗−1 + 𝐾𝑗; 𝑗 = 3, 4, 5 . . . 𝑚 − 1,

𝐻2 = 𝐾2, 𝐻1 = 0.

(11)

Step 5. Prepare the in-out table for the machines with latest
times 𝐿𝑗; the idle time is zero for all machines.

5. Fuzzy Logic Engine

Thecalculations have been done using C++ programby using
different values of processing times and probabilities (Algo-
rithm 1). Based on the results, fuzzy logic engine has been
formed in MATLAB fuzzy logic toolbox.The fuzzy logic rule
base is based on the results generated from the C++ program.
The membership function values and fuzzy rules are formed
on the base of data generated from C++ program. Figure 1
shows the fuzzy logic system which consists of two inputs:
processing time and probability and three output variables
namely,𝐻2,𝐻3, and𝐻4. Figure 2 illustrates the membership
functions for input processing time. Figure 3 illustrates the
membership functions for input probability. Figure 4 illus-
trates themembership functions for output𝐻3. Figure 5 illus-
trates firing of the rule base.

5.1. Surfaces. The control surface for output 𝐻2 is shown in
Figure 6. The control surface for output 𝐻3 is shown in Fig-
ure 7. The control surface for output𝐻4 is shown in Figure 8.

6. Numerical Illustration

Consider a 5-job, 4-machine sequencing problem whose
processing times with their corresponding probabilities given
in the Table 1.

Here, our objective is to obtain the latest time of the
machines so that no machine remains idle.

Expected processing times are given in Table 2.
For the pair (𝑀1,𝑀2), the in-out table is shown in Table 3

as

𝐾2 = 𝑡𝑛,2 −

5

∑

𝑖=1

𝐴 𝑖,2 = 49 − 34 = 15. (12)

𝐻2 = 𝐾2 = 15 units and also we have𝐻1 = 0.
For the pair (𝑀2,𝑀3), the in-out table is shown in Table 4

as

𝐾3 = 𝑡5,3 −

5

∑

𝑖=1

𝐴 𝑖,3 = 35 − 21 = 14,

𝐻3 = 𝐻2 + 𝐾3 = 15 + 14 = 29.

(13)

4 ISRN Operations Research

#include<stdio.h>
#include<conio.h>

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ variable declaration ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//
static int job machine[5][4]; //to store jobs time for machines
float job prob[5][4]; // to tore jobs probability for machine
float exp pro time[5][4]; // to store expacted processing time
float m1m2[5][4],m2m3[5][4],m3m4[5][4];
float k2,k3,k4;
float h1,h2,h3,h4;
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗ end variable declaration ∗∗∗∗∗∗∗∗∗∗∗∗∗∗//
void get job machine() //function to get jobs time and probabiity for machine
{int i,j;/∗
int arr[5][4]={10,40,5,20,25,30,20,40, 20,20,20,10, 30,5,25,40, 20,30,20,20};
float arr2[5][4]={0.2,0.1,0.2,0.4,0.2,0.1,0.2,0.1, 0.1,0.3,0.2,0.3, 0.3,0.4,0.2,0.1, 0.2,0.1,0.2,0.1, };
for(i=0;i<5;i++) { for(j=0;j<4;j++) { job machine[i][j]=arr[i][j]; job prob[i][j]=arr2[i][j];} }
∗/printf(“\nEnter 5 Jobs Time & Probability for 4 Machines: ”);
for (i=0;i<5;i++){for(j=0;j<4;j++){printf(“\n\n Enter Job [%d] Time for Machine [%d]:
”,i+1,j+1);scanf(“%d”,&job machine[i][j]);
printf(“\n\n Enter Job [%d] Probability for Machine [%d]: ”,i+1,j+1);
scanf(“%f”,&job prob[i][j]);}}}
// end of get job marchine function//
void put job machine() //function to show jobs time and probabiity for machine
{int i,j;
printf(“\n\t Machine1\t Machine2\t Machine3\t Machine4\n”);
printf(“\nJobs\tTime\tProb.\tTime\tProb.\tTime\tProb.\tTime\tProb.”);
for(i=0;i<5;i++)
{printf(“\n\n[%d]”,i+1);
for(j=0;j<4;j++){printf(“\t%d\t%.1f ”,job machine[i][j],job prob[i][j]);}}}
// end of Put job marchine function//
void get exp pro time() // function to calculatig expected processing time
{int i,j;for(i=0;i<5;i++)
{for(j=0;j<4;j++){exp pro time[i][j]=job machine[i][j]∗job prob[i][j];}}}
// end of get exp pro time function//
void put exp pro time() // function to showing expected processing time
{int i,j;
printf(“\n\nExpected Proessing Time: -”);
printf(“\n\nJobs\t Machine1\t Machine2\t Machine3\t Machine4\n”);for(i=0;i<5;i++)
{printf(“\n\n[%d]”,i+1);for(j=0;j<4;j++)
{printf(“\t\t%.1f ”,exp pro time[i][j]);}}}
// end of Put exp pro time function//
void get in out table() // function to calculating In Out Table for maching
{int i;float p1,p2;// Machine m1-m2p1=0.0;p2=0.0;for(i=0;i<5;i++)
{m1m2[i][0]=p1;m1m2[i][1]=exp pro time[i][0]+p1;p1=m1m2[i][1];
if(p2>p1)m1m2[i][2]=p2;elsem1m2[i][2]=p1;
m1m2[i][3]=m1m2[i][2]+exp pro time[i][1];p2=m1m2[i][3];}
// Machine m2-m3p1=0.0;p2=0.0;for(i=0;i<5;i++)
{m2m3[i][0]=p1;m2m3[i][1]=exp pro time[i][1]+p1;
p1=m2m3[i][1];if(p2>p1)m2m3[i][2]=p2;
elsem2m3[i][2]=p1;m2m3[i][3]=m2m3[i][2]+exp pro time[i][2];
p2=m2m3[i][3];}
// Machine m3-m4p1=0.0;p2=0.0;for(i=0;i<5;i++)
{m3m4[i][0]=p1;m3m4[i][1]=exp pro time[i][2]+p1;
p1=m3m4[i][1];if(p2>p1)m3m4[i][2]=p2;
elsem3m4[i][2]=p1;m3m4[i][3]=m3m4[i][2]+exp pro time[i][3];
p2=m3m4[i][3];}}
// end of get in out table function//
void put in out table() // function to showing In Out Table for maching
{int i,j;
printf(“\n\nIn-Out Table: -”);
printf(“\n\nJobs M1-M2 M2-M3 M3-M4\n”);

Algorithm 1: Continued.

ISRN Operations Research 5

for(i=0;i<5;i++)
{printf(“\n\n%d ”,i+1);for(j=0;j<4;j++)
{if(j==1 ‖ j==3)
printf(“-”);else
printf(“ ”);
printf(“%4.1f ”,m1m2[i][j]);if(j==3)
printf(“ %c”,179);}
for(j=0;j<4;j++)
{if(j==1 ‖ j==3)
printf(“-”);else
printf(“ ”);
printf(“%4.1f ”,m2m3[i][j]);if(j==3)
printf(“ %c”,179);}for(j=0;j<4;j++)
{if(j==1 ‖ j==3)
printf(“-”);else
printf(“ ”);
printf(“%4.1f ”,m3m4[i][j]);if(j==3)
printf(“ %c”,179);}}}
// end of Put in out table function//
void final()
{int i;float sum=0.0;for(i=0;i<5;i++)sum=sum+exp pro time[i][1];
k2=m1m2[4][3]-sum;sum=0.0;
for(i=0;i<5;i++)sum=sum+exp pro time[i][2];k3=m2m3[4][3]-sum;
sum=0;for(i=0;i<5;i++)sum=sum+exp pro time[i][3];k4=m3m4[4][3]-sum;
h1=0;h2=k2;h3=h2+k3;h4=h3+k4;
printf(“\n\nK2\tK3\tK4\tH1\tH2\tH3\tH4”);
printf(“\n\n%.1f\t%.1f\t%.1f\t%.1f\t%.1f\t%.1f\t%.1f ”,k2,k3,k4,h1,h2,h3,h4);}
void main()
{clrscr();getch();get job machine();put job machine();getch();
get exp pro time();put exp pro time();getch();get in out table();
put in out table();getch();final();getch();}

Algorithm 1: C++ program for given problem.

Figure 1

6 ISRN Operations Research

Figure 2

Figure 3

Figure 4

ISRN Operations Research 7

Figure 5

Figure 6

Table 1: The machines with processing time and corresponding
probabilities.

Jobs
𝑖

𝑀1 𝑀2 𝑀3 𝑀4

𝑎𝑖,1 𝑝𝑖,1 𝑎𝑖,2 𝑝𝑖,2 𝑎𝑖,3 𝑝𝑖,3 𝑎𝑖,4 𝑝𝑖,4

1 20 0.2 50 0.1 10 0.2 30 0.4
2 10 0.2 40 0.1 20 0.2 80 0.1
3 30 0.1 30 0.3 30 0.2 10 0.3
4 30 0.3 20 0.4 40 0.2 20 0.1
5 30 0.2 80 0.1 5 0.2 20 0.1

Table 2: Expected processing times.

Jobs
𝑖

𝑀1 𝑀2 𝑀3 𝑀4

𝐴 𝑖,1 𝐴 𝑖,2 𝐴 𝑖,3 𝐴 𝑖,4

1 4 5 2 12
2 2 4 4 8
3 3 9 6 3
4 9 8 8 2
5 6 8 1 2

Table 3: The in-out table for machines𝑀1 and𝑀2.

Jobs 𝑀1 𝑀2

𝐴 𝑖,1 𝐴 𝑖,2

1 0–4 4–9
2 4–6 9–13
3 6–9 13–22
4 9–18 33–41
5 18–24 41–49

Table 4: The in-out table for machines𝑀2 and𝑀3.

Jobs
𝑖

𝑀2 𝑀3

𝐴 𝑖,2 𝐴 𝑖,3

1 0–5 5–7
2 5–9 9–13
3 9–18 18–24
4 18–26 26–34
5 26–34 34-35

8 ISRN Operations Research

Figure 7

Figure 8

Table 5: The in-out table for machines𝑀3 and𝑀4.

Jobs 𝑀3 𝑀4

𝐴 𝑖,3 𝐴 𝑖,4

1 0–2 2–14
2 2–6 14–22
3 6–12 22–25
4 12–20 25–27
5 20-21 27–29

For the pair (𝑀3,𝑀4) the in-out table is shown in Table 5 as

𝐾4 = 𝑡5,4 −

5

∑

𝑖=1

𝐴 𝑖,4 = 2,

𝐻4 = 𝐻3 + 𝐾4 = 29 + 2 = 31.

(14)

The in-out table for themachines with idle time zero is shown
in Table 6.

Hence, we conclude that no machine remains idle.

Table 6: In-out table.

Jobs 𝑀1 𝑀2 𝑀3 𝑀4

𝐴 𝑖,1 𝐴 𝑖,2 𝐴 𝑖,3 𝐴 𝑖,4

1 0–4 15–20 29–31 31–43
2 4–6 20–24 31–35 43–51
3 6–9 24–33 35–41 51–54
4 9–18 33–41 41–49 54–56
5 18–24 41–49 49-50 56–58

7. Conclusion

The proposed algorithm provides the latest time at which
processing of jobs on second, thired, and so on𝑚th machine
must be started such that these machines work continuously
without any break until the last job is completed on them.
The first machine has no idle time and, hence, works con-
tinuously; that is, the proposed algorithm helps the decision
makers in determining the best latest time at whichmachines
should be hired for a given set of jobs so as to minimize the
total expected hiring cost with no-idle constraint. The study
may be extended by introducing concepts of independent

ISRN Operations Research 9

setup time, transportation time, job block criteria, and non-
availability constraints of machines for a certain interval of
time.

References

[1] S. M. Johnson, “Optimal two and three stage production sched-
ule with setup times included,” Naval Research Logistics Quar-
terly, vol. 1, pp. 61–68, 1954.

[2] E. Ignall and L. Scharge, “Application of branch and bound tech-
nique to some flow shop scheduling problems,” Operation
Research, vol. 13, pp. 400–412, 1965.

[3] I. Adiri and D. Pohoryles, “Flowshop/no-idle or no-wait sched-
uling tominimize the sum of completion times,”Naval Research
Logistics Quarterly, vol. 29, no. 3, pp. 495–504, 1982.

[4] C. Rajendran and D. Chaudhuri, “An efficient heuristic
approach to the scheduling of jobs in a flowshop,” European
Journal of Operational Research, vol. 61, no. 3, pp. 318–325, 1992.

[5] W. Szwarc, “Special cases of the flow-shop problem,” Naval
Research Logistics Quarterly, vol. 24, no. 3, pp. 483–492, 1977.

[6] T. Yoshida and K. Hitomi, “Optimal two-stage production
scheduling with setup times separated,” AIIE Transactions, vol.
11, no. 3, pp. 261–263, 1979.

[7] Anup, “On twomachine flow shop problem inwhich processing
time assume probabilities and there exists equivalent for an
ordered job bloc,” Journal of the Indian Society of Statistics and
Operations Resear, vol. 23, pp. 41–44, 2002.

[8] T. P. Singh, K. Rajindra, and G. Deepak, “Optimal three stage
production schedule the processing time and set up times asso-
ciated with probabilities including job block criteria,” in Pro-
ceedings of National Conference FACM, pp. 463–470, 2005.

[9] D. Gupta, T. P. Singh, and R. Kumar, “Minimizing rental cost
in two stage flow shop, the processing time associated with
probabilities including job block,” Reflections de ERA, vol. 1, no.
2, pp. 107–120, 2006.

[10] D. Gupta and H. Singh, “The idle/waiting time operator with
applications tomultistage flow shop scheduling tominimize the
rental cost under specified rental policy where processing times
are associated with probabilities including transportation time,”
Industrial Engineering Letters, vol. 2, no. 3, pp. 61–70, 2012.

[11] L. Narain and P. C. Bagga, “Minimizing total elapsed time sub-
ject to zero total idle time of machines in n × 3 flowshop
problem,” Indian Journal of Pure and Applied Mathematics, vol.
34, no. 2, pp. 219–228, 2003.

[12] L. Narain and P. C. Bagga, “Flowshop/no-idle scheduling to
minimise the mean flowtime,” ANZIAM Journal, vol. 47, no. 2,
pp. 265–275, 2005.

[13] L. Narian and P. C. Bagga, “Scheduling problems in rental situa-
tion,” Bulletin of Pure and Applied Sciences: Section E, vol. 24,
2005.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

