
Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2013, Article ID 952178, 13 pages
http://dx.doi.org/10.1155/2013/952178

Research Article
A Granular Hierarchical Multiview Metrics
Suite for Statecharts Quality

Mokhtar Beldjehem

University of Ottawa, School of Information Technology and Engineering, 800 King Edward, Ottawa, ON, Canada K1N 6N5

Correspondence should be addressed to Mokhtar Beldjehem; mbeldjeh@uottawa.ca

Received 30 March 2013; Revised 7 June 2013; Accepted 7 June 2013

Academic Editor: Phillip A. Laplante

Copyright © 2013 Mokhtar Beldjehem.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a bottom-up approach for a multiview measurement of statechart size, topological properties, and internal
structural complexity for understandability prediction and assurance purposes. It tackles the problem at different conceptual depths
or equivalently at several abstraction levels. The main idea is to study and evaluate a statechart at different levels of granulation
corresponding to different conceptual depth levels or levels of details. The higher level corresponds to a flat process view diagram
(depth = 0), the adequate upper depth limit is determined by the modelers according to the inherent complexity of the problem
under study and the level of detail required for the situation at hand (it corresponds to the all states view). For purposes of
measurement, we proceed using bottom-up strategy starting with all state view diagram, identifying and measuring its deepest
composite states constituent parts and then gradually collapsing them to obtain the next intermediate view (we decrement depth)
while aggregating measures incrementally, until reaching the flat process view diagram. To this goal we first identify, define, and
derive a relevant metrics suite useful to predict the level of understandability and other quality aspects of a statechart, and then we
propose a fuzzy rule-based system prototype for understandability prediction, assurance, and for validation purposes.

1. Introduction

Thepopular view of quality is still that of a subjective concept
which perpetuates the idea that the more elaborate and com-
plex product somehow offers a higher level of quality than
its humbler counterpart. Whilst this misconception is well
understood amongst “quality” professionals, the temptation
remains to equate sophistication, instead of simplicity of
function, with quality.

The term software crisis was coined in the late 1960
(NATO conference held in Garmisch-Partenkirchen, Ger-
many, in 1968) [1] to refer to problems associated with
software projects. These included budget and schedule over-
runs and problems with the quality and reliability of the
delivered software. Software quality has been described as a
complex and multifaceted concept, which basically means
that it means different things to different people. Current
approaches to assuring and measuring software quality are
predominantly process based rather than product based.There
are two major wrong assumptions here: (1) if we look after
the process the product will look after itself, (2) quality

must be built in the product (can only be assessed when
complete and difficult to alter). These approaches allow
the delivery of poor quality software in spite of seemingly
wonderful quality management systems. As a result, the
product may function far from smoothly, rating badly on a
variety of quality attributes. Certainly those approaches were
influenced by the manufacturing-based viewpoint of quality,
and probably themain reason for this emphasis on procedure
was based on thewrong assumption that the software product
is notoriously difficult to assess for quality whereas the
process appears much more amenable. So far, quality still
an elusive feature of a software product and poor software
quality continues to be an issue and a recurring theme in
software development. Software quality aspects are captured
as nonfunctional requirements and constraints, and thus on
the contrary to functional requirement they are difficult to
test. A design that fulfills all functional requirements but fails
to meet nonfunctional requirement is not a valid design.

The essence of engineering quality software is to inves-
tigate the relationships among in-process metrics, project
characteristics, and intermediate work products quality, and,



2 Advances in Software Engineering

based on the findings, to engineer improvement in both pro-
cess and product. Obviously, one needs procedures aimed
at continually improving both process and product quality.
A key point is that product as well as process metrics are
essential if we wish to detect problems early in the devel-
opment lifecycle, before they get out hand. Metrics thus can
serve as early warning systems for potential problems. In
order to achieve true indication of quality the intermediate
work products must be subjected to measurement; that is,
the internal attributes of quality must be related to specific
external product quality requirements and quantified.

Software measurement during product development con-
jointly coupledwith quality evaluation, prediction, and analy-
sis of intermediate work products (or artifacts) at early stages
of software development could detect modeling and design
flaws, pinpoint potential trouble-spots, give advance warning
of potential risks for focused remedial actions, provide clues
that can lead to specific actions for improvement, provide
semiautomated help to make informed design decisions in
process, ease software design, guide the designer toward the
most effective design, and could ensure a preventive main-
tenance layer (maintenance performed for the purpose of
preventing problems before they occur), thereby improving
the quality of software while reducing the cost of producing
and maintaining software. This will materialize the idea of
design for quality. Metrics need to be used throughout the
development life cycle to gauge work products quality. How
to approach such kind of measurement? How does one select
the right metrics to gauge work products quality? Do metrics
always suffice? Can metrics be selected from a bucket, or
designed, allowing you to determine whether or not your
work products satisfies your customers’ quality requirement
as they are expressed by their quality attribute set? What
pitfalls to avoid in the process?

Modelers, as fallible humans with limited cognition,
rarely, if ever, develop a perfect model to a complex problem
on the first attempt. At best, they can hope for a crude
beginning that through iteration and guided measurement,
they can gradually refine and improve. To practice effective
iteration, we must conceive models that are easy to create,
easy to measure, easy to understand, and easy to revise.
Iteration-based measurement is a practical reality.

Measurement-driven predictive models are good candi-
dates to establish predictive causal relationships between
external quality aspects and other internal indicator metrics
based on historical data, provide early predictions of quality,
and identify problems early so that timely actions can be
taken to improve product quality, enabling software man-
agers to prioritize and to better allocate resources. Product
metrics are often used to predict various quality attributes
of software products, such as maintainability, testability,
changeability, and error-proneness. Various statistical analysis
techniques and learning algorithms can be used to engineer
and build such predictive models.The rational andmain idea
is that quality cannot be tested in a final product but must
be built into its associated intermediate work products. The
main goal is to help ensure that the right system is built and
that it is built right.

This paper differs fromother software quality approaches,
because the paper’s philosophy is that quality is at heart
a technical problem (at least from the software engineer’s
perspective). Management plays a role by creating the right
environment and adopting and conforming to standards, but
the real attributes or aspects of quality, for example, simplicity,
maintainability, testability, stability, usability, understandabil-
ity, reusability, reliability, and modifiability and, the so-called
“-ilities,” are in the hands of the technical people. Design
of software that is of high quality, easily extensible, and
reusable is key requirements of any software project. Amodel-
driven programming environment (such as Umple) has been
touted as a promising emerging technique for achieving these
software development goals, due to the possibility of code
generation and reusability at the higher level of amodel rather
than at the level of executable code. As a result, modeling
gains new importance and great visibility and scope of appli-
cability in the context of model driven development (MDD).
From modeling perspective understandability of the design
is an important issue; some design choices may create very
efficient systems butmight be difficult to grasp (i.e., are unun-
derstandable) and thus should be avoided. Amodel should be
accurate, easy to create, easy to understand, and easy to revise.

In this paper we examine aspects of statecharts quality
and more specifically those connected to measuring, evalu-
ating, predicting, analyzing, and assuring understandability
of a statechart (the ease with which one might comprehend
the inner workings as well as the behavior conveyed by a
statechart at several levels of details) in order to restructure
it, to fine-tune it, to refine it, to rework it, and/or to
maintain it properly. As statecharts become increasingly
large and complex, the need increases to predict and con-
trol their understandability. Statechart understandability is
closely related to simplicity, transparency, compactness, con-
ciseness, self-descriptiveness, structuredness, communica-
tiveness,modularity and even resilience to change. Simplicity,
keeps one’smodel understandable-A simplemodel is easier to
understand, to test, to maintain and takes less development
effort, this is known as the “law of simplicity.” The main
goal is to devise a statechart exhibiting the desired level of
understandability. One has to design all software artifacts
from inception to deployment with the understandability in
mind. More specifically, we propose to investigate the issue
of understandability from the angle of softwaremeasurement
and from the modeler’s viewpoint.

This paper is organized as follows. Section 2 surveys the
related literature. Section 3 reviews briefly the statecharts
visual formalism and introduces the idea of statecharts with
measurable structure or topology. Section 4 describes and
analyzes statecharts quality aspects. Section 5 proposes a
granular framework for statecharts structural complexity
and size metrics and then using the Goal-Question-Metric
(GQM) paradigm defines a metrics suite for size, topolog-
ical properties, and structural complexity of a statechart.
Section 6 describes a fuzzy rule-based prediction system that
might be used for validation purposes. Section 7 attempts
to draw some conclusions and to suggest some research
directions.



Advances in Software Engineering 3

2. Related Work

The importance of a statechart model to be understandable
to the software engineer (modeler, programmer, tester, and
maintainer) is widely acknowledged in the software industry.
To this goal, several approaches to assess and improve
readability and understandability were attempted, and they
broadly fall into three key categories: the proposal of new
metrics for UML statechart diagrams, automatic layout of
statecharts, and UML styles or diagramming guidelines.

In the first category, there have been a number of recent
attempts at defining and validating metrics for UML State-
chart. Metrics for behavioral models can be traced back to
Derr [2], and a first proposal for transition complexitymetrics
such number of states, number of transitions, was described
in connection with the OMT methodology Rumbaugh et al.
[3].

Poels and Dedene [4] proposed structural metrics for
event-driven object-oriented models. A metrics suite was
defined based on the size, the structure, the dynamic behavior
and the distance for object-oriented conceptual schemes.

Cartwright and Shepperd [5] proposed metrics and
applied them to a software system of a telecommunication
company and described an empirical investigation into an
industrial object-oriented (OO) system comprising 133,000
lines of C++. The system was a subsystem of a telecommuni-
cations product and was developed using the Shlaer-Mellor
method.They use 13 metrics (9 internal for the analysis phase
and other 4 external that are all readily available early in the
analysis and design stage) to build a prediction system for the
size and defect density based on linear regression.

Carbone and Santucci [6] proposed metrics exploiting
UML diagrams for effort estimation using the class complex-
ity of an object oriented system. They defined metrics such
as total number of states per class, total number of actions
per class, and number of association per class For each class
a class point (CP) value is computed, and CPs of all classes
are aggregated in the use case, statechart, and interaction
diagrams to compute the overall complexity of the system and
estimate the project size.

Most notably is the work of Cruz-Lemus et al. [7], which
also focused onmetrics for statecharts diagrams andprovided
statistical validation of statecharts diagrams for understand-
ability.They conclude the preliminary investigationmention-
ing that metrics such as number of activities, number of
simple states, number of guards, and number of transitions
seem to be highly correlated with the understanding of UML
statechart diagrams.

In the second category as in Castelló et al. [8], layout
and automatic layout of statecharts is another promising
research area devoted to the visualization and presentation
problems of statecharts in graphical editors. This is either
to guide or to relieve the modeler the task and effort of
organizing the statechart layout for readability. Even though
those approaches deal with the presentation rather than the
content, readability is closely related to understandability. An
important issue those techniques must take into account is
usability. Since statecharts need to be understandable and
they must be compatible with the cognitive abilities of

modelers (human being), the quest of tools that support
visualization and navigation mode is needed, in particular
the possibility to focus on a part of the statechart, to
expand/collapse or zoom in/zoom out operations, or to the
availability of an overall navigation map complemented by a
detailed view. Animation too provides a rich environment for
actively exploring statecharts. Multiple, dynamic, and graph-
ical displays of a statechart at different level of details reveal
properties that might otherwise be difficult to comprehend
or even remain unnoticed. Moreover, animation makes it
possible to picture and play with the statechart model.

In the third category, other efforts recommend following
UML styles or diagramming guidelines as proposed by
Ambler [9] (similar to programming guidelines) to increase
the readability and thus the understandability of statechart
diagrams. Within the UML modeling community, there are
some modeling style conventions that have been widely
agreed upon, because following them unequivocally leads to
diagrams that are easier to read, understand, and maintain.

Our work stresses the importance of granular multi-view
measurement of the statechart diagram at different depths
rather than one measurement on a flattened diagram only.
Moreoverwe propose a fuzzy rule-based systemprototype for
understandability prediction, assurance, and for validation
purposes.

3. Statecharts Overview and Statecharts with
Measurable Structure or Topology

Conceptual modeling is the cornerstone of software analysis
anddesign.Models, the products of conceptualmodeling, not
only provide the abstractions required to facilitate mapping
to code and communication between the analysts, program-
mers, testers, maintainers, project managers, stakeholders,
and end users, but they also provide a formal basis for
developing adequately new tools and techniques that will be
used in the software technology. InMDD,models are not only
supplementary artifacts for documentation or communica-
tion, but strict, formal abstractions of the software system
to be developed Mellor [10]. Abstraction is a fundamental
human capability that permits us to cope with complexity.
It is worth stressing herein that modeling as well as meta-
modeling is a core activity that is of utmost importance
bearing in mind that conceptual modeling is by nature an
abstraction and approximation of the reality. Amodel should
contain only the essential and important details.Theprinciple
of “Occam’s Razor” known as the law of parsimony [11, 12]
states that “Entities should not be multiplied unnecessarily.” In
the context of statecharts entitiesmight be states (both simple
and composite), events, transitions, actions, and paths This
principle is used extensively in modeling and in model sim-
plification.The objective is to choose only those entities in the
model which are absolutely necessary to explain the behavior
of the world. Modeling as well as meta-modeling still is more
an art than a science and remains a human activity which is
error-prone. If models are abstractions built to understand a
problem before implementing a solution, first of all they need
to be understandable. Moreover, an ununderstandable model



4 Advances in Software Engineering

is likely to difficult to revise, be difficult to test, and error-
prone and can easily become too complex for humans to cope
with.

As illustrated in Figure 1, there are several aspects of com-
plexity and we broadly distinguish three of them, computa-
tional complexity (algorithmic complexity and concerns effi-
ciency of computations), representational complexity (which
reflects the syntax and semantic of the language used, which
define the soundness of a language design—the absence
of ill-defined statecharts in the UML in our study), and
psychological complexity which is composed of three kinds
of complexity, inherent complexity (or problem functional
or behavioral complexity, which is problem-dependent and
is thus beyond of the control of a modeler), cognitive com-
plexity (the modeler’s cognitive characteristics, limitations
of the human cognition), and structural complexity (prod-
uct/statechart complexity such as size metrics and McCabe’s
cyclomatic complexity metric). We limited the scope of our
study and are interested in our investigation to statechart
structural complexity and in particular at studying statechart
structural metrics.

In general, it is difficult for humans to understand a com-
plex model well. There is one important aspect in modeling;
it is the restriction imposed on us by Miller’s Law or the
magical number seven plusminus 2principle, which stipulates
that due to short-memory capacity limitations at any one
time, we human beings are capable of concentrating on
only approximately seven chunks (unit of information or
granules) [13]. In addition, information held in the short-
term memory decays after 18–30 seconds if not rehearsed
[14]. However, a typical artifact, model, or diagram has far
more than seven chunks. One way we humans handle this
restriction on the amount of information we can handle
at one time is to use stepwise refinement. This provides
clues at devising readable and understandable models. How
does Miller’s work affect statecharts understanding? Every
human (modeler) differs with respect to his or her short-
term memory capabilities and every human differs in how
he or she perceives complexity. Statechart that is complex
fromMiller’s point of view can be several orders ofmagnitude
more difficult to understand. This situation could exaggerate
the individual differences among modelers with respect to
short-term memory. Moreover, human communication and
comprehension in the short-term are primarily sequential in
nature. Obviously, Miller’s Law in connection with modeling
provides clues to a good design heuristic.

Statechart diagrams, in general, are visual formalism for
describing dynamic aspects of complex systems behavior;
they were proposed by Harel [15, 16] to model the control
requirements of complex reactive systems (control-driven, or
event-driven systems in contrary to transformational sys-
tems). Statecharts extend the modeling power of basic finite
state model in several ways to overcome the basic machine’s
scalability and concurrency limitations. Scalability is usually
accomplished by partitioning or hierarchic abstraction. As
described succinctly in [15], “statecharts = state diagrams +
depth + orthogonality + broadcast communication.” That is,
statecharts extend basic state model semantics, adding hier-
archic nesting of states (depth, which reflects the insideness),

Complexity

Computational
complexity

complexity complexity complexity

Psychological
complexity

Representational
complexity

Inherent Cognitive Structural

Figure 1: A Taxonomy of complexity metrics for software.

e[g]/a
sksi

Figure 2: Basic transition in a statechart.

the ability to model two or more independent control strate-
gies (orthogonality, to cope with concurrency), and allowing
any transition output action to generate an internal event
for any other transition (broadcast) that might cause chain
reaction of a any length, that is, an event seen everywhere in
the diagram at the same time. Basically, statecharts add more
expressive power and serve to reduce complexity of state
diagrams by structuring themand avoiding the combinatorial
explosion that has plagued them. They offer a contour-
based notation for state diagrams as a special case of general
diagram notation called higraphs (high graph, hierarchical
graph, or topological graph). State diagrams as well as
statechart diagrams exhibiting high structural complexity can
be rendered less complex through partitioning and hierarchic
decomposition to equivalent statecharts diagrams.The initial
state is shown by a filled circle and the transitions are shown
in the form of e[g]/a. As illustrated in Figure 2, the typical
meaning of the form e[g]/a is that “the transition is taken
when the triggering event e occurs and the guard condition(s)
g holds, this transition results into firing the action(s) a.”

In the context of object-oriented paradigm, statecharts
describe the behaviour of an object. All classes defined in
the class diagram have an associated statechart; each object
behaves according to the statechart associated to its class.
Statecharts represent a natural choice for object behavioral
modeling. This is essentially due to built-in features that
enforce modularity and control complexity. In practice, these
extensions make statecharts suitable in situations where
simple state diagrams would become cluttered. Complex
systems typically contain much redundancy that structuring
mechanisms can simplify.

A state is a particular configuration of the values of data
attributes. What is observable about a state is a difference
in behavior from one state to another; that is, if the same
message is sent to the object twice it may behave differently
depending on the state of the object when the message is
received. A transition, or change, from one state to another
is triggered by an event, which is typically a message arrival.
A guard is a condition that must hold before the transition
can be made. Guards are useful for representing transitions



Advances in Software Engineering 5

to various states based on a single event. An action specifies
processing to be done while the transition is in progress. Each
state may specify an activity to perform while a transition is
in progress.

A state associated with multiples (two or more) outgoing
transitions is called a decision state (or a coordination center)
because a decision ismade at this node to select a transition to
follow in actual execution according to the event that occurs
when this node is active. It is also called a branching state
for obvious reasons. Similarly, a state associated withmultiple
incoming transitions is called a junction state. In a statechart,
typically a state might be simultaneously a disjunction and
junction state. The number of outgoing transitions from a
state reflects the degree of local navigability from it to reach
direct target states.

The notion of a statechart has been adopted and
extended by the Open Management Group (OMG) (http://
www.omg.org/) as one of the specification formalisms of the
Unified Modeling Language (UML) (http://www .uml.org/),
and also by W3C in the form of SCXML (http://www
.w3.org/TR/scxml/) which, was originally targeted at spec-
ifying voice. Statecharts are usually presented in a graph-
ical form, although there are standard “textual” formats,
including SCXML, and XML Metadata Interchange (XMI)
(http://www.oasis-open.org/cover/xmi.html) for UML.

4. Statecharts Quality Aspects

It has become common knowledge that the early identifica-
tion and resolution of potential problems can significantly
reduce development time and cost and at the same time
increase the quality of the overall software product [17, 18].
It is widely accepted that structural diagrams (such as class
diagram) have a great influence on the quality of software.
Several proposals of metrics suites have been proposed in
the literature for such diagrams (class diagrams). However,
there have been little effort directed toward the behavioral
diagrams (use case, statecharts, sequence, and collaboration
diagrams), and as a result they have been relatively over-
looked in the software measurement. MDA (OMG Model-
Driven Architecture) (http://www.omg.org/mda/) has been
a prominent means to enhance the understandability of the
system’s structure and behavior. MDD shifts the focus of
software development from programming tomodeling. It has
prompted industries to develop tools which can generate the
code from the model in high level languages like C, C++,
PHP, or JAVA. Therefore ensuring model’s understandability
becomes highly essential for the software industry.

We point out herein that the definition of new metrics
that capture dynamics aspects of OO is an interesting topic
of investigation. Our focus will be on those related to state-
charts as they constitute inputs to code generators in MDA
environments. In MDA (OMG Model Driven Architecture)
(http://www.omg.org/mda/), assuming that transformation
rules are implemented correctly, predicting as well as eval-
uating the quality of the statechart model becomes a central
issue.

Software quality also depends on one’s point of view; the
criteria relevant for end users in judging software quality

differ from those applied by software engineers who have to
design, develop, test, and maintain software. Based on these
one has to distinguish between external and internal factors of
software quality. According to Boehm [19] understandability
is the extent to which the software is easily comprehended
with regard to purpose and structure, and he pointed out
that the factors influencing maintainability are testability,
understandability, and modifiability.

ISO-9126 (ISO, 2001) [20] provides a hierarchical frame-
work for quality definition, organized into quality charac-
teristics (or factors) and subcharacteristics. As illustrated
in Figure 3, there are six top-level quality characteristics,
with each associated with its own exclusive (nonoverlapping)
sub-characteristics: (1) functionality (suitability, accuracy,
interoperability, and security), (2) reliability (maturity, fault
tolerance, and recoverability), (3) usability (understandabil-
ity, learnability, operability), (4) efficiency (time behavior
and resource behavior), (5) maintainability (analyzability,
changeability, stability, and testability), (6) portability (adapt-
ability, installability, conformance, replaceability). Certain
tradeoffs have to bemade since some factors are synergistic in
nature, and others are potentially conflictive. Thus, increased
efficiency should not be achieved at the price of a lower
understandability.

Usability is defined as a set of attributes that bear on the
effort needed for use, and on the individual assessment of
such use, by a stated or implied set of users.Understandability
is defined as the capability of the software product to enable
the user to understand whether the software is suitable, and
how it can be used for particular tasks and conditions of use.

In the context of statecharts modeling users aremodelers,
coders, testers and maintainers, and even code generators
(codifiers or programs) of particular interest to us herein is
the subcharacteristic understandability of usability charac-
teristic and more specifically understandability of statecharts
diagrams. Intuitively, it is difficult to restructure, rework, and
maintain a statechart diagram whose behavior you do not
understand. A statechart diagram which is simple enough to
understand its behavior is a desirable one. Understandable
statecharts models are more malleable than codes, and
model changeability is not considered an issue and might
be taken for granted. Symptoms of bad statecharts design
might include, to name just few, opacity (i.e., hard to under-
stand), unstructuredness (duplication of transitions, intense
presence of undesirable subtle, pathological transitions, and
highly cluttered and bad structure), complexity, size (i.e.,
large size), rigidity (i.e., hard to change), fragility (i.e., easy
to break), and lack of reusability (hard to reuse), and s.o.
As a good practice, it is worth giving up some performance
on noncritical operations if you can devise and use an
understandable statechart. For this reason we need to fine-
tune and restructure a statechart to ensure the level of desired
understandability. Unless one has a performance problem,
it is not worth doing a lot of optimizing, because one
risks making a model harder to understand. Moreover, a
highly optimized statechart often sacrifices ease of change
and makes a model difficult to maintain the difficulty of
understanding amodel limits its reusability too. It is therefore
important to devise statecharts that exhibit the desired level



6 Advances in Software Engineering

Quality

Functionality Reliability Usability Efficiency Maintainability Efficiency

Understandability Learnability Operability

Figure 3: The software quality hierarchy.

of understandability. Despite this, there are few guidelines on
how to construct understandable statecharts models, and we
notice a lack of tool support in the field too.

The Goal-Question-Metric (GQM) paradigm of Basili
and Rombach [21] (which is in fact just a partial method-
ology) will be adopted and used as approach to metrics
modeling. It is rigorous goal oriented approach to mea-
surement in which goals, questions, and measurement are
closely related.The goals (conceptual level) are first identified,
and then questions (the operational level) that relate to the
achievement of the goal are identified, and for each question
ametric (quantitative level) that gives objective answer to the
particular question is identified. The statement of the goal is
very precise, and the goal is related to individuals or groups.
Consider our study whose goal is the prediction of the quality
and more precisely understandability of statecharts diagrams
through internal quality indicators or measures. There are
several valid questions which may be asked at this stage, and
these are questions which require answers to determine the
extent towhich the understandability is achieved: who are the
involved professional? individuals (such students, professors,
modelers, programmers, testers, and maintainers) that use
the statechart andwhat is their level of experience, Onemight
define a metric level of experience such as average year of
experience. Each question is then analyzed to determine the
best approach to obtain an objective answer to the question
and to identify which metrics are needed and the data that
needs to be gathered to answer the question objectively.
Metrics are the objective measurements to give a quantita-
tive answer to the particular questions. The questions and
measurements are thereby closely related to the achievement
of the goal (understandability of a statechart) and provide
an objective picture of the extent to which the goal is being
satisfied.

The objective of measurement is to improve the under-
standing and prediction of statechart understandability.
GQM leads to focused measurements which are related to
the goal (quality and understandability of a statechart) rather
than measurement for the sake of measurement.

Predicting the level of understandability of the state-
chart control structure is thus of paramount importance.
While the high-level statechart diagram is partitioned and/or
decomposed hierarchically into low-level substatecharts or
statecharts subdiagrams, attention must be given to the
complexity of the organization of the subdiagrams with
regard to their relationships with each other (or topological
properties) and their internal attributes for quality. Attention

must be given to the evaluation of their structural complexity
too. A statechart is understandable if someone else other
than the creator can understand the diagram (as well as
the creator after a time lapse). Minor improvements to
efficiency are not worth compromising understandability.
The challenge is to devise statecharts at “right” abstraction
level according to the desirable understandability level. From
the modeler’s perspective, understandability is the ability of
the modeler to build a logically accurate mental model of the
statechart model that she or he is utilizing (reading, revising,
fine-tuning, testing, and maintaining) to achieve his or her
dynamic goal.

The internal structure of a statechart diagram is a matter
of great interest to us at the design stage. Informally, a
statechart diagram that contains a lot of actions but not
too many states with higher outdegrees will be very easy
to understand and design. It will present little opportunity
for the designer to stray from the straight and narrow.
Another statechart diagram with fewer actions but a really
complex control structure will offer the designer plenty of
opportunity to introduce faults. Informally, a state whose
Outdegree (resp., indegree) is very large is probably good
candidates for examination and rework. Obviously, as a
statechart needs to be human readable as well as machine
readable, a cluttered statechart diagram is less desirable
than an uncluttered transparent self-contained diagram. As
such it needs to be compatible with the modeler’s cognitive
limits too. The “understandability” of a model for a machine
shows up in error-free compilation. For human modelers,
model understandability must be explored, evaluated, and
predicted. One cannot measure directly and quantify under-
standability as it is a multidimensional fuzzy concept, con-
trary to the definition of conventional crisp binary concept
of understandability; it is allowed herein in our modeling to
be granulated and graduated, that is, be a matter of degree,
and as such we deal with it and represent it in terms of
levels of understandability by themeans of linguistic values in
terms of labels (Zero, Low,Medium, andHigh) interpreted by
either membership functions and/or possibility distributions
as illustrated in Figure 4. Due to the effect of granulation,
the transition from understandability to ununderstandability
is gradual rather than abrupt. “Understandability is Zero,”
means it is not understandable. Doing so will ease during
the prediction phase the identification of those statecharts
with the values Zero and Low and prioritize to rework
them first in order to improve and achieve the desired level
of their understandability. Depending on time and budget



Advances in Software Engineering 7

Zero Low Medium High

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4: Understandability represented as a fuzzy linguistic vari-
able.

constraints, we might be interested too at enhancing those
with the Medium value.

In practice themodeler’s chunking and tracing capabilities
are used to analyze and comprehend a statechart, and this is
not always possible due to the cognitive complexity andmore
specifically to the modeler’s cognitive inherent limits (small
short-termmemory capacity) to dealwith complexhypertext-
like topological structures of statechart. In general, due to
the topological modular nature of the statechart, it is not
necessary for the modeler to understand an entire statechart
in order to understand just one part of it (a composite
state, or a chunk). Informally, to ensure understandability,
one needs to devise a statechart diagram whose complexity
matches or is just slightly below the (human) modelers’
cognitive capacity by devising a manageable number of self-
contained meaningful chunks that have reasonable sizes and
depths, easy to follow (or traverse) transitions at an acceptable
levels of structural complexity. Informally, an understandable
statechart should allow amodeler to analyze and comprehend
it at any level of abstraction without having to understand the
detail or lower-level states.

As a matter of perception, large statecharts are generally
(but not necessarily) more complex than small statecharts.
Informally, an understandable statechart should be com-
posed of understandable constituent parts (or chunks), and
conversely only understandable constituent parts (chunks)
might compose an understandable statechart. A chunk is
a group of related elements (states, transitions, events, and
actions) and is formed around the state under focus. A
chunck is the object under measurement (OUM). This leads
us to adopt a multi-view measurement to assess a statechart
at different view levels.

The complexity involved in themanagement and descrip-
tion of large statecharts can be faced by partitioning the
overall collection of the composing entities into smaller,more
manageable, units. Chunks (cohesive units that are loosely
connected with each other) as a conceptual construct offer a
general grouping mechanism that can be used to decompose
a given statechart diagram into subdiagrams and to pro-
vide a meaningful separate behavioral description for each
of them.

The focus herein is on inherent characteristics of the
statechart itself in the hope that controlling these internal
quality indicators will result in improved external product
quality such as understandability; namely, this is known
as measurement-driven design for understandability. Better
structure and reduced complexity make statecharts diagrams
easier to read and understand and thus to extend and

D
efi

ni
tio

n

In
te

rp
re

ta
tio

n

M1 M2 M3

Q1 Q2 Q1 Q2

Metric

Question

M4 M5 M6 M7

Goal

Figure 5: The GQM paradigm of Basili and Weiss.

reuse. As a good practice, it is recommended that we devise
statecharts with ease of understanding in mind.

Statecharts quality measurement-driven predictionmod-
els in general and fuzzy models in particular could constitute
an interesting solution to software quality by providing some
preventive maintenance layer on software at its early stages of
its life cycle during modeling. The earlier understandability
can be predicted, the better it is from the standpoint of
statechart design and software development.

5. A Granular Framework for Statecharts
Structural Complexity and Size Metrics

Understandability metrics are needed to verify if the desired
understandability level is achieved prior to the passage to next
phases (code generation). In departure from the conventional
approaches that deal with only a flat statechart and firstly start
by applying a flattening procedure, we attempt herein to deal
with a statechart diagram at different conceptual depths or
equivalently at several abstraction levels. More specifically it
consists to evaluate at different granularity levels constructs
(simple state, composite state, all states level diagram) cor-
responding to different conceptual depths exposing different
views, and subsequently to aggregate their measurements.
The main idea is to adopt a multi-view measurement and to
study and evaluate a statechart at different levels of granu-
lation corresponding to different conceptual depth levels or
level of details. The higher level process view corresponds to
a flat statechart (depth = 0), and the adequate upper depth
limit is determined by themodelers according to the inherent
complexity of the problem under study and the level of detail
required for the situation at hand (it corresponds to the
all states view). The rationale is to keep during modeling
a manageable complexity. For purposes of measurement,
we proceed using bottom-up strategy starting with all state
view diagram (see Figure 6 for more details), identifying and
measuring its deepest composite states constituent parts (or
chunks) and then gradually collapsing them to obtain the
next intermediate views (we decrement depth), until reaching
the high-level flat process view diagram.

As shown in Figure 5, GQM main idea is that measure-
ment ought to be carried out for purpose, and that is only
within the context of purpose or goal that a metric may be
determined to be useful.



8 Advances in Software Engineering

Table 1: Metrics suite for a statechart (at the state and at the statechart diagram levels).

Metric name Metric definition
Indegree I(s) of a state s (fan-in) The total number of entering transitions into s
Outdegree O(s) of a state s (fan-out) The total number of exiting transitions from s
NSS(s) number of direct source
states into s The total number of states that are direct source states of entering transitions into s

NTS(s) number of direct target
states from s The total number of states that are direct target states of exiting transitions from s

Number of actions associated to the
state NA(s)

The total number of distinct actions associated to the state that exists on outgoing transitions
from this state under focus

Number of events associated to the
state NE(s)

The total number of distinct events associated to the state that exists on outgoing transitions from
this state under focus

Number of states NS(s) The total number of states including simple states as well as composite states that are the
constituent parts of the substatechart under measurement

Number of states at a single depth
level NSL(sc)

The total number of states including simple states as well as composite states that are the
constituent parts of all the substatecharts viewed at a single given depth level

Conceptual depth of the statechart
CD(sc)

The conceptual depth of the statechart CD(sc), which is themaximum value of conceptual depths
of all states that are the constituent parts of the statechart. Due to nesting levels and overlapping,
we take the maximum

Number of internal transitions
NIT(s)

The total number of transitions where both the source state and the target state are within the
enclosure of the composite state s. Outgoing and incoming transitions to the composite state s
under study are ignored

Number of Interlevel intrahierarchy
external transitions NIET(s)

The total number of external interlevel transitions crossing two or more levels in the state
hierarchy, from or into s

Number of deeper external
cross-hierarchy transitions
NDET(s)

Number of deeper cross-hierarchy transitions relative to depth(s) crossing in other parts of the
statechart, from or into s

(NIET(s) + NDET(s))/((I(s) + O(s)) A ratio ranging in [0, 1]
McCabe’s cyclomatic complexity
CC(s) CC(s) = NIT(s) − NS(s) + 2

Using the GQM [21–23] template for goal definition, the
goal pursued with the definition of the metrics for statecharts
diagrams is as follows.

Analyze: Statechart diagrams.
With the aim of: Predicting and controlling.
In relation to: Quality and more specifically under-
standability.
From the point of view of: The modelers.

Based on the input of modelers, this measurement appli-
cation goal was represented as the following list of questions.

(1) What factors influence the level of understandability
of a statechart diagram?

(2) What is the contribution of size (number of states, of
transitions, of events, and of actions) and the concep-
tual depth of a statechart to its understandability?

(3) What is the contribution of the other topological
properties (insideness, connectedness, and adjacency)
and the internal structure of a statechart to its under-
standability?

(4) What is the contribution of the structural complexity
of the statechart to its understandability?

(5) What are possible indicators and standards on which
prediction of satisfactory levels of understandability
can be based?

The metrics suite we propose is shown in Table 1. Both
primitive (counts of directly measurable characteristics such
as number of transitions) and derived metrics (computed by
mathematical combinations of two ormore primitivemetrics
such as McCabe’s cyclomatic complexity) are included.These
metrics were defined to measure statecharts size, topologi-
cal relationships (enclosure, connectedness, and adjacency),
and structural complexity based on intrinsic properties and
building blocks of statecharts (state diagrams, depth, orthog-
onality, and broadcast communication) and graph theory and
more specifically higraphs (high graphs, hierarchical graphs,
or topological graphs) onwhich a statechart is build on.These
metrics are objective (i.e., there is an agreed procedure for
assigning values to the metrics, computed by counting), they
are empirical (i.e., the data is obtained by observation), they
are easy to collect and could be computed in the early phases,
providing thresholds that could be used for judgments, and
they are programming language independent. Convention-
ally, a software quality metric is defined as a function which
inputs software data and outputs a single value interpretable
as the degree to which software possesses an attribute that



Advances in Software Engineering 9

s1
s2

s3

s4
s5

s6

s7

s8

s9

Figure 6: All states view diagram highlighting intra hierarchy inter-
level and cross-hierarchy transitions.

affects quality. In departure of conventional methods, we
assume herein that a software quality metric is a linguistic
variable that might have linguistic values represented by
labels of Zadeh [24, 25] fuzzy sets (such exteremely small,
very small, more or less small, medium, more or less large,
very large, exteremely large) and interpreted by membership
functions as illustrated in Figure 7. Thus each metric is
interpreted by a fuzzy partition or equivalently a fuzzy
sequence. Graduation and granulation are used conjointly in
modeling a fuzzy metric on a fuzzy ordinal scale.

As illustrated in Figure 6, the composite state 𝑠
3
is made

up the composite state 𝑠
5
and the simple state 𝑠

4
, the

composite state 𝑠
5
itself is made up the simple states 𝑠

6
, 𝑠
7
,

and 𝑠
8
. Typical interlevel transitions on the same hierarchy

are those between 𝑠
8
and 𝑠
1
, 𝑠
7
and 𝑠
1
, 𝑠
6
and 𝑠
1
, a typical

interhierarchy transition is between 𝑠
9
and 𝑠
4
.The conceptual

depth of the statechart equals three.

5.1. Top-Level Process View (Coarse-Grained Measurement).
At the process view, as in a finite state machine one has an
unstructured higher level diagram. At this view, all states
might be thought of conceptually as simple states, that is,
there are no composite states to deal with or to account
for at this level. Proposed metrics are illustrated in Table 1.
McCabe’s cyclomatic complexity [26] for the corresponding
planar graph is computed straightforwardly (using the for-
mula 𝑒 − 𝑛 + 2, where 𝑒 is the number of transitions, and
𝑛 the number of states). McCabe’s cyclomatic complexity
appears to represent structural complexities of statecharts in
amanner that parallels thewaysMillers says humans perceive
complexity; that is, the cyclomatic complexity of a statechart
can be taken as an indication of the diagram’s understand-
ability when studied by humans (modelers). McCabe’s metric
is really an indication of the number of linearly independent
(control) paths through a diagram, and reflects procedural
complexity. A statechart with cyclomatic complexity greater
than eight is too complex for human (modeler) mind to
understand without placing some of the details into long-
memory. From a path perspective a complexity greater than
10 indicates that the diagram is too complicated because there
are too many paths to be stored and simultaneously pro-
cessed in the modeler’s short-term memory. Consequently,
understanding the diagram will be unnecessarily difficult.

Low More or less low High Extremely high

0

1

1 5 10 20 50

Figure 7: McCabe’s cyclomatic complexity represented as a linguis-
tic fuzzy variable.

Designing statecharts that have low structural complexitywill
certainly do a lot toward easing their understandability. In
practice the upper limit has been set as fifteen. A compromise
of ten has been selected because it is just beyond the short-
term memory’s upper limit, and is the base of our decimal
numbering system. Difficulty of understanding a statechart
is largely determined by complexity of control structure of
diagram. Understandability declines with increasing cyclo-
matic complexity. In connection with modeling, cyclomatic
complexity provides clues to a good design heuristic.

As illustrated in Figure 7, presumably statecharts with
cyclomatic complexity value of Low are generally considered
simple and easy to understand (i.e., understandability is
High), of More or less Low value (moderately complex)
are considered not too difficult to understand (i.e., under-
standability is Medium), if High, the complexity is perceived
as high (very complex) and thus are considered difficult
to understand (or understandability is Low). When the
value is Extremely High, the statechart is overly complex
and for practical purposes becomes ununderstandable (not
understandable, i.e., understandability is Zero). Of course,
we assume that cyclomatic complexity alone is not sufficient
to determine the level of understandability of a statechart.
Note that the depth of state 𝑠 might remain unchanged
or might keep varying (increasing) while design proceeds
depending on the involvement of the state 𝑠, as long as
partitioning and hierarchical abstraction mechanisms are
used or concurrency is introduced bymeans of orthogonality,
this is irrespective that we are using top-down, bottom-
up design strategy or a mixed strategy in which the two
strategies are combined. Using a top-down design strategy,
one way to organize a model is to start by having a high-
level diagram (process view) with subdiagrams expanding
certain states gradually using stepwise refinement, each of the
subdiagrams further expanded and this process continues
until the resulting elements are in easy comprehensible form
and straightforward to work with, thus obtaining a well-
structured statechart diagram at a certain adequate concep-
tual depth level (sketching all states view). Using a bottom up,
one may start with partitioning (or clustering) states using
commonalities to obtain high abstract level aggregate com-
posite states. Accordingly, amixed strategy is therefore highly
recommended in practice to devise a statechart properly. For
cognitive considerations, the conceptual depth must be kept
manageable, and thus we need to set up an upper limit of
the maximum depth of hierarchy (too many nested levels of
compound states limit understandability).

As shown in Figure 8, presumably statecharts with depth
value of Small are generally considered simple and easy to



10 Advances in Software Engineering

Small Large

8 9 10
0

0.5

1

Figure 8: The state hierarchy nesting level (conceptual depth).

understand. When the depth value is Large, the statechart
for practical purposes becomes ununderstandable. Of course,
we assume that depth alone is not sufficient to determine the
level of understandability of a statechart.

5.2. Chunk Level (Intermediate-Grained Measurement).
There may exist one or more intermediate views between the
flat view and the all states view of the statechart diagram. A
composite (aggregate or superstate) state might be thought
of as an abstract state, and thus the metrics for a simple
state might be used to deal with it at an adequate level
of abstraction. Composite states might be obtained either
by the means of the partitioning in terms of aggregated
states and hierarchical abstraction mechanisms in terms of
nested states or by the means of orthogonality in terms of
concurrent composite states. In addition, composite states
do have their specific metrics as illustrated in Table 1. The
computation of all proposedmetrics is straightforward except
for the McCabe’s cyclomatic complexity, and thus we have
adapted and extended it to deal with single-entry/multiple-
exit, multiple-entry/single-exit, and multientry/multiexit
statecharts and concurrent composite states. A good well-
structured self-contained composite state should convey a
well-identified behavior and should be examined, assessed
and understood by itself to a large extent (without regards
for what operations do, what they operate on, or how they
are implemented). Basically, hierarchical abstraction has
to do with pulling out common characteristics (such as
states having same transition’s event/action to same target
state) of a group of states into a higher-level composite or
superstate with a factorized transition, thereby defining
behavioral blocks of higher-level while reducing duplication
and redundancy.There are a variety of reasons to for keeping
composite states “black boxes” (hiding the internal workings
or behavior), but the primary one is to minimize the ripple
caused by maintenance changes. When connecting source
and target states to a composite state, the modeler should
not care about how the composite state behaves-only that
the desired result occurs. Valid and meaningful abstractions
facilitate understanding.

The complexity involved in themanagement and descrip-
tion of large statecharts can be reduced by partitioning
the overall collection of the composing entities (states and
transitions) into smaller, more manageable, control units.
Chunks (cohesive units that are loosely connected with each
other). A chunck as a conceptual construct offer a general
grouping mechanism that can be used to decompose a
given statechart diagram into sub-diagrams and to provide a

s1 s2

s3

s4

s5

s6

s7

s8

Figure 9: A conceptual chunk formed around the composite state
under focus 𝑠

5
.

meaningful separate behavioral description for each of them.
Individual chunks (or subdiagrams) represent fragments
of behavior, while the entire statechart diagram represents
integrated behavior. See Figure 9 for more details. The level
of abstraction is reduced gradually in a process known as
stepwise refinement, with more and more detail introduced at
each step, the behavioral description at each step becoming
a more low-level specification of the model. This process
continues until the design is framed in a satisfying structure.
Good statecharts designs that are easy to build and easy to
understand and change are based on a bunch of chunks, each
of which is “cohesive,” orwell-glued together, and only loosely
“coupled” to other chunks. Chunk cohesion is a measure of
chunk “wholeness” and coupling measure interdependence
among chunks.

This way of abstracting statecharts for measurement
purposes is in the spirit of modularization and information
hiding in the sense of Parnas [27] and is too closely related
to chunking in schemata theory as described in cognitive
psychology and advocated by Gray [28].

The crux of the prediction problem is then, to select a
minimal set of “critical” metrics to predict accurately the
statechart understandability level. This is a heuristic and to
some extent a trial-and-error process, where one has to try
collecting some metrics, determine if they are useful, replace
the ones that are not useful. Depending on the accuracy
required of desirable level of understandability, one may
define the number of the entries in the set and establish
criteria for the initial entries in the set.

Concurrency can be modeled with a product machine.
The states of a product machine are combinations of states
of two or more basic machines. Product state behavior is
implicit in a statechart. In a product machine, every possible
combination of individual states is an explicit product state.
Concurrency comes in three flavors: (1) aggregation concur-
rency, (2) concurrencywithin object, and (3) synchronization
of concurrent activities. In either case, in practice a statechart
with two or more concurrent regions is first transformed to
one or more equivalent statecharts in the product machine.
In case we have 𝑝 independent connected components,
SC
1
, SC
2
, . . . , SC

𝑝
, one might use the formula 𝑒 − 𝑛 + 2𝑝,



Advances in Software Engineering 11

Small Large

0

0.5

0.50.1

1

1

Figure 10:The computed ratiometric (NIET(s) +NDET(s))/((I(s) +
O(s)).

where 𝑒 is the number of transitions, 𝑛 the number of
states, and 𝑝 the number of components in the total graph,
or compute summation of their complexities as McCabe’s
cyclomatic complexity is additive with respect to the union
by using the following formula:

CC (SC
1
∪ SC
2
⋅ ⋅ ⋅ ∪ SC

𝑝
)

= CC (SC
1
) + CC (SC

2
) + ⋅ ⋅ ⋅CC (SC

𝑝
) .

(1)

5.3. All States View (Fine-Grained Measurement). As illus-
trated in Figure 6, all simple states as well as all composite
states including their enclosures are sketched in this all
states view. By collapsing composite states one might obtain
or recover the corresponding previous intermediate views
gradually. We use this bottom up strategy for measurement
purposes; that is, we start analyzing and measuring the
characteristics of those deeper constructs (chunks) forming
the statechart at this view, and thenwe collapse them to obtain
previous intermediate view to measure (corresponding to a
lower depth, we decrease the depth), then iterate gradually,
while aggregating measures incrementally until reaching the
higher level process view statechart. The computed ration
metric (NIET(s) + NDET(s))/(I(s) + O(s)) should be kept
as small as possible as it limits the modular topology of
the statechart. Ideally, it is better that the modeler does
not recourse to using those inter-level and cross-hierarchy
transitions. However, it seems that in practice somemodeling
situations dictate their usage.

As shown in Figure 10, presumably statecharts with ratio
metric value of Small are generally considered simple and
easy to understand. When the value is Large, the statechart
for practical purposes tends to become ununderstandable. Of
course, we assume that the ratio metric alone is not sufficient
to determine the level of understandability of a statechart.
If we assume that we have a common e[g]/a for the three
transitions on the same hierarchy between 𝑠

8
and 𝑠
1
, 𝑠
7
and

𝑠

1
, 𝑠
5
and 𝑠
1
, 𝑠
6
becomes a default start state in 𝑠

5
, and 𝑠

4

becomes a default start in 𝑠
3
. As illustrated in Figure 11 we

obtain an equivalent statechart, thereby improving the under-
standability while preserving the behavior of the previous
one.Thepoint is tomake this refactoring behavior-preserving
transformation and other ones automatic.

6. A Fuzzy Rule-Based Prediction System

In general, software engineering activities are knowledge
intensive and software modeling and design is a good

s1 s2

s3

s4 s9

s5

s6

s7

s8

Figure 11: An equivalent all states view obtained after refactoring of
the statechart in Figure 6.

Table 2: The rule-base of the fuzzy rule-based prediction system.

CC Depth Ratio Understandability
Extremely high Large Large Zero
Extremely high Large Small Zero
Extremely high Small Large Zero
Extremely high Small Small Low
High Large Large Zero
High Large Small Low
High Small Large Low
High Small Small Medium
More or less low Large Large Low
More or less low Large Small Medium
More or less low Small Large Medium
More or less low Small Small High
Low Large Large Low
Low Large Small High
Low Small Large Medium
Low Small Small High

application area since the knowledge is generally heuristic in
nature and software engineers tend to think on terms of rules
and more specifically on terms of fuzzy rules. Independent
variables (internal metric indicators) are measured to predict
the dependent variable (external level of understandability).
In order to capture those causal relationship between internal
metrics and the levels of understandability, we attempted to
build a rule-based fuzzy predictive prototype for the “proof
of concept” based on some statecharts design best practices,
design heuristics related to our defined metrics. We obtained
the following rule base (a collection of fuzzy if-then rules
shown in Table 2). Each row represents an if-then fuzzy
production rule, for instance, row seven corresponds to the
following rule seven (R

7
) as follows:

R
7
: if (CC isHigh)AND (Depth is Small) AND (Ratio

is Large) then Understandability is Low.

Knowing the values of metrics of a given statechart, an
inference enginewill be able to compute the understandability
level by first firing adequate rules of the rule base and then
applying an appropriate standard defuzzification procedure
(such as the center of gravity method). This system may be



12 Advances in Software Engineering

thought of as a tool that disseminates best practices.Themost
powerful contribution by such a system is to put at the service
of the inexperienced modeler, the best practices, design
heuristics, “rules-of-thumb,” experience, and accumulated
wisdom of the best modelers. This is no small contribution
as it empowers designers to capture their thinking in a
coherent and comprehensive fashion in the framework of
human-oriented software engineering, thus enabling them to
produce understandable statecharts structures that are faster,
smaller, simpler, cleaner, and produced with less effort.Those
structures will be the building blocks of high quality software
systems that exhibit a robust and resilient architecture.

7. Conclusion and Future Work

Producing elegant statechart that is efficient while still being
easily understood by their peers is still a true art form. The
originality and contributions of our framework proposed in
this paper includes as follows:

(i) a human-oriented framework for statechart under-
standability based on the interplay between soft com-
puting, cognitive psychology, and software engineer-
ing;

(ii) a granular hierarchical multi-view metrics suite for
statecharts quality instead of a crisp binary one-level
view of a flattened statechart diagram;

(iii) a novel bottom-up approach for a multi-view mea-
surement of statechart size, topological properties and
internal structural complexity for statechart under-
standability prediction and assurance purposes;

(iv) new design heuristics based on newmetrics and valid
cognitive principles;

(v) indicators and standards on which prediction of
satisfactory levels of statechart understandability can
be based?;

(vi) a fuzzy rule-based statechart understandability pre-
diction system;

(vii) a soft computing human-oriented framework for
studying, analyzing and assuring statechart under-
standability.

Software quality is of increasing importance as the use of
software become pervasive. Statecharts, like class diagrams
are the key conceptual artifacts of the early development,
so focusing in their quality should contribute to the overall
quality of the software product which is ultimately imple-
mented. Most interesting systems are not most conveniently
modeled as statecharts. We have argued that a satechart with
measurable structure or topology allows the prediction of
the level of understandability early at design time. These
measures have to be used judiciously, but they are easy
to obtain and give internal indicators of understandability.
Ultimately detecting low level of understandability (or lack
of it) requires to rework (or to refactor either manually or
automatically) the control structure of the statechart in order
to cope with and reduce the complexity, while preserving

the behavior and improving the understandability. By “com-
plexity,” I mean “needless or unnecessary complexity.” The
main goal is to achieve automated support for modeling
understandable statecharts. This leads to improved quality
and understandability of systems whose complexity exceeds
the intellectual (cognitive) capacity of a single modeler or
team of modelers.

We also need to define the analysismodel of all indicators.
Then, we plan to perform a principal components analysis
[29] on the proposed metrics to select the minimal set of
“critical” independent metrics that influence the understand-
ability of a statechart to allow suitable higher prediction
accuracy.With all themetrics already tested and validated, we
need to search for relevant indicators for understandability,
learnability, and operability, and, ultimately, a unified set of
indicators for statechart usability. Finally, all metrics and
indicators need to be progressively refined as we plan for
more complete case studies and controlled experiments.
The aim is to find not only usability related problems in
statecharts, but also appropriate solutions for these problems
and produce a list of behavior-preserving transformations
which, if executed either manually, semiautomatically, or
automatically would lead to better understandability, usabil-
ity, and quality of the statechart.With software integrated into
so many critical parts of modern day-to-day life, modelers
must be very aware of quality.

Future work includes better tool support for this app-
roach, as well as mechanisms to collect automatically metrics
data from statecharts, to analyze data statistically, and to learn
and simulate fuzzy systems and statecharts, a high integration
of all steps of the entire process into a single adequate tool.
To this goal, learning automatically a rule-based fuzzy system
from a repository of statecharts models with measurable
structures examples by using machine learning algorithms
and/or soft computing is too a good option to explore [30, 31].
It is hoped that the paper will stimulate further work in a field
whose importance will increasingly be recognized.

References

[1] P. Naur and B. Randell, Eds., Software Engineering: Report on
A Conference Sponsored by the NATO Science Committee1968,
Scientific Affairs Division, Brussels, Belgium, 1969.

[2] K. Derr, Applying OMT, SIGS Books, Prentice Hall, New York,
NY, USA, 1995.

[3] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen, Object-Oriented Modeling and Design, Prentice Hall,
Englewood Cliffs, NJ, USA, 1991.

[4] G. Poels and G. Dedene, “Measures for assesing dynamic com-
plexity of aspects of object-oriented conceptual schemes,” in
Proceeding of the 19th International Conference on Conceptual
Modeling (ER ’00), pp. 499–512, 2000.

[5] M. Cartwright and M. Shepperd, “An empirical investigation
of an object-oriented software system,” IEEE Transactions on
Software Engineering, vol. 26, no. 8, pp. 786–796, 2000.

[6] M. Carbone and G. Santucci, “Fast & Serious : a UML based
metric for effort estimation,” in Proceeding of the 6th Interna-
tional ECOOPWorkshop on Quantitative Approaches in Object-
Oriented Software Engineering (QAOOSE ’02), pp. 35–44, 2000.



Advances in Software Engineering 13

[7] J. A. Cruz-Lemus, M. Genero, S. Morasca, and M. Piattini,
“Using practitioners for assessing the understandability of UML
statechart diagrams with composite states,” Lecture Notes in
Computer Science, vol. 4802, pp. 213–222, 2007.

[8] R. Castelló, R. Mili, and I. G. Tollis, “A framework for the static
and interactive visualization of statecharts,” Journal of Graph
Algorithms and Applications, vol. 6, no. 3, pp. 313–351, 2002.

[9] S. W. Ambler, The Element of UML 2.0 Style, Cambridge Uni-
versity Press, Cambridge, UK, 2005.

[10] S. J. Mellor,MDADistilled: Principles of Model-Driven Architec-
ture, Addison-Wesley, Boston, Mass, USA, 2002.

[11] W. M. Thorburn, “Occam’s razor,”Mind, vol. 22, no. 4, pp. 287–
288, 1913.

[12] W.M.Thorburn, “TheMyth of Occam’s razor,”Mind, vol. 27, no.
3, pp. 345–353, 1918.

[13] G. A. Miller, “The magical number seven, plus or minus
two: some limits on our capacity for processing information,”
Psychological Review, vol. 63, no. 2, pp. 81–97, 1956.

[14] W. J. Tracz, “Computer programming and the human thought
process,” Software, vol. 9, no. 2, pp. 127–137, 1979.

[15] D. Harel, “Statecharts: a visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231–274,
1987.

[16] D. Harel, A. Pnueli, J. Schmidt, and R. Sherman, “On the
formal semantics of statecharts,” in Proceedings of the 2nd IEEE
Symposium on Logic in Computer Science, pp. 54–64, Ithaca,
New York, NY, USA, 1987.

[17] B. W. Boehm, Software Engineering Economics, Prentice Hall,
New York, NY, USA, 1981.

[18] B. W. Boehm, “Improving Software Productivity,” IEEE Com-
puter, vol. 20, no. 9, pp. 43–57, 1987.

[19] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J. MacLeod,
andM. J.Merrit,Characteristics of Software Quality, TRW series
of software technology, Elsevier Science, North-Holland, The
Netherlands, 1978.

[20] ISO/IEC and 9126-1:2001, “Software engineering—product
quality—part 1: quality model,” 2001.

[21] V. R. Basili and H. D. Rombach, “The TAME project :towards
improvement-oriented software environment,” IEEE Transac-
tions on Software Engineering, vol. 14, no. 6, pp. 758–773, 1988.

[22] V. Basili and D. A. Weiss, “Methodology for Collecting Valid
Software Engineering Data,” IEEE Transactions on Software
Engineering, vol. 25, no. 4, pp. 456–473, 1984.

[23] R. van Solingen and E. Berghout, The Goal/Question/Metric
Method: A Practical Guide For Quality Improvement of Software
Development, McGraw-Hill, New York, NY, USA, 1999.

[24] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3,
pp. 338–353, 1965.

[25] L. Zadeh, “The concept of linguistic variable and its applications
to approximate reasoning part I,” Information Sciences, vol. 8,
pp. 199–249, 1973.

[26] T. J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[27] D. L. Parnas, “On the criteria to be used in decomposing systems
into modules,” Communications of the ACM, vol. 15, no. 12, pp.
1053–1058, 1972.

[28] P. Gray, Psychology, Worth Publishers, London, UK, 2007.
[29] D. Dunteman, Principal Component Analysis, Sage University

Press, Thousand Oaks, CA, USA, 1989.

[30] M. Beldjehem, “A granular unified min-max fuzzy-neuro
framework for learning fuzzy systems,” Journal of Advanced
Computational Intelligence and Intelligent Informatics, vol. 13,
no. 5, pp. 520–528, 2009.

[31] M. Beldjehem, “A granular unified hybridMinMax fuzzy-neuro
framework for predicting and understanding software quality,”
International Journal of Software Engineering and Applications,
vol. 4, no. 4, pp. 17–36, 2010.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


