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This paper is devoted to algebraically simulating the 𝛼-code of bacterium Escherichia coli and studying contrast factors (words) in its
polypeptide sequence. We utilize the methods of spectral theory of graphs which were previously employed by us for enumerating
De Bruijn and Kautz sequences. The empirical material is borrowed from the computer investigation of contrast factors in the
polypeptide sequences of prokaryotes.

1. Introduction

It was proposed [1, 2] to divide 19 out of all the 20 amino
acids into two subgroups, an alanine subgroup (of fatty amino
acids: alanine, phenylamine, isoleucine, leucine, methionine,
proline, threonine, and valine) and a glycine subgroup (of
more polar amino acids: cysteine, aspartic acid, glutamic acid,
glycine, histidine, lysine, asparagine, glutamine, arginine,
tryptophan, and tyrosine), while serine remains a spare ele-
ment in the full classification thereof. In a shorthandnotation,
this gives a, f, i, l, m, p, t, and v (an alanine subgroup); c,
d, e, g, h, k, n, q, r, w, and y (a glycine subgroup); and s (a
free character). The three numbers 1, 2, and 3 were picked
to represent the main two subgroups and the character s,
respectively.

Brute statistics, under the natural ratio of 1s to 2s being
0.526: 0.474, had predicted an almost regular distribution
(alternation) of the two ciphers. To check such a hypothesis,
there were found the frequencies of all 2𝑙 (1 ≤ 𝑙 ≤ 11) possible
substrings of the length 𝑙 in the genomic sequence of E.
coli. The results at once showed that the respective perfectly
alternating substrings are in fact the least frequent ones, in
the entire genomic sequence. However, visual observation
allowed suspecting that the main condition for near-to-
statistical distribution of the two subgroups of amino acids
may be disguised in grouping equal ciphers (either 1 or 2) rep-
resenting the respective subgroups in adjacent pairs thereof.
That is, in lieu of the code 121212 ⋅ ⋅ ⋅ 12 it should be

112211 ⋅ ⋅ ⋅ 22, where general ratio of ciphers stays thus unal-
tered.

The situation with pairing of equal ciphers reminded us
of the phenomenon of the so-called 𝛼-code in polypeptides.
According to it, one turn of polypeptide spiral involves 3.5
amino acids on an average. Since the nearest to 3.5 multiple
integer equals 7, it was of interest to interpret the 𝛼-code as
a one in which all structural features are due to conditionally
grouping amino acids into consecutive sevens thereof.

Merging the ideas of sevens (which suit well for interpret-
ing the 𝛼-code) and pairs (which better obey the natural pro-
portion of amino acids and follow experimental observation)
allows us to set forward a universal model of the 𝛼-code. In
this, the distribution of amino acids along the entire polypep-
tide sequence should maximize a mean number of pairs of
equal integers (1 or 2) that are contained in consecutive sevens
of it. Thus, the optimal case is that one has 3 pairs (11 and/or
22) and one unpaired number (1 or 2) which can either be
between any two pairs out of the three or be outside of these
(e.g., it may comprise a pair with an equal number of the adja-
cent seven). However, it is more interesting to consider the
casewhen thewindowof length 7 cuts out a substringwithout
3 such pairs; this is also a necessary pattern in the sequence.

Logically, we could readily establish that the optimal 𝛼-
code should have not less than 2 pairs of adjacent equal
numbers in every window of length 7. Another criterion that
seemed to be of use was that the 𝛼-code should reject the
subsequences 1212 and 2121 since these allow no more than
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one pair 11 or 22 in most seven-cipher substrings that contain
them. Experimentally, there was the third (and strongest of
all we know) criterion; the 𝛼-code should avoid the inclusion
of the palindrome of the type 1211121; however, here, very
serious reservations must be made concerning the fact that
substituting 2 for 1 (and conversely) in this palindrome
produces (longer) substrings that are, on the contrary, not
very frequent in the natural sequence of E. coli. In case
of longer palindromes including 1211121 (or 2122212), the
situation may seem rather ambiguous.

That is why we first tried to attest the simplest (for
implementation) mathematical criterion of the above; the
prohibition of 1212 and 2121, in amodel𝛼-code. Here, we shall
turn to some rigorous mathematical matters.

2. Preliminaries

First of all, we must introduce an ancillary digraph𝐷󸀠 which
is constructed as follows. The vertices of 𝐷󸀠 are all the eight
ordered triples of 1s and 2s (i.e., 111, 112, 121, 211, 122, 202,
220, and 222) and an arc (a self-loop) goes out of one vertex
to another (this same vertex) if the last two ciphers (on the
right) in the first triple coincide with the first two ciphers in
the second triple. Say there is an arc from 111 to 112 (with two
common ciphers: 11) and also an oriented selfloop attached to
the vertex 111 (i.e., an arc from 111 into 111 itself).

Using the connectivity of𝐷󸀠, one can mentally travel in it
from any vertex V, consecutively traversing arcs and visiting
adjacent vertices. So, the passage to any adjacent vertex 𝑢
along the respective arc (or returning to the original vertex
V through the selfloop attached to it, if any) means that one
has done a walk of length 1 (et seq.). However, what is very
essential is that every walk of the length 𝑙, in 𝐷󸀠, factually
covers 𝑙+3 ciphers since every next step increases the number
of visited vertices by one but the very first vertex already
contained three ciphers, by definition. It is very important to
note that the auxiliary digraph 𝐷󸀠 allows one to reproduce
every sequence of 1s and 2s of length 𝑙 + 3 (𝑙 ≥ 0), which also
includes sequences containing 1212 and 2121.

In order to rule out all forbidden sequences with 1212
and/or 2121, we shall derive from 𝐷󸀠 a “better” working
digraph 𝐷. Specifically, 𝐷 is the above digraph 𝐷󸀠 less two
opposite arcs going from 121 to 212, and vice versa, from 212
to 121. Since now, the problem on enumerating all (model)
𝛼-code sequences of length 𝑙 + 3 (𝑙 ≥ 3) can be reduced to
another one enumerating all walks of length 𝑙 in the working
digraph𝐷.

It is not difficult to form the adjacencymatrix𝐴 = 𝐴(𝐷) =
[𝑎𝑖𝑗]
8

𝑖,𝑗=1
of 𝐷, where an entry 𝑎𝑖𝑗 = 1 if and only if there is

an arc (a selfloop) from the 𝑖th vertex to the 𝑗th vertex and
𝑎𝑖𝑗 = 0, otherwise, namely,
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. (1)

The characteristic polynomial 𝑃(𝐷; 𝑥) of the digraph 𝐷
(which is by definition the characteristic polynomial 𝑃(𝐴; 𝑥)
of its adjacency matrix 𝐴 [3]) is

𝑃 (𝐷; 𝑥) = 𝑥
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(2)

The roots of 𝑃(𝐷; 𝑥) are 𝜆1 = 1.83929, 𝜆2 = 1, 𝜆3,4 = 0, 𝜆5,6 =
±𝑖, and 𝜆7,8 = 0.419645±0.6063𝑖, where 𝑖 = √−1.These roots
comprise the spectrum (of eigenvalues) of the digraph𝐷 [3].

Also, we need to construct a derivative matrix𝐴 = 𝐽−𝐼−
𝐴, where 𝐽 is the matrix of all 1s while 𝐼 is a diagonal identity
matrix; namely,
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. (3)

Thematrix𝐴 is the matrix of the complementary digraph
𝐷. The corresponding characteristic polynomial is

𝑃 (𝐷; 𝑥) = 𝑥
8
+ 2𝑥
7
− 15𝑥

6
− 80𝑥

5
− 180𝑥

4

− 232𝑥
3
− 180𝑥

2
− 80𝑥 − 16.

(4)

Let 𝐻𝐷(𝑡) = ∑
∞

𝑙=0
𝑁𝑙𝑡
𝑙 be the generating function of the

number of walks in the digraph 𝐷, wherein the coefficient
𝑁𝑙 of 𝑡

𝑙 is the number of walks of length 𝑙, in 𝐷. Taking into
account that a walk of length 𝑙 (𝑙 ≥ 0) corresponds to a
substring of length 𝑙+3 of the𝛼-code, one can alsowrite down
the generating function 𝑆(𝑡) for the number of substrings (of
the 𝛼-code) of length 𝑙 as follows:

𝑆 (𝑡) =

∞

∑

𝑙=0

𝑁𝑙𝑡
𝑙+3
= 𝑡
3
𝐻𝐷 (𝑡) . (5)

In the next subsection, we shall demonstrate that ana-
lytically calculating 𝑆(𝑡) can readily be done with the aid of
spectral theory of graphs.

3. Main Part

We shall start this subsection with adapting adapted in our
notation the following fundamental result (see Theorem 1.11
in [3]).

Lemma 1. Let 𝐷 be a finite connected (di)graph. Then the
generating function𝐻𝐷(𝑡) of the number of walks in 𝐷 is

𝐻𝐷 (𝑡) =

1

𝑡

{(−1)
𝑛𝑃𝐷
[− (𝑡 + 1) /𝑡]

𝑃𝐷 (1/𝑡)

− 1} , (6)

where 𝑛 is the number of vertices in 𝐷.
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For practically using (6), one should substitute to the
R.H.S. of it the polynomials 𝑃(𝐷; 𝑥) and 𝑃(𝐷; 𝑥) obtained
above. After elementary but tedious manipulations (which
will be omitted herein) we have arrived at the following for-
mula for our specific digraph𝐷:

𝐻𝐷 (𝑡) =

∞

∑

𝑙=0

𝑁𝑙𝑡
𝑙
= −2(

2𝑡
4
+ 3𝑡
3
+ 6𝑡
2
+ 3𝑡 + 4

𝑡
5
+ 𝑡
4
+ 2𝑡
3
+ 𝑡 − 1

) . (7)

It should also be noted that along with the exact result
given by Theorem 1.11 from [3], there exists a remarkable
asymptotic evaluation for 𝑁𝑙, based on Theorem 1.12 in [3].
In our specific case, it gives the following simple formula:

lim
𝑙→∞

𝑁𝑙 = 8 × 1.83929
𝑙
, (8)

where 8 is the number of vertices in the digraph 𝐷 while
1.83929 is its eigenvalue 𝜆1 with the maximum modulus
(|𝜆1| > |𝜆𝑠|; 2 ≤ 𝑠 ≤ 8). Thus, there can be deduced the
following approximate formula for the entire series𝐻𝐷(𝑡):

𝐻𝐷 (𝑥) ≈

8

1 − 1.83929𝑡

. (9)

From the obtained spectral results for the number of
walks, one can immediately derive the respective working
formulae for the number of substrings of length 𝑙 (𝑙 ≥ 3) of
the 𝛼-code. So, we arrive at the following final expression:
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,
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31
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34
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35
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36
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+ ⋅ ⋅ ⋅ ,

𝑆 (𝑡) ≈ 8𝑡
3
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4
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5
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6
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7
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8
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9
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11
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+ 74293000000000𝑡
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+ 136650000000000𝑡
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+ ⋅ ⋅ ⋅ .

(10)

Beckmann et al. [4] and Brendel et al. [5] studied the
measure for evaluating the deviation of the frequency of a
string of length 𝑛, in a genomic sequence, from its statistically
expectedmagnitude. Here, we shall also adopt their approach
[4, 5]. Let 𝑤 = 𝑎1𝑎2 ⋅ ⋅ ⋅ 𝑎𝑛 be a sequence of letters, of length
𝑛, encoding amino acids in a genome or random sequence
(𝑎𝑖 ∈ A20 = {a, c, d, e, f , g, h, i, k, l,m,n, p, q, r, s, t, k,w, y},
1 ≤ 𝑖 ≤ 𝑛). Let further 𝑓(𝑤) = 𝑓(𝑎1𝑎2 ⋅ ⋅ ⋅ 𝑎𝑛) denote
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Table 1: Contrast 8-letter factors in the polypeptide sequence of Escherichia coli.

Number 𝑤 𝑓(𝑤) std(𝑤) Number 𝑤 𝑓(𝑤) std(𝑤)
1 11111111 10436 4.686098 61 21121112 3489 3.470266
2 11111112 5225 −6.185607 70 21211111 3439 −3.430215

3 21111111 5214 −6.595223 74 21121111 3430 −3.594918

5 12111111 4886 4.464338 78 11211112 3403 −3.546551

6 11112111 4852 3.606632 82 12211222 3378 −3.168103

7 11111121 4835 3.235524 92 21111121 3341 −4.150119

10 11111122 4126 −3.226558 94 22211221 3337 7.776085
13 22111111 4064 −4.725432 110 12111112 3234 −5.338942

16 11221122 3977 5.215973 119 12121111 3193 3.538106
26 21111112 3749 8.531731 132 21211112 3124 4.053076
29 21112111 3728 −3.948552 155 12211212 3018 −3.143041

30 22111112 3726 5.740505 162 21111212 2980 3.490677
33 22112112 3665 −3.097771 165 12112222 2971 −4.237803

34 11112112 3639 −3.956724 177 22122212 2910 3.511413
40 21111122 3618 4.192473 206 22222222 2767 3.071546
41 21112112 3609 4.460223

the observed frequency of a string 𝑤 in a genome. Given the
observed frequencies of (𝑛 − 2)- and (𝑛 − 1)-mers, one can
calculate the expected frequency of 𝑛-mers in a genome as
follows:

𝜙 (𝑎1𝑎2 ⋅ ⋅ ⋅ 𝑎𝑛) =

𝑓 (𝑎1 ⋅ ⋅ ⋅ 𝑎𝑛−1) 𝑓 (𝑎2 ⋅ ⋅ ⋅ 𝑎𝑛)

𝑓 (𝑎2 ⋅ ⋅ ⋅ 𝑎𝑛−1)

. (11)

To measure the deviation of the observed frequency of string
𝑤 from its expected occurrence in a genome sequence, one
should further define the standard deviation of 𝑤 as

std (𝑤) =
𝑓 (𝑤) − 𝜙 (𝑤)

max (√𝜙 (𝑤), 1)
. (12)

A string is called a contrast factor (or word) if the absolute
value of std(𝑤), defined as above, is greater or equal to some
threshold value (which is set to be 3.0, in [4, 5]). In other
words, a contrast word 𝑤 should obey the claim |std(𝑤)| ≥ 3.

Table 1 contains the values std(𝑤) for all 31 8-character
contrast factors in the polypeptide sequence of Escherichia
coli, wherein the numbers are taken from the full inventory
of all possible 256 8-character factors over the two-character
alphabet A2 = {1, 2}, as these follow in the nonincreasing
order of the magnitudes of 𝑓(𝑤).

Now we shall consider some conclusions.

4. Conclusions

The following inferences can be drawn.

(1) The distribution the most contrast factors approxi-
mately corresponds to that of the most frequent ones.
Say the first 16 out of 31 contrast factors fall into the
group of the 41 most frequent factors, whereas 50 of
the least frequent factors include no contrast factors
whatever. The last, 31st, contrast word is 206th in the
complete list of all 8-character sequences overA2.

(2) It is clearly seen that a “nonpolar” alanine subgroup of
amino acids, denoted by 1, and a “polar” glycine sub-
group, denoted by 2, play asymmetric parts in com-
posing the contrast words. For instance, 1 is the last
character of word 12 times while 2 is at the tail
19 times; truly, at the head of word the respective
numbers are 14 and 17, whose difference seems to be
not so essential. The sums 12 + 14 = 26 and 19 + 17 =
36 also conserve this disbalance of frequencies. Thus,
mutually substituting 1s for all 2s, and vice versa, in
the words collected in Table 1 is not at all an invariant
action on it. Additionally note that out of 8×31 = 248
characters comprising the 31 contrast words 2 appears
only 86 times (or in 34.68% of cases). Separately, the
number of occurrences of 2 in Table 1 for the words
𝑤 with std(𝑤) ≥ 3 is 48 (or 19.35% of cases) and that
for the words with std(𝑤) ≤ −3 is 38 (or 15.32% of
cases). Since the share of 2 in a natural polypeptide
sequence of Escherichia coli is 0.474, contrast factors
in it can comprise only a minor part of its total length
(it is a trivial qualitative fact that is easily deducible
from the data in Table 1). But another readily seen
fact is of paramount importance. Contrast factors
occur chiefly due to the presence of a fattier alanine
subgroup of amino acids, denoted by 1.

(3) Since (the most preferable) contrast factors 𝑤 with
std(𝑤) ≥ 3 and (the most avoidable) contrast factors
with std(𝑤) ≤ −3have practically equal frequencies in
Table 1 (16 and 15, resp.), both types of contrast factors
play a commanding role in forming the polypeptide
sequence (in particular of Escherichia coli). That is,
the synthesis of polypeptides in nature is carried out
so as to give preference to the maximum number of
admissible “preferable” factors and reject the maxi-
mum number of avoidable factors. Though the con-
trast factors themselves comprise only a minor part
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of polypeptide sequence (see above), their existence,
with the underlined preference of one of them and
avoidance of the others, crucially controls the synthe-
sis of polypeptides. Accordingly, noncontrast factors
occur in a quite statistical way and thereby ensure
the conservation of the natural ratio of polar and
fatty amino acids. The current study just emphasizes
the significance of compiling a special dictionary of
contrast factors for polypeptides.

(4) Thus, the role of noncontrast factors is to be the
main buildingmaterial for the aminoacid sequence of
Escherichia coli and, as we may guess, also of such a
sequence of any other organism. Since our proposed
mathematical approach is applicable to an arbitrary
aminoacid sequence, it would be of interest to check
it for different organism, as well as to investigate
aminoacid factors of different lengths (longer than 7,
as in our present work).

The material of this paper has entirely been borrowed
from [6]. Additionally, the interested reader may see also
unsolved combinatorial problems in our earlier publications
[7, 8].
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