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An Observing System Simulation Experiment (OSSE) was designed and developed to assess the potential benefit of the Infrared
Sounding on the Meteosat Third Generation (MTG-IRS) geostationary meteorological satellite system to regional forecasts. In the
proposed OSSE framework, two different models, namely, theMM5 andWRFmodels, were used in a nature run and data assimila-
tion experiments, respectively, to reduce the identical twin problem.The 5-day nature run, which included three convective storms
that occurred during the period from 11 to 16 June 2002 over US Great Plains, was generated usingMM5with a 4 km.The simulated
“conventional” observations and MTG-IRS retrieved temperature and humidity profiles, produced from the nature run, were then
assimilated into the WRF model. Calibration experiments showed that assimilating real or simulated “conventional” observations
yielded similar error statistics in analyses and forecasts, indicating that the developed OSSE system worked well. On average, the
MTG-IRS retrieved profiles had positive impact on the analyses and forecasts.The analyses reduced the errors not only in the tem-
perature and the humidity fields but in the horizontal wind fields as well. The forecast skills of these variables were improved up to
12 hours. The 18 h precipitation forecast accuracy was also increased.

1. Introduction

Remotely sensed satellite observations play an important role
in modern data assimilation and forecast systems [1, 2]. Sate-
llite observations in the visible, infrared, andmicrowave spec-
trum provide a wealth of information on the atmosphere
states. The variational data assimilation technique has been
pursued in research communities and operational centres,
with the main focus on large scale and mesoscale forecast, to
assimilate clear sky and cloudy radiance. For example, at the
European Centre for Medium-Range Weather Forecasts
(ECMWF), an all-sky approach [3] has been developed to
assimilate Special Sensor Microwave/Imager (SSM/I) and
Advanced Microwave Scanning Radiometer for the Earth
Observing system (AMSR-E) data. At National Oceanic and
Atmospheric Administration (NOAA), Weng et al. [4]
developed a hybrid variational scheme to use observations
from the Advanced Microwave Sounding Unit (AMSU)

instruments. Until recently, more attention has been directed
towards cloud-resolving scale data assimilation. Cloudy
infrared radiance assimilation at convection-resolving scale
using a 4-dimensional variational data assimilation system
was studied by Vukicevic et al. [5, 6]. Overall their results
indicate that the analyzed atmospheric fields are improved
after assimilation.

The European Organisation for the Exploitation of Mete-
orological Satellites (EUMETSAT) is preparing for the next
European operational geostationary meteorological satellite
system named the Meteosat Third Generation (MTG). The
MTG series will comprise six satellites, with the first space-
craft likely to be ready for launch in 2017. This program will
provide space-acquired meteorological data until at least the
late 2030s. Details can be found at the EUMETSAT web-
site (http://www.eumetsat.int). Compared to the Meteosat
Second Generation (MSG), the inclusion of an Infrared
Sounding on the MTG (MTG-IRS) will be a new capability,
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which will support regional and convective-scale numerical
weather prediction in Europe, through unprecedented detail
on wind, temperature, and humidity, at high vertical, hori-
zontal, and temporal resolution [7].

Assimilating theMTG-IRS observations into amesoscale
model is expected to improve regional numerical weather
forecast skills. Recent studies suggest that the accurate rep-
resentation of the low-level water vapor and temperature
is crucial for the quantitative precipitation forecast [8, 9].
When realistic mesoscale details of the horizontal varia-
tions in moisture and temperature are included, pronounced
improvements in forecast skills for convective events can be
achieved [10–13]. To evaluate such potentials, quantitative
analyses of the added values of the IRS candidate mission for
regional scale forecasts are performed by the means of the
Observing System Simulation Experiment (OSSE).

The OSSE method is regarded as an efficient way to test
the impact of future observing systems and new data assimi-
lation techniques on weather analysis and prediction [14–17].
A typical OSSE system includes the following components:
a nature run or “truth” run, simulated observations, and
data assimilation and forecast experiment to evaluate the
impact of simulated observations. The calibration of OSSE
assesses the performance of OSSE by comparing the data
impact of existing instruments to their simulated data impact
[14]. The OSSE should reproduce the same/similar real data
impact.

The OSSE system may overestimate benefit of the obser-
vations when the same numerical weather model is used in
the nature run and forecast experiment (i.e., the identical twin
problem). To alleviate this problem, a model with different
physics schemes is often used in regional OSSE to simulate
model errors [16]. In this paper, we employed two different
models in nature run and data assimilation experiments to
further reduce the identical twin problem in the regional
OSSE.The Pennsylvania State University/National Center for
Atmospheric Research (NCAR) Mesoscale Model Version
5 (MM5) was utilized to produce the nature run, whereas
the Weather Research and Forecasting (WRF) model was
used as the forecast model. The MM5 model and WRF
model have different numerical solvers and different physics
parameterizations and grid sizes. Analyses (forecasts) from
different datasets are employed to initialize initial and bound-
ary conditions. It is expected that differences between two
models can reasonably represent the model error. A pair of
calibration experiments, that is, one assimilates real observa-
tionswhile the other assimilates simulated observations, were
conducted to demonstrate the performance of the developed
OSSE system.

This paper describes the framework design of the OSSE
system and summarizes the preliminary results of the poten-
tial benefit ofMTG-IRS on regional forecasts of three convec-
tive storms occurred over the US Great Plains in June 2002.
The OSSE system is characterized by a nature run using the
MM5 model with convective system resolving grid size of
4 km, (rapid update) cycling data assimilation and forecast
experiments using theWRFmodelwith 12 km resolution, and
a pair of calibration experiments. The overview of selected
cases is in Section 2.The methodology and experiment setup

are described in Section 3. Section 4 presents the results of the
OSSE. A summary and discussion are given in Section 5.

2. Overview of Selected Cases

Three convection cases that occurred between 11 and 16 June
2002 during the International H

2
O Project (IHOP 2002)

are selected. These three cases include dry line, convective
storms, and a severe mesoscale convective system (MCS). On
11 June 2002, a dry line formed in theOklahoma panhandle in
the late afternoon.Three storms developed on this particular
day in regions close to the border of Colorado andOklahoma.
On 12 June 2002, a northeast-to-southwest-oriented squall
line from the Kansas and Oklahoma border to the Texas
Panhandle was initiated at around 2100 UTC 12 June 2002. At
the same time, isolated convections formed from the Kansas
and Oklahoma border to Texas. They gradually strengthened
alongmost parts of the dry line, and a severe storm developed
near a triple point that was formed by the dry line and a
cold air outflow. The 15-16 June case is a severe MCS that
occurred over the US central and southern plains in the late
afternoon 15 June 2002. The MCS produced severe weather
including several tornadoes in southern Kansas, and a swath
of wind damage reports through central Oklahoma south-
ward through central Texas as it propagated south-southeast-
ward.More detailed descriptions of three cases were reported
by Wechwerth et al. [13], Dawson and Xue [18], and Wang
et al. [19].

3. Methodology and Experiment Design

3.1. Observing System Simulation Experiment. The OSSE
flowchart is illustrated in Figure 1. The nature run (or “truth”
run) serves as a true atmosphere for the OSSE. The observa-
tional data for existing and testing (nonexiting) instruments
are simulated from the “truth.” The added values of the
testing instruments (MTG-IRS) are evaluated by cycling
data assimilation and forecast experiments with and without
simulated MTG-IRS observations. In addition to evaluating
the impact of testing instruments, another benefit of OSSE is
that the “truth” is known and forecast skills can be assessed
easily. In this study, a calibration run by performing a pair of
experiments, that is, assimilating real or simulated observa-
tions is conducted to demonstrate the performance of the
developed OSSE system. Although it may be difficult to
reproduce the exact real data impact in the OSSE, it should
reproduce the similar real data impact.

In previous published OSSE studies, for example, Masu-
tani et al. [14] used two different global models at ECMWF
and NCEP to mimic model error; and Chen et al. [16] used
the sameWRFmodel but different physics schemes in nature
run and data assimilation experiment to simulate model
errors. In this study, the nature run, data assimilation, and
forecast experiments employ two different mesoscale models
to simulate model errors and thus reduce the identical twin
problem. To further reduce the identical twin problem, two
models were initialized from two different datasets. The Eta
model analyses at 40 km resolution were used to generate
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Figure 1: Flowchart of experiments.

initial and boundary conditions for the nature run, while the
National Center for Environment Prediction (NCEP) Global
Forecast System (GFS) analyses and forecasts reduced to
1∘× 1∘ resolution were used to generate initial and boundary
conditions for WRF model in the data assimilation experi-
ments. Though it is not easy to verify how realistic the model
error is since we do not know much on “true model error,”
the above steps are expected to simulate model error in real-
world data assimilation.

3.2. Models and Data Assimilation System. The MM5 model
version 3.6 [20] and theWRFmodel [21] are employed in the
nature run and data assimilation experiments, respectively.
MM5 is a limited-area, nonhydrostatic, and terrain-following
sigma-coordinate model, which is designed to simulate
mesoscale atmospheric circulation. MM5 uses leapfrog step
time differencing with an Asselin filter. TheWRFmodel pro-
duces the background for the data assimilation experiments
and makes forecasts from the analyses. The WRF model is
a nonhydrostatic, terrain-following mass vertical coordinate
numerical weather prediction and atmospheric simulation
system. The model uses a third-order Runge-Kutta time
integration, the third-to-fifth-order advection operators, and
split-explicit fast wave integration scheme conserving both
mass and energy.

The data assimilation system is the WRF Variational
Data Assimilation System (WRF-Var) [22, 23]. TheWRF-Var
developed atNCAR is a unified (global/regional,multimodel,
3/4D-Var) model-space variational data assimilation system.
A wide range of observation types, including conventional
observations, radar, and satellite radiances, can be assimilated
in WRF-Var. The 3-dimensional component of WRF-Var
(WRF 3D-Var) is employed in this study. A new observation
type named MTG-IRS is added into WRF 3D-Var to assimi-
late retrievedMTG-IRS temperature and water vapor mixing
ratio profiles directly.

3.3. Experiment Setup

3.3.1. Nature Run. The model configuration for the nature
run in this study employs 505 × 505 grid points with 4 km

horizontal resolution and 35 vertical levels. The model top is
at 50 hPa. The domain covers the central areas of the United
States (Figure 2). The Medium Range Forecast boundary
layer scheme [24] and the Reisenermicrophysics scheme [25]
are used. No cumulus parameterization scheme is used. The
MM5 model is initialized at 1200 UTC 11 June 2002 and runs
for 5 days. The initial and boundary conditions are inter-
polated from the NCEP Eta model 40 km analyses. It is
noted that no data assimilation is applied in the nature
run. The model state is saved hourly and then used as the
“true” atmospheric state from which the observations will be
simulated.

3.3.2. SimulatedObservations. Given the true state, simulated
observations can be generated. Conventional observations
such as radiosonde, pibal, surface station observations, and
aircraft report are simulated to provide the basic simulated
observing system for the reference data assimilation experi-
ment. The satellite wind observations are generated as well.
For simplicity, the term “conventional” observation is defined
to include all the observation types (e.g., satellite wind) listed
above. The types and positions of the real observations are
obtained from the NCEP Automated Data Processing obser-
vations. Readers are referred to see websites http://rda.ucar
.edu/ and http://rda.ucar.edu/datasets/ds464.0/ for detailed
descriptions of the data. The forward observation operators
ofWRF-Var are conveniently employed to produce simulated
conventional observations using the atmospheric state in
the MM5 nature run. First, the true simulated observations
are obtained, and the realistic observation errors with Gaus-
sian distributions are then added. The default observation
error statistics in WRF-Var system are used. For specific
values, readers should refer to the observation error file
(obserr.txt) in WRF-Var software (http://www.mmm.ucar
.ucar.edu/wrf/users/wrfda/).

Simulated MTG-IRS temperature and moisture profiles
are generated hourly from the nature run. The package to
perform these simulated retrievals has been used for the
Geostationary Operational Environmental Satellite-R Series
(GOES-R) Hyperspectral Environmental Suite (HES) trade-
off studies at Cooperative Institute for Meteorological Satel-
lite Studies (CIMSS) and described in various publications
(e.g., [28]).The retrieval package consists of two components:
(1) simulation of theMTG-IRS observations and (2) Principle
Component Regression (PCR) retrieval.

(i) Simulation of theMTG-IRSObservations. According to the
MeteosatThird GenerationMission Requirement Document
(MRD), theMTG-IRS candidatemission shallmake observa-
tions in two broad spectral bands, namely, a LWIR band from
700–1210 cm−1 and a MWIR band from 1600–2175 cm−1. The
radiometric noise will range from about 0.2 to 0.9 K. A fast
and accurate transmittance models called Pressure layer Fast
Algorithm for Atmospheric Transmittances (PFAAST) [26]
is chosen to simulate clear sky transmission profiles. This
model was used to simulate observations for the Advanced
Baseline Imager (ABI)/HES candidate missions [27]. The
calculations are made at 101 pressure levels (0.1–1050 hPa).
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Figure 2: Model domain superposed with topography (unit: m) for bothMM5 andWRF.The states and Rocky mountains are also indicated.

The output from nature run is interpolated into these 101
pressure levels and used as input to the transmittance model.
The temperature and humidity retrievals are performed on
these 101 pressure levels.

(ii) PCR Retrieval. Once the radiances at top of atmosphere
in the MTG-IRS channels for a set of atmospheric conditions
have been calculated, they are inverted to get simulated
retrieval profiles of temperature, moisture, and the surface
skin temperature.Thederivation of the regression coefficients
is done on a dataset extracted from the nature run. As with all
statistical regression methods, the accuracy of the retrievals
depends upon the adopted training dataset. A training dataset
was sampled from the nature run every 6 hours such that
a representative dataset was obtained. This means that the
training dataset is not completely independent from the
dataset used for the retrievals. However, it is important to
realize that the PCR retrieval is the first step in the complete
retrieval process. After the PCR retrieval, a nonlinear iterative
physical retrieval on the synthetic observations should be
performed. The objective of the PCR retrieval is therefore to
provide a starting point for the nonlinear iterative physical
retrieval, which is close to the final solution to reduce the
number of iterations.

The radiance dataset calculated for the training dataset
was used to calculate empirical orthogonal functions (EOF)
using a standard singular value decomposition of the covari-
ancematrix. Values for the radiometric noise are added in the
generation of the regression coefficients from a correlation
of the EOFs with the training dataset. The actual PCR retri-
eval is applied to the simulated MTG-IRS radiances. First
these radiances are projected onto the EOFs derived from
the training dataset. Values for temperature, moisture, and
surface temperature are then obtained after the application of
the regression relations. After the PCR retrieval, a nonlinear
iterative procedure is applied to the radiative transfer equa-
tion to further improve the profiles [28].

Currently, the MTG-IRS retrieval algorithm can only
provide temperature and humidity profiles over the clear sky
regions. In addition, the retrieval algorithm cannot deal with
complicated land surfaces over the Rocky Mountains. Thus,
there are no retrievals over the RockyMountain. But in other
clear sky regions in themodel domain, the retrieval algorithm
worked well.

3.3.3. Data Assimilation and Forecast Experiment. TheMTG-
IRS retrieved profiles are assimilated in the presence of other
simulated conventional observations to assess their added



ISRNMeteorology 5

Table 1: List of experiments.

Experiment Cycling period Resolution (km) Initial condition and assimilated data
NoDA

Nature No 4 ETA 40 km analysis
Control No 12 GFS analysis and forecast, no observations

3DVar
ROP 6 h 12 Background (BG)+ real conventional observations
SOP-6hc 6 h 12 BG+ simulated conventional observations (SOP)
SOP-RPtq-6hc 6 h 12 BG + SOP + retrieved profiles (RP) of temperature 𝑇 and humidity q (RPtq)
SOP-RPq-6hc 6 h 12 BG + SOP + retrieved profiles of humidity (RPq)
SOP-1hc 1 h 12 BG + SOP
SOP-RPtq-1hc 1 h 12 BG + SOP + RPtq
POP 6 h 12 BG + perfect observation (POP)

values.The experiments are listed in Table 1 and illustrated in
Figure 1. These experiments shall provide reasonable assess-
ments of the added value of the MTG-IRS retrievals.

The simulated data with high spatial density are thinned
before data assimilation. Satellite winds are thinned to 36 km
grids, and their errors are then assumed to be independent.
The MTG-IRS retrievals have high horizontal error correla-
tions, and they are thinned to 36 km grids for data assimi-
lation. Vertical correlation in retrievals is not considered in
data assimilation. However, retrievals are thinned to the 35
vertical pressure levels in WRF model.

Note that in all the control and assimilation experiments,
the initial and boundary conditions of the WRF model are
interpolated from the 1-degree resolutionNCEPGFS analyses
and subsequent 5-day forecasts at 0000UTC 11 June 2002.The
physics schemes chosen in the WRF simulations include the
Noah land surface model, the WSM6 microphysics scheme
[29] and the Grell scheme [30] for cumulus parameterization.
The WRF model domain covers the same area as MM5.
Limited by the available computational resources, all the
experiments are conducted at 12 km resolution. We con-
ducted several data assimilation and forecast experiments at
4 km at 18 Z to show the sensitivity to model resolutions.
We found that high-resolution simulations only slightly
increase precipitation forecast skill. We also found that
synoptic forcing plays an important role in this case. That is
perhaps the reason that the above experiments did not show
significant sensitivity to resolutions. It is reasonable to believe
that the general conclusions drawn here also apply to 4 km
resolution.

The background error covariance is generated by the
NationalMeteorological Center (NMC)method [31]. Specifi-
cally, a set of cold-start forecasts is initialized from the NCEP
GFS analyses and subsequent forecasts at 0000 UTC and
1200 UTC every day from 5 June 2002 to 19 June 2002. The
differences of 24 h and 12 h forecasts are used to derive the
background error covariance.

The control run is performed without data assimilation.
In the control experiment, theWRFmodel is initialized from
the GFS analysis at 0000 UTC 11 June 2002 and integrated for
5.5 days. Its 18 h forecast valid at 1800UTC 11 June 2002 serves
as the background (BG) fields for the first cycle of other data
assimilation experiments. The control run also serves as the

benchmark for intercomparison with other experiments with
observations assimilated.

The added value of MTG-IRS retrievals is assessed in
a cycling data assimilation and forecast mode. In a cycling
mode, a previous forecast is used as the first guess for the
current analysis.The data assimilation experiments, SOP-6hc
and SOP-1hc, in which only simulated conventional observa-
tions are assimilated, are references experiment for quantify-
ingMTG-IRS data impact. To validate the performance of the
designed OSSE, we also conducted an experiment, ROP, in
which the real conventional observations are assimilated. In
OSSE, the assimilation of real observations will yield similar
error statistics in analyses and forecasts compared to the
assimilation of corresponding simulated observations.

To assess the added value of the retrieved MTG-IRS tem-
perature and moisture profiles, the simulated conventional
observations are assimilated in all data assimilation experi-
ments. For example, in the experiment SOP-RPq-6hc, only
the MTG-IRS humidity profiles are assimilated in addition
to the simulated conventional data every 6 hours, while the
experiment SOP-RPtq-6hc uses both MTG-IRS temperature
and humidity profiles. The experiment SOP-RPtq-1hc is the
same as SOP-RPtq-6hc except the assimilation cycling period
is 1 hour instead of 6 hours.

The POP experiment is designed to assess the maxi-
mum impact of the perfect observations. The temperature,
moisture, and wind profiles obtained directly from the truth
at every 36 km × 36 km grid point are assimilated in this
experiment.

3.3.4. Verification. To objectively evaluate the impacts of
MTG-IRS data on the regional scale analysis and forecast,
traditional skill scores such as the root-mean-square (RMS)
error between an experiment and the “truth” are computed.

The impact on precipitation forecast is quantified in terms
of EquitableThreat Score (ETS) and frequency bias. The ETS
is defined as

ETS =
(hits − hitsrandom)

(hits +misses + false alarms − hitsrandom)
, (1)

where

hitsrandom =
(hits +misses) (hits + false alarms)

Nobs
. (2)
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Figure 3: 6 h accumulated precipitation in the observation (a), (c), and (e) and in the nature run (b), (d), and (f) valid at 0600 UTC 12 (a) and
(b), 0600 UTC 13 (c) and (d) and 0600 UTC 16 (e) and (f) June 2002. Note that, the color scales and map projections are different between
the observation and the simulation.

The frequency bias is the ratio of the forecast frequency
to the observed frequency, that is,

frequency bias = (hits + false alarms)
(hits +misses)

. (3)

Theunits of “hits,” “misses,” and “false alarms” are the number
of grid points where the precipitation exceeds a specified
threshold. Nobs are the total number of grid points being

evaluated. If a forecast is perfect, ETS and frequency bias are
1.0.

4. Results

4.1. The Nature Run. A 5-day nature run covering the
selected three IHOP 2002 convective events is completed
first. Figure 3 compares the 6 h accumulated precipitation of
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Figure 4: Bias and RMS error of (a) the retrieved profiles of 𝑇 (K) and (b) water vapor mixing ratio (g kg−1) valid at different times. Legends
show day and hour.

the nature run to the observations. The rainfall observations
used here are the Stage IV analyses, which are based on
the multisensor hourly/6-hourly “Stage III” analyses on local
4 km polar-stereographic grids produced by the 12 River
Forecast Centers. For more description, the reader is referred
to http://data.eol.ucar.edu/codiac/dss/id=21.093. The nature
run slightly over-estimates the precipitation for the first case
and underestimates the precipitation for the third case. In
general, the MM5 nature run simulates well the positions
of the three rainfall events. Comparing nature run with the
NCEP Eta model 40 km analyses, it is found that nature run
also gives a good simulation of large scale and mesoscale
weather systems. Thus, the simulated atmospheric state from
nature run is serviced as the “true” atmosphere.

4.2. Simulated Observations

4.2.1. Conventional Observations. The numbers of upper air
observations including radiosondes and pibals vary from
cycle to cycle, more at 0000 UTC and 1200 UTC and less at
0600UTC and 1800UTC.The upper air observations at 0000
UTC and 1200 UTC are about 30. For surface observations,
the numbers remain almost unchanged throughout the 6 h
cycles. The typical number of surface observation is about
650. The numbers and positions of the satellite wind and
MTG-IRS retrievals can change dramatically due to weather
conditions.

4.2.2. MTG-IRS Retrievals. The temperature and water vapor
mixing ratio profiles over clear air regions are retrieved. By
comparing the retrievals with the “truth,” it is found that
the retrievals faithfully represent the relatively large-scale

patterns and some mesoscale details of the real tempera-
ture field, especially in the middle atmosphere (figures not
shown). The bias and RMS errors are shown in Figure 4.
The temperature retrievals are more accurate in the middle
levels from 600 to 200 hPa.The RMS error is close or smaller
than 1 K, which is comparable to the Atmospheric Infrared
Sounder (AIRS) and the Infrared Atmospheric Sounding
Interferometer (IASI) retrievals [32, 33]. For humidity, the
retrieved water vapormixing ratio hasmaximumRMS errors
near the surface, and dry bias below 800 hPa. The maximum
error is about 2 g kg−1, which is a little bigger than that from
IASI retrieval [33]. Though it may not be straightforward to
compare the MTG-IRS retrievals with the AIRS and IASI
retrievals, we think that errors in MTG-IRS retrievals are
reasonable and acceptable.

4.3. Calibration Experiments. To validate the performance of
the designed OSSE, we first conducted a pair of calibration
experiments ROP and SOP-6hc to compare the impacts from
assimilating real conventional observations to assimilating
corresponding simulated observations. If the designed OSSE
system works well, the assimilation of real observations
will yield similar error statistics in analyses and forecasts
compared to the assimilation of simulated observations.
Figure 5 shows the bias and RMS errors for temperature,
water vapormixing ratio, and 𝑢-wind and V-wind component
of analyses and forecasts. Two sets of observations produce
similar error statistics. It indicates that the developed OSSE
system performs reasonably well.

4.4. 6-Hourly Cycling Experiments. The WRF 3D-Var analy-
ses were performed in cycling mode starting from 1800 UTC
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Figure 5: Continued.
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Figure 5: Bias and RMS error in temperature ((a), (b)), water vapor ((c), (d)), 𝑢-wind component (m s−1) ((e), (f)), and V-wind component
(m s−1) ((g), (h)) of analyses (left column) and 12-h forecasts (right column) averaged over 1800 UTC 11 June and 1200 UTC 15 June 2002.

11 to 1200 UTC 15 June. The analysis at every 6 h is used
to initialize a 24 h forecast. To better understand the impact
of MTG-IRS retrieved profiles, three types of analysis differ-
ences are computed: (1) the analysis of assimilating simulated
observation profiles (SOP) minus the first guess; (2) the
results of assimilating simulated observations and MTG-IRS
retrievals (SOP-RPtq or SOP-RPq) minus the results of SOP;
(3) the analysis minus the “truth.” The observation number
of MTG-IRS retrieval profiles is much larger than that of the
conventional observations in SOP. We expect that the MTG-
IRS observations will have a greater impact on analysis. The
analysis should be more accurate when both simulated con-
ventional observations and MTG-IRS retrievals are assimi-
lated compared to the analysis produced by assimilating only
simulated conventional observations, given that the MTG-
IRS retrievals are of high qualities.

The analysis at the beginning of the cycle at 1800UTC 11
June is shown in detail since all experiments have the same
background at that time. Figures 6 to 8 give the analysis dif-
ferences in temperature (𝑇), water vapormixing ratio (𝑞), and
horizontal 𝑢-wind at 850 hPa among the experiments SOP-
6hc, SOP-RPtq-6hc, control, and nature run, respectively.
Assimilation of the MTG-IRS temperature and humidity
retrievals (SOP-RPtq-6hc) leads to significant adjustments in
𝑇, 𝑞, and 𝑢 fields (Figures 6(b), 7(b), and 8(b)).

In the background, there is a positive temperature bias
along the Rocky Mountains (Figure 6(e)). Thus, negative
analysis differences shown in Figures 6(a) and 6(b) indicate
MTG-IRS has a larger impact than conventional observa-
tions. Comparing Figures 6(c) and 6(e), it is found that con-
ventional observations help to improve the temperature
analysis in Nebraska. Comparing Figures 6(c), 6(d), and 6(e),
it is found that MTG-IRS observations help to improve the
temperature analysis from Texas to Nebraska along the
mountain range.

The MTG-IRS has a larger impact than conventional
observations in humidity analysis compared Figure 7(b) (or
Figure 7(c) to Figure 7(a)). The humidity increment in SOP-
RPtq-6hc and SOP-RPq-6hc is very similar (Figures 7(b) and
7(c)). Comparing Figures 7(a) to 7(f), it is seen that the
humidity analysis in SOP-6hc is improved near the Rocky
Mountains from Texas to Nebraska. In SOP-RPtq-6hc, the
humidity analysis along the Rocky Mountains is much im-
proved when moisture retrievals are assimilated, but slightly
degraded in south Texas region due to the dry bias in the
retrievals.

MTG-IRS retrievals have little impact on wind analysis
comparing with SOP-6hc. In SOP-6hc, the 𝑢 analysis is
improved in the regions between Texas and Oklahoma. The
maximum wind increment is about 3m s−1 (Figure 8(a)). In
SOP-RPtq-6hc, the maximum wind increment is about
1m s−1 (Figure 8(b)). The wind increments in SOP-RPtq-
6hc are derived from the statistical balance relation between
temperature and wind in the background error covariance.
The 𝑢 analysis in the central Texas region is significantly
improved when comparing Figures 8(c)-8(d) to 8(e). The V
analysis is improved in southeast Texas (figure not shown).

The analyses at other times have also been checked. Anal-
yses show that assimilation of simulated conventional obser-
vations improves analyses of 𝑇, 𝑞, 𝑢, and V compared with
the control experiment. Compared with SOP-6hc, the assim-
ilation of MTG-IRS temperature and humidity retrievals
significantly improves temperature and water vapor analysis,
and slightly improves the wind analysis.

Using the nature run as the “truth,” the RMS errors of the
analysis and the forecast are computed. In each 6-hourly cycl-
ing experiment, there are 16 analyses and 16 forecasts during
the cycling period. The averaged RMS errors at analysis
time are shown in Figure 9. As expected, assimilating the
simulated observations as well as the MTG-IRS retrievals
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Figure 6: Differences of the 850 hPa temperature 𝑇 (unit: K) between (a) SOP-6hc and control, (b) SOP-RPtq-6hc and SOP-6hc, (c) SOP-6hc
and “truth”, (d) SOP-RPtq-6hc and “truth”, and (e) control and “truth”, valid at 1800 UTC 11 June.

(SOP-RPtq-6hc) significantly reduces the analysis errors
compared to the control experiment. Comparing SOP-RPtq-
6hc with SOP-RPq-6hc, assimilating both temperature and
moisture retrievals yields the better temperature analyses and
slightly improves the 𝑢 and V analyses; similar improvements
in moisture analysis are obtained.

The above results indicate the assimilation of MTG-
IRS temperature and humidity profiles significantly reduces
the temperature and the water vapor analysis error in the

low-level atmosphere. Past research shows that the realistic
mesoscale details of the horizontal variations in low-level
moisture and temperature in analyses would help to improve
forecast skills for convective events [8, 12, 13]. Thus, the
forecast accuracy is expected to be increased due to the
improvements of the analyses.

The averaged RMS errors of the 12 h forecast are shown
in Figure 10. It is seen that the assimilation of simulated con-
ventional observations improves the temperature, humidity,
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Figure 7: Differences of the 850 hPa water vapor mixing ratio 𝑞 (unit: g kg−1) between (a) SOP-6hc and control, (b) SOP-RPq-6hc and SOP-
6hc and (c) SOP-RPtq-6hc and SOP-6hc, (d) SOP-6hc and “truth,” (e) SOP-RPq-6hc and “truth”, (f) SOP-RPtq-6hc and “truth,” and (g)
Control and “truth”, valid at 1800 UTC 11 June.
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Figure 8: Differences of the 850 hPa 𝑢 wind (unit: m s−1) between (a) SOP-6hc and control, (b) SOP-RPtq-6hc and SOP-6hc, (c) SOP-6hc
and “truth,” (d) SOP-RPtq-6hc and “truth,” and (e) control and “truth,” valid at 1800 UTC 11 June.

andwind forecasts over the control run.TheMTG-IRS humi-
dity observations (SOP-RPq-6hc) improve the moisture and
upper level wind forecast, but they slightly degrade the tem-
perature forecast in the lower-level atmosphere. Compared
to simulated conventional observations (SOP-6hc), when
the MTG-IRS temperature and humidity observations (SOP-
RPtq-6hc) are assimilated, the temperature and moisture
forecasts are improved significantly over that of wind.

Themaximumpotential impact of perfect observations of
MTG-IRS on analyses can be found in POP in which the
true soundings of temperature, humidity, and 𝑢/V wind at
the same times and locations of the MTG-IRS retrievals are
assimilated. Using the accurate observations produces the
best analyses and forecasts of 𝑢, V, 𝑇, and 𝑞 among all the
cycling experiments (Figures 9 and 10). This suggests that if
MTG-IRS can provide accurate retrievals of 𝑇, 𝑞, as well as
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Figure 9: Averaged RMS errors for experiments POP, SOP-RPq-6hc, SOP-RPtq-6hc, SOP-6hc, and control at analysis time. (a) Zonal wind
component 𝑢 (m s−1), (b) meridional wind component V (m s−1), (c) temperature 𝑇 (K), and (d) water vapor mixing ratio 𝑞 (g kg−1).

winds in all regions, it will impose great values in the analysis
and forecast.

4.5. Hourly Cycling Experiments. Since high temporal reso-
lution MTG-IRS retrievals can be obtained, it is useful to
test their impact on the regional forecasts. Two 1-hourly
cycling experiments have been carried out.TheRMS errors of

the experiments (figures not shown) indicate that increasing
assimilation frequency yields only slight improvements on
the analysis compared to 6-hourly cycling experiments. The
12 h forecast accuracy of temperature and moisture are also
improved, while a neutral impact on the wind forecast is
observed. However, it is found that the hourly cycling has
a noticeable positive impact on precipitation forecasts, as will
be shown in Section 4.6.
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Figure 10: Same as Figure 9 but for 12 h forecast.

4.6. Precipitation Forecast Verification. For the first case, the
equitable threat scores (ETS) and frequency bias for 18 h accu-
mulated rainfall with thresholds of 10mm, 30mm, 50mm,
65mm, 80mm, and 100mm are shown in Figure 11.The fore-
casts are from the analysis at the beginning of the cycle at
1800 UTC 11 June, so that there is no difference between the
forecast from 1- and 6-hourly cycling experiment. Figure 11
shows that SOP-6hc improves only the 10mm precipitation

forecasts. It is evident that assimilating MTG-IRS temper-
ature and humidity retrievals (SOP-RPtq-6hc) substantially
improves the precipitation forecast skill. The MTG-IRS
humidity retrievals improve the rainfall forecast skill below
the threshold of 30mm.The frequency bias shows the rainfall
frequency forecast in experiments SOP-RPtq-6hc, and SOP-
RPq-6hc is comparable to the control experiment, but adding
MTG-IRS temperature and humidity yields better rainfall
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Figure 11: (a) ETS and (b) frequency bias of 18 h accumulated precipitation for experiments control, SOP-6hc, SOP-RPq-6hc, and SOP-RPtq-
6hc, valid at 1200 UTC 12 June.
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Figure 12: (a) ETS and (b) frequency bias of 18 h accumulated precipitation for experiments control, SOP-6hc, SOP-1hc, SOP-RPq-6hc, SOP-
RPtq-6hc, and SOP-RPtq-1hc, valid at 1200 UTC 13 June, 2002.

frequency forecast than assimilating simulated conventional
observations alone (SOP-6hc).

For the second convective event, ETS and frequency
bias for 18 h accumulated rainfall with thresholds of 10mm,
30mm, 50mm, and65mmare shown in Figure 12. In general,
MTG-IRS temperature and moisture retrievals (SOP-RPtq-
6hc) have positive impacts on precipitation forecasts at
thresholds 10mm and 30mm.The rainfall forecast frequency
for experiments SOP-RPtq-6hc and SOP-RPtq-1hc is better
than other data assimilation experiments when threshold is
larger than 10mm.

For the third convective event, the threat scores (figures
not shown) for 18 h accumulated rainfall show thatMTG-IRS

temperature and moisture retrievals (SOP-RPtq-6hc) have
positive impacts on precipitation forecast at threshold 10mm.
The rainfall forecast frequency for experiments SOP-RPtq-
6hc and SOP-RPtq-1hc is better than experiments assimilat-
ing only the simulated conventional data.

The averaged ETS and frequency bias of all 16 forecasts of
18 h accumulated rainfall with thresholds of 10mm, 30mm,
50mm, 65mm, 80mm, and 100mmduring the entire cycling
period are shown in Figure 13. On average, MTG-IRS tem-
perature and humidity retrievals (SOP-RPtq-6hc and SOP-
RPtq-1hc) significantly improve precipitation forecast skill at
thresholds larger than 10mm. All the experiments improve
ETS and bias at threshold 10mm. In general, assimilating
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Figure 13: (a) Averaged ETS and (b) averaged frequency bias of 16 forecasts of 18 h accumulated precipitation for experiments control, SOP-
6hc, SOP-1hc, SOP-RPq-6hc, SOP-RPtq-6hc, and SOP-RPtq-1hc.

hourly MTG-IRS observations yields better precipitation
forecasts than using 6-hourly data in terms of ETS and freq-
uency bias.

5. Summary and Discussion

An OSSE system was designed and conducted to document
the added value of temperature and water vapor observations
derived from theMTG-IRS to regional forecasts, especially to
precipitation prediction.The OSSE system was characterized
by the nature run using theMM5model with 4 km resolution,
and the 12 km resolution 6/1-hourly cycling data assimilation
and forecast experiments using theWRFmodel, and a pair of
calibration experiments.Thenature run anddata assimilation
and forecast experiments employed two different mesoscale
models to reduce the identical twin problem. The calibration
run was conducted to show the performance of the OSSE
system.TheOSSE calibration showed that assimilation of real
or simulated conventional observations gives similar error
statistics in analyses and forecasts, indicating that the devel-
oped OSSE system performed reasonably well.

Three convective cases over USGreat Plains were selected
to showMTG-IRS’s impact on high-impact weather forecasts.
The results showed that theMTG-IRS retrievals have positive
impacts on the analyses and the subsequent forecasts. The
forecast skills for 𝑇, 𝑞, 𝑢, and V are improved up to 12
hours. The 18 h quantitative precipitation forecasts are also
improved, in particular for heavy precipitation events. Fur-
ther positive impacts are obtained by assimilating hourly
MTG-IRS temperature and moisture retrievals.

Although the preliminary results from case studies are
promising, we note that the current OSSE configuration may
overestimate the impact of MTG-IRS retrievals. For conven-
tional observations, the same observation statistics are used

in generating simulated observations and data assimilation
procedure. For MTG-IRS retrievals, the “true” observation
error (against nature run) is used. Currently, only the conven-
tional data are assimilated in control experiments. These can
lead to an overoptimistic assessment of the observation
impact as well. Other issues, for example, sensitivity to fore-
cast model resolution, need to be further studied as well. In
future work, more cases, radar observations, and other types
of satellite data (e.g., microwave radiance and infrared
images) will be simulated in the OSSE system to give a more
realistic estimation of MTG-IRS data on regional forecasts.
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