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The author introduces the concept of the 𝑃-GA-functions, gives Hermite-Hadamard’s inequalities for 𝑃-GA-functions, and defines
a new identity. By using this identity, the author obtains new estimates on generalization ofHadamard and Simpson type inequalities
for 𝑃-GA-functions. Some applications to special means of real numbers are also given.

1. Introduction

Let real function 𝑓 be defined on some nonempty interval
𝐼 of real line R. The function 𝑓 is said to be convex on 𝐼 if
inequality

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≤ 𝑡𝑓 (𝑥) + (1 − 𝑡) 𝑓 (𝑦) (1)

holds for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0, 1].
We recall that a function 𝑓 : 𝐼 ⊂ R → R is said to be

𝑃-function on 𝐼 or belong to the class 𝑃(𝐼) if it is nonnegative
and

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≤ 𝑓 (𝑥) + 𝑓 (𝑦) (2)

for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0, 1]. Note that 𝑃(𝐼) contain all
nonnegative convex and quasiconvex functions [1].

The following inequalities are well known in the literature
as Hermite-Hadamard inequality and Simpson inequality,
respectively.

Theorem 1. Let 𝑓 : 𝐼 ⊆ R → R be a convex function defined
on the interval 𝐼 of real numbers and 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. The
following double inequality holds:

𝑓(
𝑎 + 𝑏

2
) ≤

1

𝑏 − 𝑎
∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≤
𝑓 (𝑎) + 𝑓 (𝑏)

2
. (3)

Theorem 2. Let 𝑓 : [𝑎, 𝑏] → R be a four times con-
tinuously differentiable mapping on (𝑎, 𝑏) and ‖𝑓

(4)
‖
∞

=

sup
𝑥∈(𝑎,𝑏)

|𝑓
(4)

(𝑥)| < ∞. Then the following inequality holds:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

3
[
𝑓 (𝑎) + 𝑓 (𝑏)

2
+ 2𝑓(

𝑎 + 𝑏

2
)] −

1

𝑏 − 𝑎
∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

2880

󵄩󵄩󵄩󵄩󵄩
𝑓
(4)󵄩󵄩󵄩󵄩󵄩∞

(𝑏 − 𝑎)
4
.

(4)

Definition 3 (see [2, 3]). A function 𝑓 : 𝐼 ⊆ (0,∞) → R is
said to be GA-convex (geometric-arithmetically convex) if

𝑓 (𝑥
𝑡
𝑦
1−𝑡

) ≤ 𝑡𝑓 (𝑥) + (1 − 𝑡) 𝑓 (𝑦) (5)

for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0, 1].

In recent years, many authors have studied errors estima-
tions for Hermite-Hadamard and Simpson inequalities; for
refinements, counterparts, and generalization concerning 𝑃-
functions and GA-convex, see [4–11].

In this paper, the concept of the 𝑃-GA-function is intro-
duced, Hermite-Hadamard’s inequalities for 𝑃-GA-functions
are established, and a new identity for differentiable functions
is defined. By using this identity, the author obtains a
generalization of Hadamard and Simpson type inequalities
for 𝑃-GA-functions.
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2. Main Results

Let 𝑓 : 𝐼 ⊆ (0,∞) → R be a differentiable function on 𝐼
∘,

the interior of 𝐼; throughout this section we will take

𝐼𝑓 (𝛼, 𝜆, 𝑎, 𝑏)

= (1 − 𝜆) 𝑓 (𝑎
1−𝛼

𝑏
𝛼
) + 𝜆 [𝛼𝑓 (𝑎) + (1 − 𝛼) 𝑓 (𝑏)]

−
1

ln (𝑏/𝑎)
∫

𝑏

𝑎

𝑓 (𝑢)

𝑢
𝑑𝑢,

(6)

where 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏 and 𝛼, 𝜆 ∈ [0, 1].

Definition 4. A function 𝑓 : 𝐼 ⊆ (0,∞) → R is said to be
𝑃-GA-function (𝑃-geometric-arithmetic function) on 𝐼 if

𝑓 (𝑥
𝑡
𝑦
1−𝑡

) ≤ 𝑓 (𝑥) + 𝑓 (𝑦) , (7)

for any 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0, 1].

Proposition 5. Let 𝑓 : 𝐼 ⊆ (0,∞) → R. If 𝑓 is 𝑃-function
and nondecreasing, then 𝑓 is 𝑃-GA-function on 𝐼.

Proof. This follows from

𝑓 (𝑥
𝑡
𝑦
1−𝑡

) ≤ 𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≤ 𝑓 (𝑥) + 𝑓 (𝑦) , (8)

for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0, 1].

Proposition 6. Let 𝑓 : 𝐼 ⊆ (0,∞) → R. If 𝑓 is 𝑃-GA-
function and nonincreasing, then 𝑓 is 𝑃-function on 𝐼.

Proof. The conclusion follows from

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≤ 𝑓 (𝑥
𝑡
𝑦
1−𝑡

) ≤ 𝑓 (𝑥) + 𝑓 (𝑦) (9)

for all 𝑥, 𝑦 ∈ 𝐼 and 𝑡 ∈ [0, 1], respectively.

Hermite-Hadamard’s inequalities can be represented for
𝑃-GA-functions as follows.

Theorem 7. Let 𝑓 : 𝐼 ⊆ (0,∞) → R be a function such that
𝑓 ∈ 𝐿[𝑎, 𝑏] (𝑓 is integrable on [𝑎, 𝑏]), where 𝑎, 𝑏 ∈ 𝐼with 𝑎 < 𝑏.
If𝑓 is a𝑃-GA-function on [𝑎, 𝑏], then the following inequalities
hold:

𝑓 (√𝑎𝑏) ≤
2

ln (𝑏/𝑎)
∫

𝑏

𝑎

𝑓 (𝑢)

𝑢
𝑑𝑢 ≤ 2 [𝑓 (𝑎) + 𝑓 (𝑏)] , (10)

with 𝛼 > 0.

Proof. Since 𝑓 is a 𝑃-GA-function on [𝑎, 𝑏], we have for all
𝑥, 𝑦 ∈ [𝑎, 𝑏] (with 𝑡 = 1/2 in inequality (7))

𝑓 (√𝑥𝑦) ≤ 𝑓 (𝑥) + 𝑓 (𝑦) . (11)

Choosing 𝑥 = 𝑎
𝑡
𝑏
1−𝑡, 𝑦 = 𝑏

𝑡
𝑎
1−𝑡, we get

𝑓 (√𝑎𝑏) ≤ 𝑓 (𝑎
𝑡
𝑏
1−𝑡

) + 𝑓 (𝑏
𝑡
𝑎
1−𝑡

) . (12)

Integrating the resulting inequality with respect to 𝑡 over
[0, 1], we obtain

𝑓 (√𝑎𝑏) ≤ ∫

1

0

𝑓 (𝑎
𝑡
𝑏
1−𝑡

) + 𝑓 (𝑏
𝑡
𝑎
1−𝑡

) 𝑑𝑡

=
2

ln (𝑏/𝑎)
∫

𝑏

𝑎

𝑓 (𝑢)

𝑢
𝑑𝑢,

(13)

and the first inequality is proved.
For the proof of the second inequality in (10) we first note

that if 𝑓 is a 𝑃-GA-function, then, for 𝑡 ∈ [0, 1], it yields

𝑓 (𝑎
𝑡
𝑏
1−𝑡

) ≤ 𝑓 (𝑎) + 𝑓 (𝑏) ,

𝑓 (𝑏
𝑡
𝑎
1−𝑡

) ≤ 𝑓 (𝑎) + 𝑓 (𝑏) .

(14)

By adding side to side these inequalities and taking square
root we have

𝑓 (𝑎
𝑡
𝑏
1−𝑡

) + 𝑓 (𝑏
𝑡
𝑎
1−𝑡

) ≤ 2 [𝑓 (𝑎) + 𝑓 (𝑏)] , (15)

and, integrating the resulting inequality with respect to 𝑡 over
[0, 1], we obtain

2

ln (𝑏/𝑎)
∫

𝑏

𝑎

𝑓 (𝑢)

𝑢
𝑑𝑢 ≤ 2 [𝑓 (𝑎) + 𝑓 (𝑏)] . (16)

The proof is completed.

In order to prove our main results we need the following
identity.

Lemma 8. Let 𝑓 : 𝐼 ⊆ (0,∞) → R be a differentiable
function on 𝐼

∘ such that𝑓󸀠 ∈ 𝐿[𝑎, 𝑏], where 𝑎, 𝑏 ∈ 𝐼with 𝑎 < 𝑏.
Then for all 𝑥 ∈ [𝑎, 𝑏], 𝜆 ∈ [0, 1], and 𝛼 > 0 one has

𝐼𝑓 (𝛼, 𝜆, 𝑎, 𝑏)

= (ln 𝑏

𝑎
){𝑎𝛼

2
∫

1

0

(𝑡 − 𝜆) (
𝑏

𝑎
)

𝛼𝑡

𝑓
󸀠
(𝑎
1−𝛼𝑡

𝑏
𝛼𝑡
) 𝑑𝑡

− 𝑏(1 − 𝛼)
2
∫

1

0

(𝑡 − 𝜆) (
𝑎

𝑏
)

(1−𝛼)𝑡

× 𝑓
󸀠
(𝑎
(1−𝛼)𝑡

𝑏
1−(1−𝛼)𝑡

) 𝑑𝑡} .

(17)

Proof. By integration by parts and changing the variable, we
can state

𝑎(ln 𝑏

𝑎
)𝛼
2
∫

1

0

(𝑡 − 𝜆) (
𝑏

𝑎
)

𝛼𝑡

𝑓
󸀠
(𝑎
1−𝛼𝑡

𝑏
𝛼𝑡
) 𝑑𝑡

= 𝛼∫

1

0

(𝑡 − 𝜆) 𝑑𝑓 (𝑎
1−𝛼𝑡

𝑏
𝛼𝑡
)

= 𝛼 (𝑡 − 𝜆) 𝑓 (𝑎
1−𝛼𝑡

𝑏
𝛼𝑡
)
󵄨󵄨󵄨󵄨󵄨

1

0
− 𝛼∫

1

0

𝑓 (𝑎
1−𝛼𝑡

𝑏
𝛼𝑡
) 𝑑𝑡

= 𝛼 (1 − 𝜆) 𝑓 (𝑎
1−𝛼

𝑏
𝛼
) + 𝛼𝜆𝑓 (𝑎)

−
1

ln (𝑏/𝑎)
∫

𝑎
1−𝛼
𝑏
𝛼

𝑎

𝑓 (𝑢)

𝑢
𝑑𝑢,

(18)
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and similarly we get

− 𝑏(ln 𝑏

𝑎
) (1 − 𝛼)

2
∫

1

0

(𝑡 − 𝜆) (
𝑎

𝑏
)

(1−𝛼)𝑡

× 𝑓
󸀠
(𝑎
(1−𝛼)𝑡

𝑏
1−(1−𝛼)𝑡

) 𝑑𝑡

= (1 − 𝛼)∫

1

0

(𝑡 − 𝜆) 𝑑𝑓 (𝑎
(1−𝛼)𝑡

𝑏
1−(1−𝛼)𝑡

)

= (1 − 𝛼) (𝑡 − 𝜆) 𝑓 (𝑎
(1−𝛼)𝑡

𝑏
1−(1−𝛼)𝑡

)
󵄨󵄨󵄨󵄨󵄨

1

0

− (1 − 𝛼)∫

1

0

𝑓 (𝑎
(1−𝛼)𝑡

𝑏
1−(1−𝛼)𝑡

) 𝑑𝑡

= (1 − 𝛼) (1 − 𝜆) 𝑓 (𝑎
1−𝛼

𝑏
𝛼
) + (1 − 𝛼) 𝜆𝑓 (𝑏)

−
1

ln (𝑏/𝑎)
∫

𝑏

𝑎1−𝛼𝑏𝛼

𝑓 (𝑢)

𝑢
𝑑𝑢.

(19)

Adding the resulting identities we obtain the desired result.

Theorem 9. Let 𝑓 : 𝐼 ⊂ (0,∞) → R be a differentiable
function on 𝐼

∘ such that 𝑓
󸀠

∈ 𝐿[𝑎, 𝑏], where 𝑎, 𝑏 ∈ 𝐼
∘ with

𝑎 < 𝑏. If |𝑓󸀠|𝑞 is 𝑃-GA-function on [𝑎, 𝑏] for some fixed 𝑞 ≥ 1,
𝛼, 𝜆 ∈ [0, 1], then the following inequality holds:

󵄨󵄨󵄨󵄨󵄨
𝐼𝑓 (𝛼, 𝜆, 𝑎, 𝑏)

󵄨󵄨󵄨󵄨󵄨

≤ (ln 𝑏

𝑎
) (𝜆
2
− 𝜆 +

1

2
)

1−1/𝑞

(
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

)
1/𝑞

× {𝑎𝛼
2
𝐶
1/𝑞

(𝜆, (
𝑏

𝑎
)

𝛼𝑞

)

+ 𝑏(1 − 𝛼)
2
𝐶
1/𝑞

(𝜆, (
𝑎

𝑏
)

(1−𝛼)𝑞

)} ,

(20)

where

𝐶 (𝜆, 𝑢) =
1

ln2𝑢
[(𝑢 − 𝜆 (1 + 𝑢)) ln 𝑢 + 2𝑢

𝜆
− 𝑢 − 1] . (21)

Proof. Since |𝑓
󸀠
|
𝑞 is𝑃-GA-function on [𝑎, 𝑏], for all 𝑡 ∈ [0, 1],

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎
1−𝛼𝑡

𝑏
𝛼𝑡
)
󵄨󵄨󵄨󵄨󵄨

𝑞

≤
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

,

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎
(1−𝛼)𝑡

𝑏
1−(1−𝛼)𝑡

)
󵄨󵄨󵄨󵄨󵄨

𝑞

≤
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

.

(22)

Hence, using Lemma 8 and power mean inequality, we get

󵄨󵄨󵄨󵄨󵄨
𝐼𝑓 (𝛼, 𝜆, 𝑎, 𝑏)

󵄨󵄨󵄨󵄨󵄨

≤ (ln 𝑏

𝑎
)(∫

1

0

|𝑡 − 𝜆| 𝑑𝑡)

1−1/𝑞

× {𝑎𝛼
2
(∫

1

0

|𝑡 − 𝜆| (
𝑏

𝑎
)

𝛼𝑞𝑡

× [
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

] 𝑑𝑡)

1/𝑞

+ 𝑏(1 − 𝛼)
2

× (∫

1

0

|𝑡 − 𝜆| (
𝑎

𝑏
)

(1−𝛼)𝑞𝑡

× [
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

] 𝑑𝑡)

1/𝑞

}

≤ (ln 𝑏

𝑎
) (𝜆
2
− 𝜆 +

1

2
)

1−1/𝑞

(
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

)
1/𝑞

× {𝑎𝛼
2
(∫

1

0

|𝑡 − 𝜆| (
𝑏

𝑎
)

𝛼𝑞𝑡

𝑑𝑡)

1/𝑞

+ 𝑏(1 − 𝛼)
2

× (∫

1

0

|𝑡 − 𝜆| (
𝑎

𝑏
)

(1−𝛼)𝑞𝑡

𝑑𝑡)

1/𝑞

}

≤ (ln 𝑏

𝑎
) (𝜆
2
− 𝜆 +

1

2
)

1−1/𝑞

(
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

)
1/𝑞

× {𝑎𝛼
2
𝐶
1/𝑞

(𝜆, (
𝑏

𝑎
)

𝛼𝑞

)

+𝑏(1 − 𝛼)
2
𝐶
1/𝑞

(𝜆, (
𝑎

𝑏
)

(1−𝛼)𝑞

)} ,

(23)

which completes the proof.

Corollary 10. Under the assumptions of Theorem 9 with 𝑞 =

1, inequality (20) reduced to the following inequality:

󵄨󵄨󵄨󵄨󵄨
𝐼𝑓 (𝛼, 𝜆, 𝑎, 𝑏)

󵄨󵄨󵄨󵄨󵄨

≤ (ln 𝑏

𝑎
) [

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨
]

× {𝑎𝛼
2
𝐶(𝜆, (

𝑏

𝑎
)

𝛼

) + 𝑏(1 − 𝛼)
2
𝐶(𝜆, (

𝑎

𝑏
)

(1−𝛼)

)} .

(24)
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Corollary 11. Under the assumptions of Theorem 9 with 𝛼 =

1/2, inequality (20) reduced to the following inequality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(1 − 𝜆) 𝑓 (√𝑎𝑏) + 𝜆 [
𝑓 (𝑎) + 𝑓 (𝑏)

2
]

−
1

ln (𝑏/𝑎)
∫

𝑏

𝑎

𝑓 (𝑢)

𝑢
𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

4
(ln 𝑏

𝑎
) (𝜆
2
− 𝜆 +

1

2
)

1−1/𝑞

(
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

)
1/𝑞

× {𝑎𝐶
1/𝑞

(𝜆, (
𝑏

𝑎
)

𝑞/2

) + 𝑏𝐶
1/𝑞

(𝜆, (
𝑎

𝑏
)

𝑞/2

)} .

(25)

In particular, for 𝜆 = 0, we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (√𝑎𝑏) −
1

ln (𝑏/𝑎)
∫

𝑏

𝑎

𝑓 (𝑢)

𝑢
𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

4
(ln 𝑏

𝑎
) (

1

2
)

1−1/𝑞

(
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

)
1/𝑞

× {𝑎𝐶
1/𝑞

(0, (
𝑏

𝑎
)

𝑞/2

) + 𝑏𝐶
1/𝑞

(0, (
𝑎

𝑏
)

𝑞/2

)} .

(26)

For 𝜆 = 1, we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑎) + 𝑓 (𝑏)

2
−

1

ln (𝑏/𝑎)
∫

𝑏

𝑎

𝑓 (𝑢)

𝑢
𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

4
(ln 𝑏

𝑎
) (

1

2
)

1−1/𝑞

(
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

)
1/𝑞

× {𝑎𝐶
1/𝑞

(1, (
𝑏

𝑎
)

𝑞/2

) + 𝑏𝐶
1/𝑞

(1, (
𝑎

𝑏
)

𝑞/2

)} ,

(27)

and, for 𝜆 = 1/3,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

3
[
𝑓 (𝑎) + 𝑓 (𝑏)

2
+ 2𝑓 (√𝑎𝑏)] −

1

ln (𝑏/𝑎)
∫

𝑏

𝑎

𝑓 (𝑢)

𝑢
𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

4
(ln 𝑏

𝑎
) (

5

18
)

1−1/𝑞

(
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

)
1/𝑞

× {𝑎𝐶
1/𝑞

(
1

3
, (

𝑏

𝑎
)

𝑞/2

) + 𝑏𝐶
1/𝑞

(
1

3
, (

𝑎

𝑏
)

𝑞/2

)} .

(28)

Theorem 12. Let 𝑓 : 𝐼 ⊂ (0,∞) → R be a differentiable
function on 𝐼

∘ such that 𝑓
󸀠

∈ 𝐿[𝑎, 𝑏], where 𝑎, 𝑏 ∈ 𝐼
∘ with

𝑎 < 𝑏. If |𝑓󸀠|𝑞 is 𝑃-GA-function on [𝑎, 𝑏] for some fixed 𝑞 > 1,
𝛼, 𝜆 ∈ [0, 1], then the following inequality holds:

󵄨󵄨󵄨󵄨󵄨
𝐼𝑓 (𝛼, 𝜆, 𝑎, 𝑏)

󵄨󵄨󵄨󵄨󵄨

≤ (ln 𝑏

𝑎
)(

1

𝑝 + 1
[𝜆
𝑝+1

+ (1 − 𝜆)
𝑝+1

])

1/𝑝

× (
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

)
1/𝑞

× {𝑎
1−𝛼

𝛼
2
𝐿
𝛼−1/𝑞

𝛼𝑞−1
(𝑎, 𝑏) + 𝑏

𝛼
(1 − 𝛼)

2
𝐿
1−𝛼−1/𝑞

(1−𝛼)𝑞−1
(𝑎, 𝑏)} ,

(29)

where (1/𝑝) + (1/𝑞) = 1 and 𝐿𝑛(𝑎, 𝑏) is n-logarithmic mean
defined with 𝐿𝑛(𝑎, 𝑏) := ((𝑏

𝑛+1
− 𝑎
𝑛+1

)/((𝑛 + 1)(𝑏 − 𝑎)))
1/𝑛,

𝑛 ∈ R \ {−1, 0}.

Proof. Since |𝑓
󸀠
|
𝑞 is 𝑃-GA-function on [𝑎, 𝑏] and using

Lemma 8 and Hölder inequality, we get

󵄨󵄨󵄨󵄨󵄨
𝐼𝑓 (𝛼, 𝜆, 𝑎, 𝑏)

󵄨󵄨󵄨󵄨󵄨

≤ (ln 𝑏

𝑎
)(∫

1

0

|𝑡 − 𝜆|
𝑝
𝑑𝑡)

1/𝑝

(
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

)
1/𝑞

× {𝑎𝛼
2
(∫

1

0

(
𝑏

𝑎
)

𝛼𝑞𝑡

𝑑𝑡)

1/𝑞

+ 𝑏(1 − 𝛼)
2
(∫

1

0

(
𝑎

𝑏
)

(1−𝛼)𝑞𝑡

𝑑𝑡)

1/𝑞

}

≤ (ln 𝑏

𝑎
)(

1

𝑝 + 1
[𝜆
𝑝+1

+ (1 − 𝜆)
𝑝+1

])

1/𝑝

× (
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

)
1/𝑞

× {𝑎
1−𝛼

𝛼
2
𝐿
𝛼−1/𝑞

𝛼𝑞−1
(𝑎, 𝑏) + 𝑏

𝛼
(1 − 𝛼)

2
𝐿
1−𝛼−1/𝑞

(1−𝛼)𝑞−1
(𝑎, 𝑏)} .

(30)

Here it is seen by simple computation that

∫

1

0

|𝑡 − 𝜆|
𝑝
𝑑𝑡 =

1

𝑝 + 1
[𝜆
𝑝+1

+ (1 − 𝜆)
𝑝+1

] ,

∫

1

0

(
𝑏

𝑎
)

𝛼𝑞𝑡

𝑑𝑡 =

𝐿
𝛼𝑞−1

𝛼𝑞−1
(𝑎, 𝑏)

𝑎𝛼𝑞
,

∫

1

0

(
𝑎

𝑏
)

(1−𝛼)𝑞𝑡

𝑑𝑡 =

𝐿
(1−𝛼)𝑞−1

(1−𝛼)𝑞−1
(𝑎, 𝑏)

𝑏(1−𝛼)𝑞
.

(31)

Hence, the proof is completed.
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Corollary 13. Under the assumptions of Theorem 12 with 𝛼 =

1/2, inequality (29) reduced to the following inequality:

(1 − 𝜆) 𝑓 (√𝑎𝑏) + 𝜆 [
𝑓 (𝑎) + 𝑓 (𝑏)

2
]

−
1

ln (𝑏/𝑎)
∫

𝑏

𝑎

𝑓 (𝑢)

𝑢
𝑑𝑢

≤
1

4
(ln 𝑏

𝑎
)(

1

𝑝 + 1
[𝜆
𝑝+1

+ (1 − 𝜆)
𝑝+1

])

1/𝑝

× (
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

)
1/𝑞

× (√𝑎 +√𝑏) 𝐿
(𝑞−2)/2𝑞

𝑞/2−1
(𝑎, 𝑏) .

(32)

In particular, for 𝜆 = 0, we get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (√𝑎𝑏) −
1

ln (𝑏/𝑎)
∫

𝑏

𝑎

𝑓 (𝑢)

𝑢
𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

4
(ln 𝑏

𝑎
)(

1

𝑝 + 1
)

1/𝑝

(
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

)
1/𝑞

× (√𝑎 + √𝑏) 𝐿
(𝑞−2)/2𝑞

𝑞/2−1
(𝑎, 𝑏) .

(33)

For 𝜆 = 1, we get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑎) + 𝑓 (𝑏)

2
−

1

ln (𝑏/𝑎)
∫

𝑏

𝑎

𝑓 (𝑢)

𝑢
𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

4
(ln 𝑏

𝑎
)(

1

𝑝 + 1
)

1/𝑝

(
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

)
1/𝑞

× (√𝑎 + √𝑏) 𝐿
(𝑞−2)/2𝑞

𝑞/2−1
(𝑎, 𝑏) ,

(34)

and, for 𝜆 = 1/3, we get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

3
[
𝑓 (𝑎) + 𝑓 (𝑏)

2
+ 2𝑓 (√𝑎𝑏)] −

1

ln (𝑏/𝑎)
∫

𝑏

𝑎

𝑓 (𝑢)

𝑢
𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

4
(ln 𝑏

𝑎
)(

1 + 2
𝑝+1

(𝑝 + 1) 3𝑝+1
)

1/𝑝

(
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑎)

󵄨󵄨󵄨󵄨󵄨

𝑞

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑏)

󵄨󵄨󵄨󵄨󵄨

𝑞

)
1/𝑞

× (√𝑎 + √𝑏) 𝐿
(𝑞−2)/2𝑞

𝑞/2−1
(𝑎, 𝑏) .

(35)

3. Application to Special Means

Let us recall the following special means of two nonnegative
numbers 𝑎, 𝑏 with 𝑏 > 𝑎:

(1) the arithmetic mean

𝐴 = 𝐴 (𝑎, 𝑏) :=
𝑎 + 𝑏

2
, (36)

(2) the weighted arithmetic mean

𝐴𝛼 = 𝐴𝛼 (𝑎, 𝑏) := 𝛼𝑎 + (1 − 𝛼) 𝑏, 𝛼 ∈ [0, 1] , (37)

(3) the geometric mean

𝐺 = 𝐺 (𝑎, 𝑏) :=
𝑎 + 𝑏

2
, (38)

(4) the weighted geometric mean

𝐺𝛼 = 𝐺𝛼 (𝑎, 𝑏) := 𝑎
𝛼
𝑏
1−𝛼

, 𝛼 ∈ [0, 1] , (39)

(5) the logarithmic mean

𝐿 = 𝐿 (𝑎, 𝑏) :=
𝑏 − 𝑎

ln 𝑏 − ln 𝑎
, (40)

(6) the 𝑛-logarithmic mean

𝐿𝑛 = 𝐿𝑛 (𝑎, 𝑏) := (
𝑏
𝑛+1

− 𝑎
𝑛+1

(𝑛 + 1) (𝑏 − 𝑎)
)

1/𝑛

, 𝑛 ∈ R \ {−1, 0} .

(41)

Proposition 14. For 𝑏 > 𝑎 > 0, 𝑛 ∈ N, 𝑛 ≥ 2, and 𝑞 ≥ 1, one
has

󵄨󵄨󵄨󵄨(1 − 𝜆)𝐺
𝑛

1−𝛼
(𝑎, 𝑏) + 𝜆𝐴𝛼 (𝑎

𝑛
, 𝑏
𝑛
) − 𝐿
𝑛

𝑛
(𝑎, 𝑏)

󵄨󵄨󵄨󵄨

≤ 𝑛 (ln 𝑏

𝑎
) (𝜆
2
− 𝜆 +

1

2
)

1−1/𝑞

(𝑎
(𝑛−1)𝑞

+ 𝑏
(𝑛−1)𝑞

)
1/𝑞

× {𝑎𝛼
2
𝐶
1/𝑞

(𝜆, (
𝑏

𝑎
)

𝛼𝑞

)

+ 𝑏(1 − 𝛼)
2
𝐶
1/𝑞

(𝜆, (
𝑎

𝑏
)

(1−𝛼)𝑞

)} ,

(42)

where 𝐶 is defined as in (21).

Proof. Let 𝑓(𝑥) = 𝑥
𝑛, 𝑥 > 0, 𝑛 ≥ 2, and 𝑞 ≥ 1.

Proposition 15. For 𝑏 > 𝑎 > 0, 𝑛 ∈ N, 𝑛 ≥ 2, and 𝑞 > 1, one
has

󵄨󵄨󵄨󵄨(1 − 𝜆)𝐺
𝑛

1−𝛼
(𝑎, 𝑏) + 𝜆𝐴𝛼 (𝑎

𝑛
, 𝑏
𝑛
) − 𝐿
𝑛

𝑛
(𝑎, 𝑏)

󵄨󵄨󵄨󵄨

≤ 𝑛 (ln 𝑏

𝑎
)(

1

𝑝 + 1
[𝜆
𝑝+1

+ (1 − 𝜆)
𝑝+1

])

1/𝑝

× (𝑎
(𝑛−1)𝑞

+ 𝑏
(𝑛−1)𝑞

)
1/𝑞

× {𝑎
1−𝛼

𝛼
2
𝐿
𝛼−1/𝑞

𝛼𝑞−1
(𝑎, 𝑏) + 𝑏

𝛼
(1 − 𝛼)

2
𝐿
1−𝛼−1/𝑞

(1−𝛼)𝑞−1
(𝑎, 𝑏)} .

(43)

Proof. Let 𝑓(𝑥) = 𝑥
𝑛, 𝑥 > 0, 𝑛 ≥ 2, and 𝑞 > 1.
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