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The solution to the Hamilton-Jacobi equation associated with the nonlinear H
∞

control problem is approximated using a
Taylor series expansion. A recently developed analytical solution method is used for the second-, third-, and fourth-order terms.
The proposed controller synthesis method is applied to the problem of satellite attitude control with attitude parameterization
accomplished using the modified Rodrigues parameters and their associated shadow set. This leads to kinematical relations that
are polynomial in the modified Rodrigues parameters and the angular velocity components. The proposed control method is
comparedwith existingmethods from the literature through numerical simulations. Disturbance rejection properties are compared
by including the gravity-gradient and geomagnetic disturbance torques. Controller robustness is also compared by including
unmodeled first- and second-order actuator dynamics, as well as actuation time delays in the simulation model. Moreover, the
gap metric distance induced by the unmodeled actuator dynamics is calculated for the linearized system.The results indicated that
a linear controller performs almost as well as those obtained using higher-order solutions for the Hamilton-Jacobi equation and
the controller dynamics.

1. Introduction

The attitude control problem is critical for most satellite
applications and has thus attracted extensive interest. While
many control methods have been developed to address this
problem, most of them are concerned primarily with the
optimality of attitude maneuvers [1–4]. In the present work,
we shall focus on robust nonlinear control systems. We note
that, throughout this paper, by nonlinear H

∞
we mean the

L
2
-gain of a nonlinear system.
Control laws are generally developed based on mathe-

matical models that are, at best, a close approximation of
real-world phenomena. For such control methods to have
any real practical value, they must be made robust with
regard to unmodeled dynamics and disturbances that may
act on the system. The study of robust control is therefore an
essential part of the application of control theory to physical
systems. In general, the development of an optimal nonlinear

state feedback control law is characterized by the solution
to a Hamilton-Jacobi partial differential equation (HJE) [5],
while a robust nonlinear controller is obtained from the
solution of one or more Hamilton-Jacobi equations [6–9].
However, no general analytical solution has yet been obtained
to solve this optimization problem. Solutions have thus far
only been obtained under certain conditions: in the case of
linear systems with a quadratic performance index, the HJE
reduces to the well-known algebraic Riccati equation (ARE).
It is noted that the concept of dissipativity, which is closely
related to optimal and robust control, is characterized by a
Hamilton-Jacobi inequality [10–12].

Extensive work has been carried out to approximate the
solution ofHamilton-Jacobi equations through aTaylor series
expansion [13–17]. Although such a series expansion results
in an infinite-order polynomial, finite-order approximations
can be used to obtain suboptimal solutions to an HJE. We
also note the work in [18, 19] which uses series solution
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methods for nonlinear optimal control problems. It has been
shown that a local solution to an HJE can be obtained by
solving the ARE for the linear approximation of the system
[6, 7, 20]. Methods that have been developed over the past
decades to attempt to solve this problem include the Zubov
procedure [21, 22], the state-dependent Riccati equation [23,
24], the Galerkin method for the equivalent sequence of first-
order partial differential equations [25, 26], and the use of
symplectic geometry to examine the associated Hamiltonian
system [27]. However, one aspect that is lacking in all the
above methods is an analytical solution to the approximate
equations.

The primary purpose of this paper is to develop robust
nonlinear controllers based on analytical expressions for
approximate solutions to the Hamilton-Jacobi equation. In
particular, we shall provide analytical expressions for the
second-, third-, and fourth-order terms of the approxima-
tion solution. These controllers are then compared through
numerical simulations with existing methods from the lit-
erature for spacecraft attitude regulation [1–4]. Our objec-
tive is to examine the effects of different disturbances and
uncertainties on the performance and robustness of the
various controllers. More specifically, we include gravity-
gradient and geomagnetic torques, as well as unmodeled
actuator dynamics and actuation time delays. Moreover,
we make use of the gap metric [28] to characterize the
difference in the input-output (IO) map of the system
induced by the unmodeled actuator dynamics. However,
since we cannot calculate the gap between two nonlinear
systems, we calculate the gap metric distance for the lin-
earized system only. In contrast with some of the methods
used for comparison, which were developed specifically to
address the attitude control problem, the method presented
in this paper is a general controller synthesis method
and has also been applied to spacecraft formation flying
[29].

The outline of the paper is as follows. In Section 2,
a detailed description of the general class of systems is
given, along with the controller synthesis method that is
proposed. This controller is the solution of an appropriate
nonlinearH

∞
problem and is taken from the work of James

et al. [9]. Then, the nonlinear equations of motion for the
satellite attitude dynamics are given in Section 3. Section 4
presents simulation results using the proposed controller and
comparisons are made with existing methods. Finally, some
conclusions and suggestions for future work are stated in
Section 5. We note here that some of these results also appear
in past conference proceedings [30, 31] with the present paper
containing improvements to the overall presentation.

2. Nonlinear Controller Synthesis Approach

This section provides the main results of our approach to
robust nonlinear controller synthesis.We begin by describing
the class of nonlinear systems with which we are concerned
and define robustness in the gap metric. Then, the nonlinear
H
∞

control problem is presented. Finally, the analytic solu-
tions for the second-, third-, and fourth-order terms in the
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Figure 1: Block diagram of system (1) with controller (2).

Taylor series approximation to the solution of the Hamilton-
Jacobi equation (HJE) are stated.

2.1. Class of Nonlinear Systems. Consider the nonlinear sys-
tem shown in Figure 1. The plant is given by

P : {

ẋ (𝑡) = a (x) + b (x) u
1
(𝑡) ,

y
1
(𝑡) = c (x) , (1)

where a(x), b(x), and c(x) are assumed to be smooth (i.e.,
𝐶
∞) nonlinear functions of the plant states with a(0) = 0 and

c(0) = 0 (i.e., x(𝑡) = 0 is an equilibrium). The controller is
described by

K : {

ẋ
𝑐
(𝑡) = a

𝑐
(x
𝑐
) + b
𝑐
(x
𝑐
) y
2
(𝑡) ,

u
2
(𝑡) = c

𝑐
(x
𝑐
) ,

(2)

where a
𝑐
(x
𝑐
), b
𝑐
(x
𝑐
), and c

𝑐
(x
𝑐
) are smooth nonlinear func-

tions of the controller states. Additionally, the following
relations hold:

u
1
(𝑡) = u

0
(𝑡) − u

2
(𝑡) ,

y
2
(𝑡) = y

0
(𝑡) − y

1
(𝑡) .

(3)

In the above, x(𝑡) ∈ R𝑁 is the plant state vector, x
𝑐
(𝑡) ∈ R𝑁𝑐

is the controller state vector, u
2
(𝑡) ∈ R𝑁𝑢 is the control

signal, u
0
(𝑡) ∈ R𝑁𝑢 is the exogenous (disturbance) input,

u
1
(𝑡) ∈ R𝑁𝑢 is the actual plant input, y

1
(𝑡) ∈ R𝑁𝑦 is the actual

plant output, y
0
(𝑡) ∈ R𝑁𝑦 is the reference and/or sensor noise

signal, and y
2
(𝑡) ∈ R𝑁𝑦 is the tracking error.

The plant in (1) can be written as

P
⋆

:

{
{
{
{
{

{
{
{
{
{

{

ẋ (𝑡) = a (x) + [b (x) 0]w (𝑡) + [−b (x)]u (𝑡) ,

[

z
1
(𝑡)

z
2
(𝑡)

] = [

0
−c (x)] + [

0 0
0 1

]w (𝑡) + [

1

0]u (𝑡) ,

y (𝑡) = [−c (x)] + [0 1]w (𝑡) ,

(4)

where

w (𝑡) = [

u
0
(𝑡)

y
0
(𝑡)

] , z (𝑡) = [

z
1
(𝑡)

z
2
(𝑡)

] = [

u
2
(𝑡)

y
2
(𝑡)

] ,

u (𝑡) = u
2
(𝑡) , y (𝑡) = y

2
(𝑡) .

(5)

The generalized system in (4) is shown in Figure 2. The first
equation in (4) defines the plant dynamics with state variable
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x(𝑡), control input u(𝑡), and subject to a set of exogenous
inputs w(𝑡), which includes disturbances (to be rejected),
references (to be tracked), and/or noise (to be filtered). The
second equation defines the penalty variable z(𝑡) representing
the outputs of interest, which may include a tracking error,
a function of some of the exogenous variables w(𝑡), and
a cost of the input u(𝑡) needed to achieve the prescribed
control goal. The third equation defines the set of measured
variables y(𝑡), which are functions of the plant state x(𝑡) and
the exogenous inputs w(𝑡). As we shall see next, we will be
concerned with defining an upper bound on the L

2
-gain

from the disturbance inputs w(𝑡) to the outputs z(𝑡) of the
system in (4).

2.2. Robustness in the Gap Metric. In general, the plant and
controller are assumed to be causal mappings from their
respective inputs and outputs; that is, P : U → Y and
K : Y → U, which satisfy P0 = 0 and K0 = 0,
where U and Y are appropriate signal spaces. In particular,
these mappings can be represented by (1) and (2). Thus, in
the feedback configuration of Figure 1, the signals u

𝑖
belong

to U and the signals y
𝑖
belong to Y, where 𝑖 ∈ {0, 1, 2}. The

input-output relations describing the plant and controller can
be represented by their respective graphs:

GP := {[

u
Pu] : u ∈ U, Pu ∈ Y} ,

GK := {[

Ky
y ] : Ky ∈ U, y ∈ Y} ,

(6)

where GP, GK ⊂ W = U ×Y. For a plant P
0
with M

0
:=

GP
0

and a plant P
1
with M

1
:= GP

1

, the 𝜌-gap between
these two plants is defined as [9, 28]

𝜌
𝑔
(P
0
,P
1
) = max { ⃗𝜌

𝑔
(P
0
,P
1
) , ⃗𝜌
𝑔
(P
1
,P
0
)} , (7)

where
⃗𝜌
𝑔
(P
0
,P
1
)

= sup
0 ̸= k
0
∈M
0

inf
k
1
∈M
1

(




k
0
− k
1






2

+




P
0
k
0
−P
1
k
1






2

)

1/2

(




k
0






2

+




P
0
k
0






2

)

1/2

(8)

and ⃗𝜌
𝑔
(P
1
,P
0
) is similarly defined. The norm used here,

‖(⋅)‖, is defined in [9].
It has been shown [9, 32] that, for a stable feedback pair

(P
0
,K), if a systemP

1
is such that

𝜌
𝑔
(P
0
,P
1
) <






ΠN‖M

0







−1

∞

, (9)

then the feedback system (P
1
,K) is also stable. The symbol

ΠN‖M defines a parallel projection operator [32] and repre-
sents the closed-loop mapping from the disturbances w(𝑡) to
the outputs z(𝑡) shown in Figure 2. The L

2
-gain of ΠN‖M is

the induced norm defined by





ΠN‖M




∞

= sup
0 ̸=w∈L

2

‖z‖2
‖w‖2

, (10)
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Figure 2: Block diagram of generalized system (4) with controller
(2).

where theL
2
-norm is defined by ‖z‖

2
= √∫

∞

0

z𝑇z 𝑑𝑡.
Thus, to minimize the effects of the disturbances w(𝑡)

on the outputs z(𝑡), which simultaneously achieves optimal
robustness, the objective is to design a controllerK such that
‖ΠN‖M

0

‖
∞

is minimized. However, no closed-form solution
exists to this optimal control problem. Instead, we shall be
concernedwith the suboptimal problem: given some constant
scalar 𝛾, design K such that ‖ΠN‖M

0

‖
∞

< 𝛾. Note that a
𝛾-iteration procedure can be applied to obtain the optimal
solution within an arbitrary tolerance. It will be shown that
the controller that satisfies this objective can be obtained from
the solution to a single Hamilton-Jacobi equation.

2.3. Nonlinear H
∞

Control Problem. As indicated in the
previous subsection, we are concerned with rendering
‖ΠN‖M

0

‖
∞

< 𝛾. In other words, we wish to bound the L
2
-

gain from the disturbance inputs w(𝑡) to the outputs z(𝑡) of
the system in (4). Without providing the details, it is noted
that the HJE corresponding to (4) is dependent on 𝛾 and
the quadratic term is sign-indefinite (i.e., is neither positive
definite nor negative definite). However, by performing a
certain transformation [9, 33], the generalized system can
be written in a form where the outputs z(𝑡) are not explicit
functions of the disturbances w(𝑡). The resulting HJE is
no longer dependent on 𝛾 and is sign-definite. The system
resulting from this transformation is described by

P
⋆

:

{
{
{
{

{
{
{
{

{

ẋ (𝑡) = a (x) + [−b (x) 0]w (𝑡) + [−b (x)] + u (𝑡) .

[

z
1
(𝑡)

z
2
(𝑡)

] = [

0
−𝛽
−1c (x)] + [

1

0] u (𝑡) ,

y (𝑡) = [−𝛽
−1c (x)] + [0 −1]w (𝑡) ,

(11)

where 𝛽 = √1 − 𝛾
−2. Now, the HJE corresponding to the

system in (11) is given by

∇𝑉 (x)A (x) − 1

2

∇𝑉 (x)R (x) ∇𝑉𝑇 (x) + 1

2

Q (x) = 0,

(12)

where ∇𝑉(x) is the Jacobian matrix of the storage function
𝑉(x) and is defined as

∇𝑉 (x) = 𝜕𝑉

𝜕x𝑇
= row

𝑖
{

𝜕𝑉

𝜕𝑥
𝑖

} (13)
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with row
𝑖
{⋅} denoting a row matrix in the index

𝑖 ∈ {1, 2, . . . , 𝑁}. For the system in (11), we have the
parameters [9]

A (x) = a (x) ,

R (x) = b (x) b𝑇 (x) ,

Q (x) = c𝑇 (x) c (x) .

(14)

The name used in the literature for the HJE in (12) is not
uniform. In the context of robust control, it is sometimes
referred to as the Hamilton-Jacobi-Isaacs equation and when
used in nonlinear optimal control it is often referred to as
the Hamilton-Jacobi-Bellman equation. In [9] it is referred
to as the Hamilton-Jacobi-Bellman-Isaacs equation. We will
simply call it the HJE.

It is shown in [9] that the controller K that solves the
suboptimal H

∞
problem for the plant P⋆ (i.e., renders

‖ΠN‖M
0

‖
∞

< 𝛾) is related to that (call it K) which solves
the same problem for the modified plantP

⋆

as follows:K =

K𝛽. We now construct thisK. Denote by 𝑉
+
(x) the unique

smooth solution to the HJE (12) that satisfies 𝑉
+
(x) ≥ 0 and

𝑉
+
(0) = 0, with

+ [A (x) −R (x) ∇𝑉𝑇
+
(x)] (15)

asymptotically stable. Similarly, we denote by 𝑉
−
(x) the

unique smooth solution to the HJE that satisfies 𝑉
−
(x) ≤ 0

and 𝑉
−
(0) = 0, with

− [A (x) −R (x) ∇𝑉𝑇
−
(x)] (16)

asymptotically stable.
Following the approach of James et al. [9], a local solution

to the nonlinear H
∞

control problem for the plant in (4) is
obtained if the following conditions are satisfied.

(1) There exists a 𝐶
3 positive-definite function 𝑉

+
(x)

defined in a neighbourhood of the originwith𝑉
+
(0) =

0 that satisfies the HJE (12).
(2) There exists a 𝐶

3 negative-definite function 𝑉
−
(x)

defined in a neighbourhood of the originwith𝑉
−
(0) =

0 that satisfies the HJE (12), and additionally satisfies

∇
2

{−∇𝑟
2𝑒
(A + 𝛾

−2

𝛽
−2

R∇𝑉
𝑇

+
)

+

1

2

𝛾
−2

∇𝑟
2𝑒
R∇𝑟
𝑇

2𝑒
+

1

2

𝛽
−4

∇𝑉
+
R∇𝑉

𝑇

+

−

1

2

𝛾
2

𝛽
−2

Q} < 0,

(17)

where

𝑟
2𝑒
(x) = 𝛽

−2

𝑉
+
(x) + 𝛾2𝑉

−
(x) . (18)

(3) There exists a 𝐶2 function G
2
(x) such that

∇𝑟
2𝑒
(x)G
2
(x) = 𝛾

2

𝛽
−1c𝑇 (x) (19)

in a neighbourhood of the origin.

The resulting nonlinear controller is given by

K :

{
{
{

{
{
{

{

ẋ
𝑐
= a (x

𝑐
) − b (x

𝑐
) b𝑇 (x

𝑐
) ∇𝑉
𝑇

+
(x
𝑐
)

+ G
2
(x
𝑐
) [𝛽
−1c (x

𝑐
) + 𝛽y

2
] ,

u
2
(x
𝑐
) = 𝛽
−2b𝑇 (x

𝑐
) ∇𝑉
𝑇

+
(x
𝑐
) .

(20)

In the next subsection, we shall examine how to obtain
analytical expressions for the approximate solution to theHJE
in (12) required for this control law.

2.4. Analytical Solutions to HJE Approximation. Our
approach for the synthesis of nonlinear controllers is based
on the Taylor series approximation of the solution to the
Hamilton-Jacobi equation, where each order of the controller
is built using the previous orders. The following notation will
be used: row

𝑘
{⋅} denotes a row matrix with index 𝑘, col

𝑘
{⋅}

denotes a column matrix with index 𝑘, and mat
𝑚𝑛
{⋅} denotes

a matrix with row index 𝑚 and column index 𝑛. It should
be emphasized that the symbols 𝑘, 𝑚, and 𝑛 used here are
dummy indices. In general, 𝐴(𝑖,𝑗) refers to the (𝑖, 𝑗)th entry
of the matrix A. We will denote the positive-semidefinite
solution 𝑉

+
(x) of the HJE (12) simply by 𝑉(x).

Consider the nonlinear system in (1).We begin bymaking
the assumptions that b(x) = B and c(x) = Cx, where B and
C are constant matrices. From these assumptions, R(x) is a
constant matrix, which we will denote simply by R = BB𝑇,
and Q(x) is a quadratic form, which we will write as x𝑇Qx,
where Q = C𝑇C. Thus, the only nonlinearities present are
in the system a(x) matrix. For the purpose of the results to
be presented, this nonlinear function will be approximated
to fourth order. It should be noted that some of these terms
may be zero, depending on the system considered.Therefore,
we have the following approximation:

a (x) = a
1
(x) + a

2
(x) + a

3
(x) + a

4
(x) , (21)

where

a
1
(x) = A

1
x = col

𝑘
{∑

𝑛

𝐴
(𝑘,𝑛)

1
𝑥
𝑛
} ,

a
2
(x) = col

𝑘
{x𝑇A
2𝑘
x} = col

𝑘

{

{

{

∑

𝑖

∑

𝑗

𝑥
𝑖
𝑥
𝑗
𝐴
(𝑖,𝑗)

2𝑘

}

}

}

,

a
3
(x) = mat

𝑚𝑛
{x𝑇A
3𝑚𝑛

x} x

= col
𝑚

{

{

{

∑

𝑛

(∑

𝑖

∑

𝑗

𝑥
𝑖
𝑥
𝑗
𝐴
(𝑖,𝑗)

3𝑚𝑛
)𝑥
𝑛

}

}

}

,

a
4
(x) = col

𝑘
{x𝑇mat

𝑚𝑛
{x𝑇A
4𝑘𝑚𝑛

x} x}

= col
𝑘

{

{

{

∑

𝑚

∑

𝑛

𝑥
𝑚
𝑥
𝑛
(∑

𝑖

∑

𝑗

𝑥
𝑖
𝑥
𝑗
𝐴
(𝑖,𝑗)

4𝑘𝑚𝑛
)

}

}

}

(22)

and the summations run from 0 to 𝑁. Here, A
1
, A
2𝑘
, A
3𝑚𝑛

,
andA

4𝑘𝑚𝑛
are families of𝑁×𝑁 squarematrices.We shall also
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find it useful to define the column matrices a
2𝑖𝑗

= col
𝑘
{𝐴
(𝑖,𝑗)

2𝑘
}

and a
3𝑛𝑗𝑘

= col
𝑚
{𝐴
(𝑗,𝑘)

3𝑚𝑛
} whose entries can be used to form

A
2𝑘
and A

3𝑚𝑛
, respectively.

Additionally, consider a storage function 𝑉(x) for which
∇𝑉 (x) = ∇𝑉

1
(x) + ∇𝑉

2
(x) + ∇𝑉

3
(x) + ∇𝑉

4
(x) , (23)

where

∇𝑉
1
(x) = x𝑇P

1
= row

𝑛
{∑

𝑚

𝑥
𝑚
𝑃
(𝑚,𝑛)

1
} ,

∇𝑉
2
(x) = row

𝑘
{x𝑇P
2𝑘
x} = row

𝑘

{

{

{

∑

𝑖

∑

𝑗

𝑥
𝑖
𝑥
𝑗
𝑃
(𝑖,𝑗)

2𝑘

}

}

}

,

∇𝑉
3
(x) = x𝑇mat

𝑚𝑛
{x𝑇P
3𝑚𝑛

x}

= row
𝑛

{

{

{

∑

𝑚

𝑥
𝑚
(∑

𝑖

∑

𝑗

𝑥
𝑖
𝑥
𝑗
𝑃
(𝑖,𝑗)

3𝑚𝑛
)

}

}

}

,

∇𝑉
4
(x) = row

𝑘
{x𝑇mat

𝑚𝑛
{x𝑇P
4𝑘𝑚𝑛

x} x}

= row
𝑘

{

{

{

∑

𝑚

∑

𝑛

𝑥
𝑚
𝑥
𝑛
(∑

𝑖

∑

𝑗

𝑥
𝑖
𝑥
𝑗
𝑃
(𝑖,𝑗)

𝑘𝑚𝑛
)

}

}

}

.

(24)

Here, P
1
, P
2k, P3𝑚𝑛, and P

4𝑘𝑚𝑛
are families of 𝑁 × 𝑁 square

matrices. In general, 𝑃(𝑖,𝑗) refers to the (𝑖, 𝑗)th entry of the
matrix P. We shall also find it useful to define the column
matrices p

2𝑖𝑗
= col

𝑘
{𝑃
(𝑖,𝑗)

2𝑘
} and p

3𝑚𝑖𝑗
= col

𝑛
{𝑃
(𝑖,𝑗)

3𝑚𝑛
} whose

entries can be used to form P
2𝑘
and P

3𝑚𝑛
, respectively.

It is important to recognize that, while a
𝑖
(x) may be

zero for some 𝑖, the corresponding ∇𝑉
𝑖
(x) is not necessarily

zero as well. This is because the present method involves a
Taylor series expansion of the nonlinear solution to the HJE.
Substituting (21) and (23) into the HJE in (12) and grouping
terms of the same order yields

O [‖x‖2] : ∇𝑉
1
(x) a
1
(x) − 1

2

∇𝑉
1
(x)R∇𝑉𝑇

1
(x)

+

1

2

x𝑇Qx = 0,

(25)

O [‖x‖𝑘] : ∇𝑉
(𝑘−1)

a
𝑐1
+ ∇𝑉
1
a
(𝑘−1)

+

𝑘−2

∑

𝑖=2

∇𝑉
𝑖
a
𝑐(𝑘−𝑖)

= 0

(26)

for 𝑘 ≥ 3, where a
𝑐1
= a
1
(x) − R∇𝑉𝑇

1
(x) = A

𝑐1
x with A

𝑐1
=

A
1
−BB𝑇P

1
and a
𝑐𝑖
= a
𝑖
(x)−(1/2)R∇𝑉𝑇

𝑖
(x) for 𝑖 ≥ 2.Thus, at

each order 𝑘, the objective is to solve for the unknown∇𝑉
(𝑘−1)

.
Note that in (26) the summation term is equal to zero for 𝑘 =
3, since 𝑖 > 𝑘 − 2.

We now present the general expressions to compute the
unknowns ∇𝑉

(𝑘−1)
in (23). The first-order solution, P

1
= P𝑇
1
,

is obtained by solving the ARE corresponding to (25), which
is given by

P
1
A
1
+ A𝑇
1
P
1
− P
1
BB𝑇P

1
+ C𝑇C = 0, (27)

where it has been noted that R = BB𝑇 andQ = C𝑇C. We will
assume that (A

1
,B) is controllable and (C,A

1
) is observable

so thatP
1
is positive definite.Then, the higher-order solutions

are obtained by solving (26) recursively for increasing values
of 𝑘.

The second-order solution is given by

p𝑇
2𝑖𝑗

= −a𝑇
2𝑖𝑗
P
1
A−1
𝑐1
, 𝑖, 𝑗 = 1, . . . , 𝑁, (28)

where the column matrices p
2𝑖𝑗

and a
2𝑖𝑗

were defined above.
We emphasize that the multiplications indicated in (28) are
standard matrix multiplications.

The third-order solution is given by

mat
𝑚𝑛

{𝑃
(𝑖,𝑗)

3𝑚𝑛
} = − [mat

𝑚𝑛
{p𝑇
2𝑚𝑖

a
𝑐2𝑗𝑛

}

+P
1
mat
𝑚𝑛

{𝐴
(𝑖,𝑗)

3𝑚𝑛
}]A−1
𝑐1
,

𝑖, 𝑗 = 1, . . . , 𝑁,

(29)

where a
𝑐2𝑗𝑛

= a
2𝑗𝑛

− (1/2)BB𝑇p
2𝑗𝑛

. Here, mat
𝑚𝑛
{𝑃
(𝑖,𝑗)

3𝑚𝑛
}

consists of a square matrix (with row index 𝑚 and column
index 𝑛) containing the (𝑖, 𝑗)th entries of each P

𝑚𝑛
for given 𝑖

and 𝑗. Again, all of the indicated multiplications are standard
matrix multiplications.

The fourth-order solution is given by

mat
𝑚𝑛

{𝑃
(𝑖,𝑗)

4𝑛𝑚𝑘
} = − [mat

𝑚𝑛
{p𝑇
3𝑚𝑖𝑗

a
𝑐2𝑘𝑛

}

+mat
𝑚𝑛

{p𝑇
2𝑚𝑖

a
𝑐3𝑛𝑗𝑘

}

+ mat
𝑚𝑛

{𝐴
(𝑖,𝑗)

4𝑛𝑚𝑘
}P
1
]A−1
𝑐1
,

𝑖, 𝑗, 𝑘 = 1, . . . , 𝑁,

(30)

where a
𝑐3𝑛𝑗𝑘

= a
3𝑛𝑗𝑘

− (1/2)BB𝑇p
3𝑛𝑗𝑘

. Similar comments on
the multiplications involved above apply here.

The negative-semidefinite solution of the HJE,𝑉
−
(x), can

be determined using (23)–(30) with the proviso that the
matrixP

1
is replacedwith the negative-definite solution of the

Riccati equation in (27) whichwewill denote byQ
1
andA

𝑐1
is

replaced by A
𝑢1
= A
1
− BB𝑇Q

1
. The matrices corresponding

to those in (24) will be denoted by Q
1
,Q
2𝑘
,Q
3𝑚𝑛

, andQ
4𝑘𝑚𝑛

and they are obtained by solving (27)–(30) withQ
1
replacing

P
1
, q
2𝑖𝑗

replacing p
2𝑖𝑗
, and so forth. In the next section, the

satellite attitude dynamics are presented.

3. Attitude Dynamics and Control

3.1. The Attitude Dynamics and Kinematics. The attitude
dynamics of a rigid spacecraft are given by Euler’s equation:

�̇� = −I−1𝜔×I𝜔 + I−1u, (31)

where 𝜔 = [𝜔
1
𝜔
2
𝜔
3
]
𝑇 are the body angular velocities, I is

the moment of inertia matrix, and u
1
= [𝑢
1
𝑢
2
𝑢
3
]
𝑇 are the

body torques.The notation𝜔× is the matrix representation of
the cross product and is defined as

𝜔
×

=
[

[

0 −𝜔
3

𝜔
2

𝜔
3

0 −𝜔
1

−𝜔
2

𝜔
1

0

]

]

. (32)
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While many representations are possible to define
the spacecraft attitude kinematics, the modified Rodrigues
parameters (MRPs) are chosen here because they are polyno-
mial in the states, which fit nicely with the present controller
synthesis approach, and they possess neither singularities nor
norm constraints when used in conjunction with the shadow
parameters.TheMRP vector𝜎 = [𝜎

1
𝜎
2
𝜎
3
]
𝑇 can be defined

in terms of the principal rotation axis ê = [𝑒
1
𝑒
2
𝑒
3
]
𝑇 and

principal rotation angleΦ of Euler’s theorem according to

𝜎 = ê tan(Φ
4

) . (33)

The attitude kinematics using MRPs are defined by

�̇� =
1

2

[

1

2

(1 − 𝜎
𝑇

𝜎) 1 + 𝜎× + 𝜎𝜎𝑇]𝜔, (34)

where 1 is the identity matrix.
Upon closer inspection of (33), it is seen that the MRPs

encounter a singularity for rotations of Φ = ±2𝜋 rad. This
corresponds to a complete rotation in either direction about
the principal axis. To circumvent this, another set of MRPs,
called the shadow parameters and denoted by 𝜎

𝑆
, is used in

conjunction with the regular MRPs. By switching from one
set to the other at rotations of Φ = ±𝜋 rad, it is possible to
avoid any singularities. The parameter switching occurs on
the surface defined by

𝜎
𝑇

𝜎 = 𝜎
𝑇

𝑆
𝜎
𝑆
= 1. (35)

The kinematics are identical for both the regular and the
shadow parameters. However, when the switching surface
is encountered, both the MRPs and their rates must be
converted fromone set to the other.This can be accomplished
with the following relations:

�̇�
𝑆
= −

�̇�

(𝜎𝑇𝜎)
+

1 + (𝜎
𝑇

𝜎)

2(𝜎𝑇𝜎)
2
𝜎𝜎
𝑇

𝜔, 𝜎
𝑆
= −

𝜎

(𝜎𝑇𝜎)
. (36)

More details can be found in the text by Schaub and Junkins
[34].

Defining the state vector x = [𝜔
1
𝜔
2
𝜔
3
𝜎
1
𝜎
2
𝜎
3
]

𝑇

and grouping terms of the same order, the attitude dynamics
in (31) and kinematics in (34) can be expressed as

ẋ (𝑡) = a
1
(x) + a

2
(x) + a

3
(x) + Bu

1
(𝑡) ,

y
1
(𝑡) = Cx,

(37)

where

a
1
(x) = A

1
x = [

0 0
1

4

1 0][
𝜔

𝜎
] ,

B = [

I−1
0 ] , C = 1,

(38)

and the second- and third-order terms are given by

a
2
(x) = [

[

−I−1𝜔×I𝜔
1

2

𝜎
×

𝜔

]

]

,

a
3
(x) = [

[

0
(

1

2

𝜎𝜎
𝑇

−

1

4

𝜎
𝑇

𝜎1)𝜔
]

]

,

(39)

respectively. It should be noted that these third-order attitude
dynamics are exact so that we may take a

4
(x) = 0 and hence

A
4𝑘𝑚𝑛

= 0.

3.2. The Attitude Controller. In this section, the proposed
controller synthesis methods will be applied to the satellite
attitude dynamics given by (37)–(39). For simplicity, we shall
assume that the dynamics are formulated in principal axes so
that the inertia matrix is given by I = diag{𝐼

1
, 𝐼
2
, 𝐼
3
}. Let

us begin by comparing the definitions of a
2
and a

3
in (22)

with the specific ones given in (39). From this, we identify the
nonzero elements of the matrices A

2𝑘
and A

3𝑚𝑛
as follows:

𝐴
23

2,1
= 𝐴
32

2,1
=

𝑘
1

2

, 𝐴
13

2,2
= 𝐴
31

2,2
=

𝑘
2

2

,

𝐴
12

2,3
= 𝐴
21

2,3
=

𝑘
3

2

,

𝐴
53

2,4
= −𝐴
62

2,4
= −𝐴
43

2,5
= 𝐴
61

2,5

= 𝐴
43

2,6
= −𝐴
51

2,6
=

1

2

,

(40)

where 𝑘
1
= (𝐼
2
− 𝐼
3
)/𝐼
1
, 𝑘
2
= (𝐼
3
− 𝐼
1
)/𝐼
2
and 𝑘
3
= (𝐼
1
− 𝐼
2
)/𝐼
3
.

In addition,

2𝐴
44

3,41
= 𝐴
55

3,41
= 𝐴
66

3,41
= 2𝐴
45

3,42

= 2𝐴
54

3,42
= 2𝐴
64

3,43
= 2𝐴
46

3,43
=

1

2

,

2𝐴
54

3,51
= 2𝐴
45

3,51
= 𝐴
44

3,52
= 2𝐴
55

3,52

= 𝐴
66

3,52
= 2𝐴
56

3,53
= 2𝐴
65

3,53
=

1

2

,

2𝐴
64

3,61
= 2𝐴
46

3,61
= 2𝐴
65

3,62
= 2𝐴
45

3,56

= 𝐴
44

3,63
= 𝐴
55

3,63
= 2𝐴
66

3,63
=

1

2

.

(41)
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Given the definitions ofA
1
,B, andC in (38), the positive-

definite solution of the algebraic Riccati equation in (27) is
easily determined. The nonzero elements are given by

𝑃
(𝑖,𝑖)

1
= 𝐼
𝑖
√1 + (

𝐼
𝑖

2

),

𝑃
(𝑖,3+𝑖)

1
= 𝑃
(3+𝑖,𝑖)

1
= 𝐼
𝑖
,

𝑃
(3+𝑖,3+𝑖)

1
= 4√1 + (

𝐼
𝑖

2

),

𝑖 = 1, 2, 3.

(42)

The negative-definite solution (nonzero elements) is given by

𝑄
(𝑖,𝑖)

1
= −𝐼
𝑖
√1 + (

𝐼
𝑖

2

),

𝑄
(𝑖,3+𝑖)

1
= 𝑄
(3+𝑖,𝑖)

1
= 𝐼
𝑖
,

𝑄
(3+𝑖,3+𝑖)

1
= −4√1 + (

𝐼
𝑖

2

),

𝑖 = 1, 2, 3.

(43)

The corresponding closed-loop matrices A
𝑐1
= A
1
− BB𝑇P

1

and A
𝑢1
= A
1
− BB𝑇Q

1
are readily determined:

𝐴
(𝑖,𝑖)

𝑐1
= −𝐼
−1

𝑖

√1 + (

𝐼
𝑖

2

),

𝐴
(𝑖,3+𝑖)

𝑐1
= 𝐼
−1

𝑖
,

𝐴
(3+𝑖,𝑖)

𝑐1
=

1

4

,

𝐴
(3+𝑖,3+𝑖)

𝑐1
= 0,

𝑖 = 1, 2, 3,

𝐴
(𝑖,𝑖)

𝑢1
= 𝐼
−1

𝑖

√1 + (

𝐼
𝑖

2

),

𝐴
(𝑖,3+𝑖)

𝑢1
= 𝐼
−1

𝑖
,

𝐴
(3+𝑖,𝑖)

𝑢1
=

1

4

,

𝐴
(3+𝑖,3+𝑖)

𝑢1
= 0,

𝑖 = 1, 2, 3.

(44)

Using the above quantities, the entries in P
2𝑘

(via p
2𝑖𝑗
),

P
3𝑚𝑛

, and P
4𝑘𝑛𝑚

can be calculated using (28), (29), and (30).
The same equations can be used to determine Q

2𝑘
(via q

2𝑖𝑗
),

Q
3𝑚𝑛

, and Q
4𝑘𝑛𝑚

with P
1
replaced with Q

1
and A

𝑐1
replaced

withA
𝑢1
.The dynamic controller in (20) can bemade specific

to the attitude control problem:

ẋ
𝑐
= a (x

𝑐
) − BB𝑇∇𝑉𝑇

+
(x
𝑐
)

+ G
2
(x
𝑐
) [𝛽
−1Cx
𝑐
+ 𝛽y
2
] ,

u
2
(x
𝑐
) = 𝛽
−2B𝑇∇𝑉𝑇

+
(x
𝑐
) ,

(45)

where a(x
𝑐
) is determined using (22) in conjunction with

(40) and (41) and ∇𝑉𝑇
+
(x
𝑐
) is determined using (24) and the

solutions in (27)–(30). The observer gain G
𝑐
(x
𝑐
) which is

defined by (19) can be determined as follows. Since, 𝑟
2𝑒
(x) =

𝛽
−2

𝑉
+
(x) + 𝛾2𝑉

−
(x), we have used (24):

∇𝑟
2𝑒
(x) = x𝑇R

𝑒2
(x)

= x𝑇 [(𝛽−2P
1
+ 𝛾
2Q
1
)

+ row
𝑘
(𝛽
−2P
2𝑘
x + 𝛾2Q

2𝑘
x) + ⋅ ⋅ ⋅ ] .

(46)

Using this in (19) yields the following expression for the
observer gain:

G (x
𝑐
) = 𝛾
2

𝛽
−1

[(𝛽
−2P
1
+ 𝛾
2Q
1
)

+row
𝑘
(𝛽
−2P
2𝑘
x
𝑐
+ 𝛾
2Q
2𝑘
x
𝑐
) + ⋅ ⋅ ⋅ ]

−1

C𝑇.
(47)

The condition in (17) needs to be satisfied in a region of the
origin. Using the lowest order terms in the expansions for
A = a(x), ∇𝑉

+
, ∇𝑉
−
, and ∇𝑟

2𝑒
, the Hessian matrix defined

by (17) is given by

− (𝛽
−2P
1
+ 𝛾
2Q
1
) (A
1
+ 𝛾
−2

𝛽
−2BB𝑇P

1
)

− (A
1
+ 𝛾
−2

𝛽
−2BB𝑇P

1
)

𝑇

(𝛽
−2P
1
+ 𝛾
2Q
1
)

+ 𝛾
−2

(𝛽
−2P
1
+ 𝛾
2Q
1
)BB𝑇 (𝛽−2P

1
+ 𝛾
2Q
1
)

+ 𝛽
−4P
1
BB𝑇P

1
− 𝛾
2

𝛽
−2C𝑇C

(48)

which must be negative definite. This condition limits the
chosen value of 𝛾. In the sequel, we shall refer to the controller
in (45) as theH

∞
controller of order 𝑘, where 𝑘 is the order

of the approximation adopted for a(x), ∇𝑉
+
, ∇𝑉
−
, and ∇𝑟

2𝑒
in

determining G
2
.

4. Numerical Example and Comparisons

In this section, the nonlinear controller presented above
is compared through numerical simulations with existing
methods from the literature for spacecraft attitude regulation.
The purpose of these comparisons is to examine the effects of
different disturbances and uncertainties on the performance
and robustness of the various controllers. In particular, we
include gravity-gradient and geomagnetic torques, as well
as unmodeled actuator dynamics and actuation time delays.
In addition to these comparisons, we make use of the gap
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metric [28] to characterize the difference in the input-output
(IO) map of the system induced by the unmodeled actuator
dynamics.

The simulation parameters are as follows. The satellite is
in a circular orbit with an inclination of 𝑖 = 87 degrees and
a longitude of the ascending node of Ω = 0. The initial value
of the argument of latitude is zero.The altitude is 700 km and
we take 𝑅

𝑒
= 6378.14 km for the Earth’s radius. These orbital

parameterswill be used to determine the gravity-gradient and
geomagnetic disturbance torques acting on the spacecraft.
The spacecraft position in the geocentric inertial frame, r

𝑖
(𝑡),

is determined using a simple Keplerian model. The gravity-
gradient torque is then given by u

0𝑔
= 3(𝜇/𝑅

5

)r×
𝑏
Ir
𝑏
, where

𝜇 is the geocentric gravitational parameter, 𝑅 = √r𝑇
𝑖
r
𝑖
, and

r
𝑏
= C
𝑏𝑖
r
𝑖
, where the rotation matrix relating the body-fixed

frame to the inertial frame may be expressed in terms of the
MRPs as C

𝑏𝑖
= (1 − 𝜎×)2(1 + 𝜎×)2.

For the purposes of the geomagnetic disturbance torque,
the satellite is assumed to generate a magnetic dipole of
m = [0.1 0.1 0.1]

𝑇 A⋅m2. The magnetic field model is the
tilted dipole model, B

𝑖
(r
𝑖
), presented in [35], where B

𝑖
are the

geomagnetic field components expressed in the geocentric
inertial frame. The geomagnetic disturbance torque is given
by u
0𝑚

= m×C
𝑏𝑖
B
𝑖
. The satellite inertia matrix is given by I =

diag{10.0, 6.3, 8.5} kg⋅m2. In all comparisons, we consider
the regulation problem only, hence y

0
= 0 and the input to

the controller is y
2
= −y
1
= −Cx = −x. Hence, we assume

perfect measurements of the state.
In the case of the disturbance rejection comparisons, the

simulations start from the desired attitude and we compare
the ability of the different controllers tomaintain that attitude.
For all other comparisons, the initial states are chosen from
Schaub et al. [2] to be 𝜔(0) = [1.4 0.9 0.8]

𝑇 rad/s and
𝜎(0) = [0.87 0 0]

𝑇. These initial conditions have the
satellite oriented almost 𝜋 rad from the desired attitude with
large angular velocities moving it towards this upside-down
attitude. All simulations will be performed for one orbit using
a 4th-order Runge-Kutta numerical integration method with
a step-size Δ𝑡 = 0.01 s.TheH

∞
controllers are designed with

𝛾 = 4.0, which was chosen to satisfy the linear version of
the condition in (17); that is, such that the matrix in (48) is
negative definite.

The methods to be used, in addition to the H
∞

con-
trollers of the previous section, are the linear and nonlinear
proportional-derivative (PD) laws of Tsiotras [1], the open-
loop (OL) optimal control method by Schaub et al. [2],
the closed-loop (CL) optimal nonlinear method of Tewari
[3], and the sum of squares (SOS) approach of Gollu and
Rodrigues [4]. In order to gauge the performance and
properly compare the different controllers, we will use the
following metrics:

𝐸rms = [

1

𝑇

∫

𝑇

0

y𝑇
2
(𝑡) y
2
(𝑡) 𝑑𝑡]

(1/2)

,

𝑇rms = [

1

𝑇

∫

𝑇

0

u𝑇
2
(𝑡) u
2
(𝑡) 𝑑𝑡]

(1/2)

,

(49)

where y
2
= y
0
− y
1
= −y
1
= −x = −[𝜔

1
𝜔
2
𝜔
3
𝜎
1
𝜎
2
𝜎
3
]
𝑇,

𝑇 is the orbital period, 𝐸rms is the RMS tracking error, and
𝑇rms is the RMS control torque (note that −u

2
are the control

torques).

4.1. Existing Control Methods. We now provide a brief
overview of the controller synthesis methods to be used
for comparisons with our method. The interested reader is
referred to the appropriate literature for a more detailed
exposition of these methods.

4.1.1. Proportional-Derivative Controllers. Tsiotras [1] devel-
oped two proportional-derivative (PD) control laws for the
attitude control problem.The linear PD controller is given by

u
2
(𝑡) = 𝜔 + 2𝜎, (50)

while the nonlinear version is given by

u
2
(𝑡) = 𝜔 + 2 (1 + 𝜎

𝑇

𝜎)𝜎. (51)

4.1.2. Open-Loop Optimal Control. The optimal control
method presented by Schaub et al. [2] is designed tominimize
the cost function

𝐽 =

1

2

𝐾
1
𝑔 (𝜎 (𝑡

𝑓
)) +

1

2

𝜔
𝑇

(𝑡
𝑓
)K
2
𝜔 (𝑡
𝑓
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜙(𝑡𝑓)

+ ∫

𝑡
𝑓

𝑡
0

1

2

[𝐾
3
𝑔 (𝜎) + 𝜔

𝑇K
4
𝜔 + u𝑇

2
Ru
2
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑝(x,u2,𝑡)

𝑑𝑡,

(52)

where 𝐾
1
and 𝐾

3
are scalar weights, K

2
, K
4
, and R are

weighting matrices, and

𝑔 (𝜎) = 4

𝜎
𝑇

𝜎

(1 + 𝜎𝑇𝜎)
2
. (53)

The Hamiltonian relating to this optimal control problem is
defined as

𝐻 = 𝑝 (x, u, 𝑡) + Λ𝑇 [a (x) − Bu
2
(𝑡)] , (54)

where we have used the plant model in (1) and the second
relation of (3) with y

1
= 0. The costates, denoted by Λ, have

dynamics

̇Λ = −

𝜕𝐻

𝜕x
, Λ (𝑡

𝑓
) =

𝜕𝜙

𝜕x








𝑡=𝑡
𝑓

. (55)

Note that the costates are specified at some final time 𝑡
𝑓
, not

the initial time. The optimal control law for this problem is
determined from

𝜕𝐻

𝜕u
2

= 0, (56)

which yields

u
2
(𝑡) = R−1B𝑇Λ. (57)
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The primary disadvantage of this method from a practical
point of view is that it requires the solution of a two-point
boundary value problem (TPBVP) and results in an open-
loop control strategy. For the simulation results presented
below, the followingweighting parameters are used:𝐾

1
= 5.0,

K
2
= 5.01, 𝐾

3
= 1.0, K

4
= 1, and R = 1. Moreover, the

maneuver is optimized for a final time 𝑡
𝑓
= 60 s.

4.1.3. Closed-Loop Optimal Controller. The optimal control
method presented by Tewari [3] is based on obtaining an
exact analytical solution to the Hamilton-Jacobi equation.
Consider the HJE in (12) with parameters

A (x) = a (x) ,

R (x) = BR−1B𝑇,

Q (x) = [

x
x[2]]
𝑇

[

Q
11

Q
12

Q
21

Q
22

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Q

[

x
x[2]] ,

(58)

where the inertia matrix is defined as I = diag
𝑖
{𝐼
𝑖
},

R = diag
𝑖
{𝑅
𝑖
} is symmetric and positive definite,

Q is symmetric and positive semidefinite, and
x[2] = [𝜔

2

1
𝜔
2

2
𝜔
2

3
𝜎
2

1
𝜎
2

2
𝜎
2

3
]
𝑇. It is assumed that 𝑉(x) has

the same form asQ(x); thus,

𝑉 (x) = 1

2

[

x
x[2]]
𝑇

[

P
11

P
12

P
21

P
22

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

P

[

x
x[2]] , (59)

whereP is symmetric and positive definite.The state feedback
controller is given by

u
2
(𝑡) = R−1B𝑇∇𝑉𝑇 (x) , (60)

where

∇𝑉
𝑇

(x) = P
11
x + 2diag

𝑖
{𝑥
𝑖
}P
12
x + P
12
x[2]

+ 2diag
𝑖
{𝑥
𝑖
}P
22
x[2].

(61)

ThematrixP is obtained as follows. First,P
11
is calculated

from the algebraic Riccati equation in (27) corresponding to
the parameters in (58), that is, with R in (27) replaced by
BR−1B𝑇 and Q in (27) replaced by Q

11
. Then, the equations

in (26) with 𝑘 = 3, . . . , 6, are solved simultaneously for the

remaining unknowns. In particular, the nonzero elements of
the matrices P

12
and P

22
are

𝑃
11

12
=

𝐼
2

1
𝑅
1
(2𝑄
11

12
+ 𝑘
2
𝑃
12

11
+ 𝑘
3
𝑃
13

11
)

(6𝑃
11

11
)

,

𝑃
16

12
=

𝐼
2

1
𝑅
1
𝑄
16

12

(2𝑃
11

11
)

,

𝑃
22

12
=

𝐼
2

2
𝑅
2
(𝑄
12

12
− 2𝑘
2
𝑃
22

11
)

(3𝑃
22

11
)

,

𝑃
25

12
=

𝐼
2

2
𝑅
2
(2𝑄
25

12
− 3𝑃
22

12
𝑃
25

11
)

(2𝑃
22

11
)

,

𝑃
33

12
=

𝐼
2

3
𝑅
3
𝑄
33

12

(3𝑃
33

11
)

,

𝑃
11

22
=

[𝐼
2

1
𝑅
1
𝑄
11

22
− 9(𝑃

11

12
)

2

]

(2𝑃
11

11
)

,

𝑃
12

22
=

𝑄
12

22

[𝑃
11

11
/ (𝐼
2

1
𝑅
1
) + 𝑃
22

11
/ (𝐼
2

2
𝑅
2
)]

,

𝑃
13

22
=

𝑄
13

22

[𝑃
11

11
/ (𝐼
2

1
𝑅
1
) + 𝑃
33

11
/ (𝐼
2

3
𝑅
3
)]

,

𝑃
22

22
=

[𝐼
2

2
𝑅
2
𝑄
22

22
− 9(𝑃

22

12
)

2

]

(2𝑃
22

11
)

,

𝑃
23

22
=

𝑄
23

22

[𝑃
33

11
/ (𝐼
2

3
𝑅
3
) + 𝑃
22

11
/ (𝐼
2

2
𝑅
2
)]

,

𝑃
33

22
=

[𝐼
2

3
𝑅
3
𝑄
33

22
− 9(𝑃

33

12
)

2

]

(2𝑃
33

11
)

,

(62)

where, as before, 𝑘
1
= (𝐼
2
− 𝐼
3
)/𝐼
1
, 𝑘
2
= (𝐼
3
− 𝐼
1
)/𝐼
2
and 𝑘
3
=

(𝐼
1
− 𝐼
2
)/𝐼
3
.

For the simulation results presented below, the following
weighting parameters are used [3]:

R = diag
𝑖
= {𝐼
−2

𝑖
} , Q

11
= (0.01) 1,

Q
12
= [

(0.1) 1 0
0 0 ] ,

Q
22
=

[

[

[

[

𝑃
11

11
𝑃
12

11
𝑃
13

11

𝑃
21

11
𝑃
22

11
𝑃
23

11
0

𝑃
31

11
𝑃
32

11
𝑃
33

11

0 0

]

]

]

]

.

(63)

We nowmake a few remarks regarding the characteristics
of the synthesis method of Tewari [3]. Like the controller
presented in this paper, Tewari’s closed-loop optimal method
results in a polynomial feedback controller. However, his
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solution is derived specifically for the attitude control prob-
lem. In contrast, the method developed in the present paper
is applicable to a wider class of systems.

4.1.4. Sum of Squares Controller. A multivariate polynomial
𝑝(x) is a sumof squares (SOS) if there exist some polynomials
𝑓
𝑖
(x), 𝑖 = 1, . . . ,𝑀, such that

𝑝 (x) =
𝑀

∑

𝑖=1

𝑓
2

𝑖
(x) . (64)

The SOS controller synthesis approach relaxes the search for
positive- or negative-definite functions to a search for SOS
functions. It should be noted, however, that the use of sums
of squares is conservative, since 𝑝(x) being SOS implies that
𝑝(x) ≥ 0, while the converse is not true in general. Also, it can
be shown that if k𝑇P(x)k is SOS for k ∈ R𝑛, then P(x) ≥ 0 for
all x ∈ R𝑁 [36].

In applying the SOS controller synthesis method, we first
rewrite the system in (1) as

ẋ = A (x) x − Bu
2
(𝑡) , (65)

where we have used the second relation of (3) with y
1
=

0. Note that the matrix A(x) is not unique. The SOS state
feedback controller for this problem is given by [4]

u
2
(𝑡) = −K (x)P−1x, (66)

where we note that P is now taken to be constant (state
independent).

Consider the Lyapunov function

𝑉 (x) = x𝑇P−1x. (67)

Taking the time derivative of this function along the trajecto-
ries of the system in (65) with the controller of (66) yields

̇
𝑉 (x) = [A (x) x + BK (x)P−1x]

𝑇

P−1x

+ x𝑇P−1 [A (x) x + BK (x)P−1x] .
(68)

Using the change of variables x = Pk, this last expression can
be written as

̇
𝑉 (x) = k𝑇 [PA𝑇 (x) + A (x)P + K𝑇 (x)B𝑇 + BK (x)] k.

(69)

The conditions 𝑉(x) > 0 and ̇
𝑉(x) < 0 can be replaced

by the conditions that P is positive definite and −
̇

𝑉(x) is
SOS. The second of these conditions will be strengthened to
−[

̇
𝑉(x) + 𝜖(x)] being SOS, where 𝜖(x) is some SOS function.

This semidefinite programming (SDP) problem can then be
written as follows:

find P, K (x) , 𝜖 (x)

s.t. P = P𝑇 > 0

𝜖 (x) is SOS

− k𝑇 [PA𝑇 (x) + A (x)P + K𝑇 (x)B𝑇

+ BK (x) + 𝜖 (x) 1] k is SOS.

(70)

This optimization problem can be solved using the SOS-
TOOLS software package [37].

4.2. Disturbance Rejection. We begin by comparing the
controllers presented in this paper with the methods from
the literature with regard to disturbance rejection. The two
disturbances considered here are the gravity-gradient and
geomagnetic torques. For the purposes of this comparison,
the simulations start from the desired attitude (i.e., y

0
=

0) and we compare the ability of the different controllers
to maintain that attitude over one complete orbit. Table 1
presents values of the performance metrics for the different
controllers.

The optimal control method of Schaub et al. [2] is not
included in the table because it is unable to reject any
disturbances, which is entirely due to its open-loop nature.
There is no apparent difference in performance between the
linear and nonlinear PD controllers. There is also very little
difference between any of the nonlinear H

∞
controllers

developed using the present method. This is due to the very
small magnitude of these disturbance torques, which the
linear term in the controller can effectively overcome. With
regard to disturbance rejection, the present H

∞
controllers

do not perform as well as the existing methods.

4.3. Response to Initial Conditions. In this and the following
subsections, the disturbance torques are set to zero and the
nonzero initial conditions noted at the beginning of this
section are applied. All of the resulting controllers described
previously are stable.

The resulting attitude and control torques when the
fourth-order H

∞
controller is applied are given in Figures

3 and 4. The MRP switching can clearly be seen in Figure 3,
where we also note that it requires several rotations for the
controller to sufficiently slow down the spacecraft. This is
due to the small torques applied, as seen in Figure 4. It is
important to note that the control torques are continuous,
which is a result of the dynamic aspect of the controller
developed in this paper. Once again, there is little to distin-
guish the behaviour of the H

∞
controllers of varying order

of approximation. This will be discussed further after the
robustness of these controllers has been assessed.

4.4. Robustness to Actuation Time Delay. The robustness
properties of the different controllers are now examined with
regard to a time delay in the actuation. Such a delay could
represent the finite time required by a satellite on-board
computer to take the sensor measurements and calculate the
required control signal. The time delay is made equal to an
integer number of the numerical integration step-size Δ𝑡.
Table 2 indicates the maximum allowable time delay, ℎmax,
for each controller such that the desired attitude maneuver
is achieved within one orbit. As can be seen from these
results, the fourH

∞
controllers are more robust with regard

to this effect than the other control methods. In particular,
the present fourth-order H

∞
controller is the most robust.

We also note that the open-loop method of Schaub et al. [2]
has no robustness to this effect; the time delay results in a
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Table 1: Controller disturbance rejection.

H
∞

H
∞

PD Optimal SOS
(1st-order) (2nd-, 3rd-, and 4th-order) (both) (CL)

𝐸rms (×10
−6) 10.809686 10.809683 1.989095 5.328614 1.319846

𝑇rms (N⋅m) (×10−6) 3.979559 3.979559 3.977874 3.977763 3.976904

Table 2: Robustness to actuation time delay.

H
∞

H
∞

H
∞

H
∞

(1st-order) (2nd-order) (3rd-order) (4th-order)
ℎmax (s) 3.93 3.94 3.97 3.98

PD PD Optimal Optimal SOS
(linear) (nonlinear) (OL) (CL)

ℎmax (s) 1.69 1.09 0.00 1.41 0.81
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Figure 3: MRP trajectories for I = diag{10, 6.3, 8.5} kg⋅m2 with 4th-
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controller.
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nonzero final angular velocity such that the systemwill rotate
endlessly.

4.5. Robustness to Unmodeled Actuator Dynamics. The
robustness properties of the different controllers are now
examined with regard to unmodeled actuator dynamics. For
the purposes of this study, we make use of first- and second-
order actuatormodels. In practice the actuator dynamicsmay
be far more complex than the ones used here. However, we
use these simple models here for the purposes of studying
the capabilities of the different control methods. Evidently, as
the actuator bandwidth decreases, it becomes harder for the
controller to stabilize the system. Thus, we are able to infer
the relative robustness properties of the different controllers
by examining Figures 5–8. In particular, the farther a line
reaches towards the left-hand side of the graph, the more
robust that controller is with regard to the unmodeled actua-
tor dynamics. As we shall see, the presentH

∞
controllers are

always more robust than the other methods.
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Figure 6: RMS control effort with respect to 1st-order actuator
bandwidth.
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4.5.1. Unmodeled 1st-Order Actuator Dynamics. We begin
by examining the robustness of the controllers with regard
to unmodeled first-order actuator dynamics. This shall be
accomplished by including the following first-order dynamics
model in each component (𝑖 = 1, 2, 3) of the controller
output:

�̇� = −𝜔
𝑏
𝑥 + 𝜔
𝑏
𝑢
2,𝑖
,

𝑦
𝑖
= 𝑥,

(71)

where 𝜔
𝑏
is the actuator bandwidth. Figures 5 and 6 show

𝐸rms and 𝑇rms, respectively, as a function of the actuator
bandwidth. It is noted from these figures that all four H

∞

controllers provide nearly the same tracking error and control
effort. Moreover, while the closed-loop optimal control law
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Figure 8: RMS control effort with respect to 2nd-order actuator
bandwidth.

provides better tracking error compared with the H
∞

con-
trollers, the trade-off is that it requires more control effort.
Similarly, the SOS controller yields very low tracking error at
the expense of greater control effort.The two PD laws, on the
other hand, have a higher tracking error and control effort
than the other methods.

4.5.2. Unmodeled 2nd-Order Actuator Dynamics. Therobust-
ness properties of the different controllers are now examined
with regard to unmodeled second-order actuator dynam-
ics. This shall be accomplished by including the following
second-order dynamics model in each component (𝑖 =

1, 2, 3) of the controller output:

[

�̇�
1

�̇�
2

] = [

0 1

−𝜔
2

𝑏
−2𝜁𝜔
𝑏

] [

𝑥
1

𝑥
2

] + [

0

𝜔
2

𝑏

] 𝑢
2,𝑖
,

𝑦
𝑖
= 𝑥
1
,

(72)

where 𝜁 is the actuator damping ratio and 𝜔
𝑏
is the actuator

bandwidth. All simulations were performed with a damping
ratio 𝜁 = 0.5. Figures 7 and 8 show𝐸rms and𝑇rms, respectively,
as a function of the actuator bandwidth. It is seen from these
figures that the various control methods follow the same
trends as in the case of the first-order actuator dynamics.

4.6. Robustness in the Gap Metric (Revisited). We now make
use of the gap metric [28] to characterize the difference in
the input-output (IO) map of the system induced by the
unmodeled actuator dynamics. However, since we cannot
calculate the gap between two nonlinear systems, we calculate
the gap metric distance for the linearized system only. As the
actuator bandwidth and damping ratio change, the value of
the gap metric will also vary. Figure 9 shows the gap metric
value with respect to the first-order actuator bandwidth.
Figure 10 shows the gap metric value with respect to the
second-order actuator bandwidth for a damping ratio 𝜁 = 0.5



ISRN Aerospace Engineering 13

10−4 10−3 10−2 10−1 100 101 102 103

G
ap

 m
et

ric
, 𝜌

g

0.0

0.2

0.4

0.6

0.8

1.0

Actuator bandwidth, 𝜔b (rad/s)

Figure 9: Gap metric with respect to 1st-order actuator bandwidth.
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as used in the above numerical simulations. As the damping
ratio varies, the curve of this figure moves to the left or right
slightly, although there does not appear to be any discernible
trend. Moreover, it should be noted that as the actuator
bandwidth approaches infinity, the effects of the actuator in
the controller input-output map become negligible. This is
to be expected and is seen in both Figures 9 and 10, where
the gap metric approaches zero with increasing actuator
bandwidth.

We now return for amoment to the question of controller
robustness in the gap metric. From (9) we have the following
small-gain-type stability criterion:

𝜌
𝑔
(P
0
,P
1
) ⋅






ΠN‖M

0





∞⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≤𝛾

< 1. (73)

In the numerical simulations performed with 𝛾 = 4, it
was determined that the closed-loop system is stable in
the presence of the unmodeled second-order actuator with
bandwidth as low as 𝜔

𝑏
= 0.3 rad/s. With this actuator

bandwidth, the calculation of the gap between the linear
attitude dynamics with and without the actuator results in
a value of 𝜌

𝑔
= 0.522, which does not satisfy the condition

of (73). This could be explained by the conservativeness of
the small-gain criterion and the fact that it is a sufficient (but

not necessary) condition for stability. However, it can also be
attributed to the nonlinear effects of the dynamics not taken
into account in the gap calculation here. This emphasizes the
need for a method to calculate the gap metric for nonlinear
systems.

4.7. Overall Assessment of the H
∞

Controllers. The previ-
ous sections show that the methodology presented here
can be used to develop very robust attitude controllers.
However, their performance was not as good as some of
the other techniques to which it was compared. We have
not demonstrated significant benefits for the higher-order
terms in the controller which, while disappointing, is an
important contribution to the literature. The fact that a
linear controller can perform very closely to the higher-order
ones is a strong vindication of the most popular approach
used for actual attitude control: linear feedback of angular
velocity and attitude information.This is consistent with [38]
which showed that a linear combination of angular velocity
and quaternion (Euler parameter) feedback solves the state
feedback nonlinear (suboptimal)-H

∞
control problem for

rigid spacecraft attitude control. Our results are entirely
consistent with this and we strongly suspect that results
analogous to [38] can be obtained for the case of angular
velocity and MRPs.

5. Conclusions

The results presented here clearly show the trade-off between
performance and robustness. Existing methods from the
attitude control literature typically focus on performance. In
contrast, the method developed in this paper emphasizes
robustness. In particular, while the methods from the liter-
ature are better at disturbance rejection, the new nonlinear
controllers have overall better robustness properties. In gen-
eral, there is still a need to characterize the trade-off between
these two properties. In addition to the results presented in
this paper, there is still much room for improvement and
many more areas to be explored. Some topics that could
be explored in future work include analytical solutions to
higher-order terms in the approximation and the effects of
varying 𝛾 on the closed-loop response.The need for methods
to calculate the gap metric between nonlinear systems was
also motivated.
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