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An interval p-graph is the intersection graph of a collection of intervals which have been colored with p different colors with edges
corresponding to nonempty intersection of intervals from different color classes. We characterize the class of 2-trees which are
interval 3-graphs via a list of three graphs and three infinite families of forbidden induced subgraphs.

1. Introduction

We discuss finite simple graphs which are variations on
the well-studied class of interval graphs. Interval graphs
have been extensively studied and characterized, and fast
algorithms for various problems such as clique number,
chromatic number, dominating sets, and many others have
been developed. Indeed it is at this point difficult to give
a thorough list of references or a single reference with a
sufficient representation of even recent work done on or with
interval graphs and several of their variants. The variant we
consider is as follows. Suppose 𝐺 is a graph whose vertices
correspond to a collection of intervals which is partitioned
into some number of color classes with vertices adjacent if
and only if their corresponding intervals intersect and belong
to different color classes; such a graph is an interval 𝑝-graph
and the collection of intervals (and its partition into color
classes) to which vertices correspond will be referred to as a
representation. After presenting forbidden induced subgraph
results for interval 2-graphs, T.S. Michael posed the following
question to the first author: given a graph 𝐺 = (𝑉, 𝐸),
what is the minimum positive integer 𝑝 such that a class of
intervals partitioned into 𝑝 color classes represents 𝐺 so that
vertices are adjacent if and only if their corresponding intervals
intersect and are of different color classes?The first author and
Dr. Michael quickly realized that some graphs could not be
represented for any number of color classes; for example, a
5-cycle and 𝑇

3
(see Figure 1) cannot be represented using

any number of color classes. Hence when we say “𝐺 is not

an interval 𝑝-graph”, it is not the 𝑝 that is under contention,
since 𝑝 is always the chromatic number of 𝐺, if 𝐺 has a
representation, see [1, 2]. This is why when we say “𝐺 is an
interval 𝑝-graph” we mean that 𝐺 has a representation for
some 𝑝. When we put in place of 𝑝 a numeral, say 3, we mean
by “𝐺 is an interval 3-graph” that𝐺 has a representation using
3 or fewer color classes.This nuance in semantics allows us to
consider interval 𝑝-graphs for characterization via forbidden
subgraphs, since otherwise a forbidden subgraph (obtained
by vertex deletion) may have a smaller chromatic number
but still be representable. The notion of interval 𝑝-graphs
with 𝑝 = 2, that is the interval bigraphs, was first introduced
in [3] and has been investigated more recently by Hell and
Huang [4, 5], Müller [6], Brown [1], and Das et al. [7] and
othersmentioned in their references. But for𝑝not necessarily
2, the first paper appears to be by Brown et al. [2], but
interval 𝑝-graphs have been studied or used in [8, 9]. As
far as a characterization via forbidden induced subgraphs is
concerned, the only such characterizations for interval 𝑝-
graphs are for trees, hence 𝑝 = 2, (see [10]) and for 𝑘-trees,
any 𝑝 (see [11]).

If 𝐺 is an interval 𝑝-graph with a representation in which
no interval contains another properly, then 𝐺 is a proper
interval 𝑝-graph. The proper interval 2-graphs have been
characterized viamany properties and shown to be equivalent
to many well-known classes of graphs (see [4, 12]) as well as
via a forbidden induced subgraph characterization consisting
of three graphs, odd cycles, and all cycles of length six or
greater. For example, proper interval 2-graphs are precisely
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Figure 1
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Figure 2: The complete list of forbidden induced subgraphs for 2-
tree interval 𝑝-graphs.

the bipartite permutation graphs, the comparability graphs of
posets of dimension at most two, the complements of proper
circular arc graphs, and the bounded bipartite tolerance
graphs (see [12] or relevant papers from the literature for the
definitions). But essentially none of the characterizations of
proper interval 2-graph extend to proper interval 𝑝-graphs
for 𝑝 > 2, as the authors show in a companion article to
this one [13]. In this article we give a forbidden induced
subgraph characterization for proper interval𝑝-graphswhich
are 2-trees. The list of forbidden induced subgraphs consists
of three graphs and three infinite families of graphs (see
Figure 6) and complements the following characterization for
(not necessarily proper) interval 𝑝-graphs.

Theorem 1 (see [11]). Let𝐺 be a 2-tree.The graph𝐺 has a rep-
resentation if and only if it contains no subgraph isomorphic to
𝐺
𝑖
, 1 ≤ 𝑖 ≤ 12 from Figure 2.

We think our results are an illustration of how the
complexity of interval 𝑝-graphs increases when 𝑝 > 2, in
spite of the ostensibly structure-imposing restriction on the
representation, and are perhaps an indication of the need
for further research. When graph 𝐺 has a representation in
which no interval contains another properly, we will call the
representation proper or refer to it as a proper representation.

2. Preliminaries

A 𝑘-treemay be recursively defined as follows.

(i) 𝐾
𝑘
is a 𝑘-tree.

(ii) Let 𝐺 be a 𝑘-tree; create 𝐺 by adding a vertex to 𝐺
adjacent to all the vertices of some 𝐾

𝑘
of 𝐺.

(iii) 𝐺 is a 𝑘-tree.

A graph 𝐺 is said to be uniquely colorable if there exists
exactly one partition of 𝑉(𝐺) into 𝑟 = 𝜒(𝐺) color classes, in
which case we say𝐺 is uniquely 𝑟-colorable. A graph is chordal
if the smallest induced cycle is a 3-cycle. Any 𝑘-tree is chordal
and hence uniquely (𝑘 + 1)-colorable by the following result
from [14]. This fact is very useful for our purposes.
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Figure 3: An infinite family of forbidden induced subgraphs for
proper interval 𝑝-graphs.

Theorem 2 (see [14]). A graph 𝐺 of order at least 𝑘 + 1 is a
𝑘-tree if and only if𝐺 is chordal and uniquely (𝑘+1)-colorable.

An asteroidal triple in a graph is a set of three vertices
such that between each pair there is a path that does not
intersect the neighborhood of the third. There is not much
in the literature beyond [1] about proper interval 𝑝-graphs,
for 𝑝 > 2, but in [1] it is shown that they are asteroidal triple
free.

Theorem 3 (see [1]). If 𝐺 is a proper interval 𝑝-graph, then 𝐺
contains no asteroidal triple.

A graph is weakly chordal if it and its complement do not
contain a cycle of length greater than four. A graph is perfect
if the chromatic number of any induced subgraph is equal to
the clique number of that subgraph. Since Hayward proved
that weakly chordal graphs are perfect in [15] and Brown et
al. proved that interval 𝑝-graphs are weakly chordal in [2],
we have the following theorem.

Theorem 4 (see [2]). The class of interval 𝑝-graphs is a class
of perfect graphs.

Note that this is why, in trying to represent graph 𝐺 as
an interval 𝑝-graph, the addition of more than 𝜒(𝐺) inter-
val color classes will not yield a representation when 𝜒(𝐺)

interval color classes will not.
The following facts and the next lemma will provide the

basis for our characterization:

(i) a 2-tree is uniquely 3-colorable;
(ii) proper interval 𝑝-graphs are asteroidal triple free;
(iii) interval 𝑝-graphs are perfect;
(iv) any subgraph obtained from vertex deletion of an

interval 𝑝-graph is an interval 𝑝-graph (the property
of being an interval 𝑝-graph is hereditary).

Lemma 5. Each graph in the infinite family in Figure 3 is not
a proper interval 𝑝-graph.

Proof. Assume for contradiction that there is a proper rep-
resentation for 𝐻

𝑘
from Figure 3. Without loss of generality,

assume that 𝑟
𝑥
1

> 𝑟
𝑎
and 𝑟

𝑥
1

> 𝑟
𝑏
. See Figure 4 for an

example representation. The vertices 𝑦
1
and 𝑥

2
are adjacent

to neither 𝑎 nor 𝑏 and both are of a different color than one
of them. Thus since the representation is proper, 𝑟

𝑦
1

> 𝑟
𝑥
1

and 𝑟
𝑥
2

> 𝑟
𝑥
1

. This also forces 𝑦
1
to be in the same color class

as 𝑥
2
to avoid adjacency, since their intervals overlap. Now
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Figure 4:The vertical line signifies the contradiction in the proof of
Lemma 5.
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Figure 5: Representations used in Lemma 6. InJ2, 𝐼
𝑤
could be gray

or black.

consider the vertex 𝑦
2
; because it is adjacent to 𝑥

2
, it belongs

to a different color than 𝑦
1
. Thus 𝑟

𝑦
2

> 𝑟
𝑥
2

. We continue this
argument and find that 𝑟

𝑦
𝑗

> 𝑟
𝑥
𝑗

for 𝑗 ∈ {1, . . . , 𝑘}, and 𝑦
𝑗
is

the same color as 𝑥
𝑗−1

for 𝑗 ∈ {2, . . . , 𝑘 − 1}. Both 𝑤 and V
are not adjacent to 𝑦

𝑘−1
and are not the same color as 𝑦

𝑘−1
, so

𝑟
𝑤
> 𝑟
𝑥
𝑘

and 𝑟V > 𝑟
𝑥
𝑘

. Thus the intervals for 𝑦
𝑘
, 𝑤, and V all

intersect. This is a contradiction since 𝑦
𝑘
is not in the same

color class as either 𝑤 or V, but is adjacent to neither.

Our arguments for the proof of the main theorem will
be facilitated by the notion of trapping which we now define
and then prove a lemma about the structure of a proper
interval 𝑝-graph which involves this notion. Let 𝐺 be an
interval 𝑝-graph that is not a proper interval 𝑝-graph and let
I be a representation for 𝐺 in which the number of intervals
properly contained in others is minimal. HenceI has at least
one interval 𝐼

𝑦
that is properly contained in another interval,

say 𝐼V.
Now 𝐼V and 𝐼𝑦 are either in the same color class or they

are not. But in either case, there is structure in 𝐺 which
necessitates intervals 𝐼

𝑥
and 𝐼

𝑧
, each of a different color

class than 𝐼
𝑦
, which flank 𝐼

𝑦
and prevent the extension of

either of 𝐼
𝑦
’s endpoints past either of those of 𝐼V; that is;

there is some structure in 𝐺 which forces 𝐺 to have no
proper representation. What structure this is is not easily
named; indeed it is in a sense the purpose of this paper to
investigate what prohibits an interval 3-graph from having
a representation using intervals with no proper containment
among them. The only structural thing we can be sure of is
that (1) 𝑦𝑧 is not an edge of 𝐺, (2) neither is 𝑥𝑦, but (3) V𝑧
and V𝑥 are, and (4) 𝐼

𝑥
and 𝐼
𝑧
are of different color classes than

𝐼V and of 𝐼
𝑦
. If any of those four statements are not true the

interval 𝐼
𝑦
may be adjusted and not contained in 𝐼V. So we

have intervals 𝐼
𝑥
and 𝐼
𝑧
with 𝐼

𝑥
∩𝐼V ̸= 0, 𝐼

𝑧
∩𝐼V ̸= 0, 𝐼

𝑦
∩𝐼
𝑧
= 0,

𝐼
𝑦
∩ 𝐼
𝑥
= 0, and 𝑦’s interval is in a different color class than

both 𝑥’s and 𝑧’s. Moreover, there are two neighbors of V, 𝑥 and
𝑧, that are not neighbors of 𝑦, and 𝐼

𝑥
and 𝐼
𝑧
trap 𝐼

𝑦
in 𝐼V (see

J1 in Figure 5).
Since interval 𝑝-graphs are perfect, we now restrict the

number of color classes to three—the chromatic number of a
2-tree.
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Figure 6: The forbidden induced subgraphs for 2-trees that are
interval 3-graphs.

Lemma 6. Let 𝐺 be an interval 3-graph that is not a proper
interval 3-graph. LetI be a representation for 𝐺 with the least
containment, and let 𝐼

𝑥
and 𝐼
𝑧
trap 𝐼
𝑦
in 𝐼V. If 𝐼𝑥 and 𝐼𝑧 are in

the same color class, then 𝑥 must have a neighbor that is not
adjacent to 𝑧, and 𝑧must have a neighbor that is not adjacent
to 𝑥.

Proof. Let 𝐺 be an interval 3-graph that is not a proper
interval 3-graph. Let I be a representation for 𝐺 with the
least containment, and let 𝐼

𝑥
and 𝐼
𝑧
trap 𝐼

𝑦
in 𝐼V. Assume

that 𝑥 and 𝑧 are in the same color class. First assume that
𝑥 and 𝑧 have the same neighborhood. Since they are the
same color class, overlapping intervals do not result in an
adjacency. Thus the intervals can be moved so that 𝐼

𝑥
and

𝐼
𝑧
overlap and do not trap 𝐼

𝑦
. This movement of intervals is

shown inJ2 in Figure 5 without 𝐼
𝑤
. Notice that there is room

for the intervals for all of the neighbors of 𝑥 and 𝑧 without
proper containment.Thus this representation has less interval
containment, which is a contradiction.

Now without loss of generality assume that𝑁(𝑧) ⊊ 𝑁(𝑥),
and let 𝑤 ∈ 𝑁(𝑥), but 𝑤 ∉ 𝑁(𝑧). Again we can move the
intervals because 𝑥 and 𝑧 belong to the same color class. If
𝑤 ∉ 𝑁(V), then we can configure the intervals as in J2 in
Figure 5. Notice that there is still room for the intervals for the
common neighbors of 𝑥 and 𝑧 without proper containment.
If 𝑤 ∈ 𝑁(V), then it must be of the same color as 𝑦. Hence
we can configure the intervals as in J3 in Figure 5, again
with room for the neighbors of 𝑥 and 𝑧 without proper
containment. Thus in either case the representation has less
interval containment, which is a contradiction. Therefore
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𝑥 must have a neighbor that is not adjacent to 𝑧, and 𝑧 must
have a neighbor that is not adjacent to 𝑥.

3. Characterization

We are now ready to prove the main result.

Theorem 7. Let 𝐺 be 2-tree that has a representation. The
graph 𝐺 is a proper interval 3-graph if and only if it contains
none of the graphs from Figure 6 as an induced subgraph.

Proof. Assume that 𝐺 is a proper interval 3-graph.The graph
𝐶 from Figure 6 contains an asteroidal triple. Every other
subgraph from Figure 6 contains a member of the infinite
family of graphs from Figure 3. Thus 𝐺 cannot contain any
of the induced subgraphs listed in Figure 6, since none of
them have a proper representations from Theorem 3 and
Lemma 5.

Assume for contradiction that 𝐺 is not a proper interval
3-graph and does not contain a graph from Figure 6 as an
induced subgraph. Since 𝐺 is an interval 3-graph, consider
a representation with the least number of intervals properly
contained in another. Label the three colors gray, white, and
black, and notice that this is a proper coloring of 𝐺. Assume
that the interval for vertex V is colored gray and contains
the interval for vertex 𝑦, which could by any of the three
colors. Since this representation has the least number of
contained intervals, there must be two nonadjacent vertices
whose intervals intersect the interval of V; label them 𝑥 and 𝑧.
The vertices 𝑥 and 𝑧 are not neighbors of 𝑦 and are both in a
different color class than 𝑦.

This gives us 12 colorings of 𝑥, 𝑦, and 𝑧: white, gray, and
white; white, gray, and black; black, gray, and white; black,
gray, and black; white, black, and white; white, black, and
gray; gray, black, and white; gray, black, and gray; black,
white, and black; black, white, and gray; gray, white, and
black; and gray, white, and gray. Since white and black
are indistinguishable at this point, we can narrow these 12
colorings down to five different colorings of 𝑥, 𝑦, and 𝑧:
white, black, and white; white, gray, and white; white, gray,
and black; white, black, and gray; and gray, white, and gray,
which we group into three cases.

Case 1. The vertices 𝑥, 𝑦, and 𝑧 are colored white, black, and
white, respectively.

Because 𝐺 is a 2-tree, there is a path from 𝑥 to 𝑧

that is a subset of the neighborhood of V. This leads us to
two subcases: this path includes 𝑦 or does not include 𝑦.
First let us assume that this path includes 𝑦; label the path
𝑥, 𝑎
1
, . . . , 𝑎

𝑘
, 𝑦, 𝑏
1
, . . . , 𝑏

𝑗
, 𝑧. Since this path is contained in the

neighborhood of V, the vertices must be all colored white or
black. Plus 𝑥, 𝑦, and 𝑧 are pairwise nonadjacent, so 𝑘 > 0 and
𝑗 > 0. Since the coloring is proper, 𝑎

1
and 𝑏
𝑗
must be black

and 𝑎
𝑘
and 𝑏
1
must be white, so 𝑘 ̸= 1 and 𝑗 ̸= 1. Hence the

graph induced by the vertices {V, 𝑥, 𝑎
1
, . . . , 𝑎

𝑘
, 𝑦, 𝑏
1
, . . . , 𝑏

𝑗
, 𝑧}

contains 𝐵 from Figure 6 as an induced subgraph with V ≅ 𝑔.
Now let us assume that the path from 𝑥 to 𝑧 in the neigh-

borhood of V does not include 𝑦; label the path 𝑥, 𝑑
1
, . . . , 𝑑

𝑖
, 𝑧

and notice that 𝑖 > 0. From Lemma 6, 𝑥must have a neighbor

that is not adjacent to 𝑧 and 𝑧 must have a neighbor that is
not adjacent to 𝑥; label them 𝑎 and 𝑏, respectively. If there
is a choice for 𝑎 or 𝑏 choose the vertex with the shortest
distance to V. First assume that 𝑎 = 𝑑

1
or 𝑏 = 𝑑

𝑖
; then 𝑖 ≥ 3,

because 𝑑
1
, . . . , 𝑑

𝑖
must be all black or white. If 𝑦 is adjacent

to a 𝑑
𝑗
, then 2 ≤ 𝑗 ≤ 𝑖 − 1, since 𝑑

1
, 𝑑
𝑖
, and 𝑦 are all black.

Hence the graph 𝐴 from Figure 6 is an induced subgraph
of {V, 𝑦, 𝑥, 𝑑

1
, . . . , 𝑑

𝑖
, 𝑧} with V ≅ 𝑔. If 𝑦 is not adjacent to

a 𝑑
𝑗
, then there is a path from some 𝑑

𝑡
, 1 ≤ 𝑡 ≤ 𝑖, to 𝑦

in the neighborhood of V; label this path 𝑑
𝑡
, 𝑓
1
, . . . , 𝑓

𝑛
, 𝑦.

Hence the graph 𝐴 from Figure 6 is an induced subgraph of
{V, 𝑥, 𝑑

1
, . . . , 𝑑

𝑡
, . . . , 𝑑

𝑖
, 𝑧, 𝑓
1
, . . . , 𝑓

𝑛
, 𝑦} with V ≅ 𝑔.

Now assume that 𝑎 ̸= 𝑑
1
and 𝑏 ̸= 𝑑

𝑖
; if 𝑖 ≥ 3 then the

argument above holds, so assume that 𝑖 < 3. We also know
that 𝑖 ̸= 2, because of the coloring, so let 𝑖 = 1. Since 𝑑

1
and

𝑦 are both black, 𝑛 ≥ 1. Thus if either 𝑎 ∈ 𝑁(V) or 𝑏 ∈ 𝑁(V),
then the graph 𝐴 from Figure 6 is an induced subgraph of
{𝑎, 𝑥, V, 𝑑

1
, 𝑓
1
, . . . , 𝑓

𝑛
, 𝑦, 𝑧, 𝑏} with V ≅ 𝑔. If 𝑎, 𝑏 ∉ 𝑁(V), then

𝑎, 𝑏 ∈ 𝑁(𝑑
1
) since we chose 𝑎 and 𝑏 to be the shortest distance

to V. Therefore, the graph 𝐴 from Figure 6 is an induced
subgraph of {𝑎, 𝑥, V, 𝑑

1
, 𝑓
1
, . . . , 𝑓

𝑛
, 𝑦, 𝑧, 𝑏} with 𝑑

1
≅ 𝑔.

Case 2. The vertices 𝑥, 𝑦, and 𝑧 are colored white, gray, and
white or white, gray, and black, respectively.

Label the path from 𝑥 to 𝑧 in the neighborhood of V as
𝑑
1
, . . . , 𝑑

𝑖
. Notice that 𝑦 and V are in the same color class,

so they are not adjacent. Thus 𝑦 must have two neighbors
that are also adjacent to V, so 𝑦 must be adjacent to at least
one 𝑑

𝑗
, 𝑗 ∈ {1, . . . , 𝑖}. First assume that 𝑑

𝑗
, 𝑑
𝑘
∈ 𝑁(𝑦) for

consecutive 𝑗 and 𝑝. Then the graph 𝐶 from Figure 6 is an
induced subgraph of {𝑥, 𝑦, 𝑧, 𝑑

1
, . . . , 𝑑

𝑖
, V}.

Now assume that there is only one 𝑗 ∈ {1, . . . , 𝑖} such that
𝑑
𝑗
∈ 𝑁(𝑦). There is a path from V to 𝑦 in the neighborhood

of 𝑑
𝑗
; label it 𝑚

1
, . . . , 𝑚

𝑛
. If 𝑗 ∈ {2, . . . , 𝑖 − 1}, then the

graph 𝐴 from Figure 6 is an induced subgraph of {𝑥, 𝑦,
𝑧, 𝑑
1
, . . . , 𝑑

𝑖
, V, 𝑚
1
} with V ≅ 𝑔. If not, then without loss of

generality, assume that 𝑗 = 1. The intervals for the vertices 𝑥
and 𝑑

2
(if 𝑖 = 1, then use 𝑧 instead of 𝑑

2
) trap the interval

for 𝑦, so each must have a neighbor which is not adjacent
to the other. Consider the neighbors of this type that are the
least distance to V and label the neighbor of 𝑥 as 𝑡 and the
neighbor of 𝑑

2
as 𝑢. If 𝑡, 𝑢 ∈ 𝑁(V) then the graph 𝐴 from

Figure 6 is an induced subgraph of {𝑡, 𝑥, 𝑑
1
, 𝑑
2
, 𝑢, V, 𝑚

1
} with

V ≅ 𝑔. If 𝑡 ∉ 𝑁(V), then the graph 𝐴 from Figure 6 is an
induced subgraph of {𝑡, 𝑥, 𝑑

1
, 𝑑
2
, V, 𝑚
1
, . . . , 𝑚

𝑛
, 𝑦} with 𝑑

1
≅

𝑔. A similar argument will find 𝐴 as an induced subgraph if
𝑢 ∉ 𝑁(V).

Case 3. The vertices 𝑥, 𝑦, and 𝑧 are colored white, black, and
gray or gray, black, and gray, respectively.

Since V and 𝑧 are both gray, their overlapping intervals do
not result in an adjacency.Thus either 𝐼

𝑧
intersects 𝐼V because

there exists a vertex 𝑤 such that 𝑟
𝑤
< 𝑟V and 𝑤 ∈ 𝑁(𝑧) or

𝑙
𝑧
< 𝑟V so that 𝐼𝑧 is not contained in another interval.
Consider the first case. If 𝑟

𝑤
> 𝑟V, then 𝐼𝑧 could be moved

so that 𝐼
𝑦
is not trapped in 𝐼V. Thus there must be a vertex

𝑡 such that 𝑙
𝑡
< 𝑟V and 𝑤 ∉ 𝑁(𝑡). If 𝑡 is white or black,

then the graph induced by the vertices {𝑤, V, 𝑧, 𝑡} is a cycle of
length 4. However this is a contradiction, because 2-trees are
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chordal. If 𝑡 is gray either it can be moved so that 𝑟
𝑤
> 𝑟V or

𝐼
𝑡
is there because of another adjacency. In the former case,

we contradict that this representation has minimum con-
tainment. In the latter case, we start this case all over again
with the vertices 𝑥, 𝑦, and 𝑡. Since 𝐺 is finite, we eventually
end up with the one of the previous two contradictions.

Now consider 𝑙
𝑧
< 𝑟V so that 𝐼𝑧 is not contained in another

interval, which we will label 𝑏 if it is white and 𝑔
1
if it is black.

Since 𝐼
𝑧
is not contained in 𝐼

𝑏
, 𝐼
𝑏
∩ 𝐼
𝑦
= 0. If 𝑥 is white, then

we are in Case 1 with the vertices V, 𝑥, 𝑦, and 𝑏; if 𝑥 is gray,
then we can restart the argument in this case with the vertices
V, 𝑥, 𝑦, and 𝑏.

Because 𝐼
𝑧
is avoiding containment in 𝐼

𝑔
1

, 𝐼
𝑔
1

must
intersect an interval for a white or black vertex that is not
a neighbor of 𝑧. If this neighbor is white, then we label it
𝑏. If it is gray, then label it 𝑟

1
. Notice that 𝑔

1
and 𝑟

1
are

not adjacent, so they must share a gray neighbor (since we
already considered the case with a white neighbor), label
this neighbor 𝑔

2
. Again the intervals could be reordered

to create a representation with less containment, unless 𝐼
𝑔
2

intersects a gray or white interval. If it is white, then we
again label it 𝑏. If it is gray, then we label it 𝑟

2
and notice

that there must be a 𝑔
3
that is adjacent to both 𝑔

2
and 𝑟

2

(see 𝐼
1
in Figure 7). The gray and black intervals could again

be reorganized with less containment (see 𝐼
2
in Figure 7)

unless there is another neighbor.The black and gray intervals
continue in this way until we eventually add a white interval,
which we label 𝑏. Thus if 𝑥 is white the graph induced
by the vertices {𝑥, 𝑦, 𝑧, V, 𝑔

1
, . . . , 𝑔

𝑘
, 𝑟
1
, . . . , 𝑟

𝑘−1
, 𝑏} has the

structure of 𝐾
1
from Figure 8, where 𝑔

𝑘
could be black or

gray. If 𝑥 is gray then we get the black and gray structure of
{𝑔
1
, . . . , 𝑔

𝑘
, 𝑟
1
, . . . , 𝑟

𝑘−1
} on the left hand side of V until we hit

a white vertex on the left. In either case, the graph has the
structure of𝐾

1
.

Let us first consider the subgraph of 𝐾
1
in Figure 8

induced by the vertices {𝑥, 𝑦, V, 𝑔
1
} (or similarly {𝑔

𝑘−1
,

𝑔
𝑘
, 𝑏, 𝑟
𝑘−1

}). There is a path from 𝑥 to 𝑔
1
in the neighbor-

hood of V; label it V
1
, . . . , V

𝑎
. If 𝑎 > 4, then the graph 𝐵 from

Figure 6 is an induced subgraph of {𝑥, V, 𝑔
1
, V
1
, . . . , V

𝑎
} with

V ≅ 𝑔, so 𝑎 ≤ 4. Because of coloring 𝑎must be even, so either
𝑎 is two or four. If 𝑎 is four, then the graph induced by the

vertices {𝑥, V, 𝑔
1
, V
1
, V
2
, V
3
, V
4
} is isomorphic to the left end of

𝐾
2
in Figure 8. If 𝑎 is two, then𝑦 ̸= V

𝑗
for any 𝑗.Thus the graph

induced by the vertices {𝑥, V, 𝑦, 𝑔
1
, V
1
, V
2
} is isomorphic to the

right end𝐾
2
in Figure 8.

Now consider the structure of the graph around the
vertices {𝑔

𝑖−1
, 𝑔
𝑖
, 𝑔
𝑖+1
}, 1 ≤ 𝑖 ≤ 𝑘 − 1 (𝑔

0
= V). There is

a path from 𝑔
𝑖−1

to 𝑔
𝑖+1

in the neighborhood of 𝑔
𝑖
; label it

as 𝑖
1
, . . . , 𝑖

𝑎
𝑖

. Since 𝑔
𝑖−1

and 𝑔
𝑖+1

are the same color, 𝑎
𝑖
must

be odd for all 𝑖. If 𝑎
𝑖
= 1 then 𝐴 from Figure 6 is an induced

subgraph of {𝑔
𝑖−1
, 𝑔
𝑖
, 𝑔
𝑖+1
, 𝑖
1
, 𝑟
𝑖−1
, (𝑖 − 1)

𝑎
𝑖−1

, (𝑖 + 1)
1
} with 𝑖

1
≅

𝑔. Furthermore, if 𝑎
𝑖
≥ 5 then 𝐵 from Figure 6 is an induced

subgraph of {𝑔
𝑖−1
, 𝑔
𝑖
, 𝑔
𝑖+1
, 𝑖
1
, . . . , 𝑖

𝑎
𝑖

} with 𝑔
1
≅ 𝑔. Thus 𝑎

𝑖
= 3

for all 𝑖.
Next we show that (𝑖 − 1)

3
= 𝑖
1
for all 𝑖 (includ-

ing both ends, i.e., V
𝑎

= 1
1
). Assume this is not the

case and let 𝑡 be the smallest index 𝑖 such that (𝑖 −

1)
3

̸= 𝑖
1
. Consider the subgraph 𝑇 induced by the vertices

{𝑥, 𝑦, 𝑧, V, V
1
, . . . , V

𝑎
, 𝑔
1
, 1
2
, 1
3
, 𝑔
2
, 2
2
, 2
3
, . . . , 𝑔

𝑡−1
, (𝑡 − 1)

2
, (𝑡 −

1)
3
, 𝑔
𝑡
, 𝑡
1
}. If {𝑥, V, V

1
, . . . , V

𝑎
, 𝑔
1
} is isomorphic to the left

end of 𝐾
2
in Figure 8, then 𝐷

𝑡
from Figure 6 is an induced

subgraph of 𝑇. If {𝑥, 𝑦, V, V
1
, . . . , V

𝑎
, 𝑔
1
} is isomorphic to the

right end of 𝐾
2
in Figure 8, then 𝐸

𝑡
from Figure 6 is an

induced subgraph of 𝑇. Therefore, (𝑖 − 1)
3
= 𝑖
1
for all 𝑖, which

is shown in𝐾
3
in Figure 8.

Now we can see that if both ends of 𝐺 look like the left
end of 𝐾

2
in Figure 8, then 𝐷

𝑘
from Figure 6 is an induced

subgraph of 𝐺. If both ends of 𝐺 look like the right end of𝐾
2

in Figure 8, then 𝐹
𝑘
from Figure 6 is an induced subgraph of

𝐺. Lastly if one end looks like the left end and one looks like
the right end of 𝐾

2
in Figure 8, then 𝐸

𝑘
from Figure 6 is an

induced subgraph of 𝐺.
In each case we found that a graph from Figure 6 is an

induced subgraph of 𝐺, which is a contradiction. Therefore,
if 𝐺 contains none of the graphs from Figure 6 as an induced
subgraph, it is a proper interval 3-graph.

If we combine Theorem 7 with Theorem 1, we get the
following corollary.

Corollary 8. A 2-tree is a proper interval 3-graph if and only
if it contains none of the graphs from Figure 6 and Figure 2 as
an induced subgraph.
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Combining the above corollary with Theorem 2, we get
the following.

Corollary 9. A chordal uniquely 3-colorable graph is a proper
interval 3-graph if and only if it contains none of the graphs
from Figure 6 and Figure 2 as an induced subgraph.

4. Unit Interval 𝑝-Graphs

A unit interval graph is an interval graph that can be
represented using only intervals of unit length.The following
well-known result from Roberts [16] informs us that the class
of proper interval graphs is precisely the class of unit interval
graphs.

Lemma 10 (see [16]). The unit interval graphs are equivalent
to the proper interval graphs, and they are further equivalent
to the 𝐾

1,3
-free interval graphs.

A unit interval 𝑝-graph is an interval 𝑝-graph that can
be represented using only intervals of unit length. We will
refer to the representation of a unit interval 𝑝-graph as a unit
representation. When 𝑝 = 2 it is known that unit equals
proper (see [12, 17]). We prove it now for all 𝑝. This proof
follows closely a proof from Golumbic and Lipshteyn in [18].

Lemma 11. A graph 𝐺 is a unit interval 𝑝-graph if and only if
it is a proper interval 𝑝-graph.

Proof. Let 𝐺 be a unit interval 𝑝-graph. Since a unit interval
cannot properly contain another unit interval, 𝐺 is also a
proper interval 𝑝-graph.

Let 𝐺 be a proper interval 𝑝-graph, and let I be the
proper representation of 𝐺. Create the graph 𝐺

 such that
𝑉(𝐺

) = 𝑉(𝐺) and 𝑥𝑦 ∈ 𝐸(𝐺


) if 𝐼
𝑥
∩ 𝐼
𝑦

̸= 0 inI, regardless
of color. In other words, 𝐺 is the graph 𝐺 with edges added
between vertices of the same color class with overlapping
intervals in I. Now 𝐺

 is a proper interval graph and from
Lemma 10 is also a unit interval graph. Let I

𝑢
be the unit

interval representation for𝐺. If we add the color partition of
𝐺 toI

𝑢
, it is a unit interval representation of 𝐺, and thus we

are done.

Combining Lemma 11 withTheorem 7, we get the follow-
ing.

Theorem 12. Let 𝐺 be a 2-tree interval 3-graph. Then 𝐺 is a
unit interval 3-graph if and only if it contains none of the graphs
from Figure 6 as an induced subgraph.

5. Conclusion

In this paper, we have given a characterization of proper
interval 3-graphs that are 2-trees using their perfection, the
absence of asteroidal triples, and in particular their unique
colorability. We have noted that for 𝑝 = 2 the proper interval
𝑝-graphs enjoy many characterizations and equivalence to
many classes of graphs, but for 𝑝 > 2 their characterizability
seems to be more difficult. We believe this is in part due
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Figure 9: A unit (proper) interval 3-graph which requires care in
the assignment of interval color classes.

Figure 10: Some forbidden induced subgraphs with 𝜒(𝐺) = 4.

to the fact that bipartite graphs are uniquely 2-colorable
and hence there is a forced assignment of intervals to color
classes. When studying interval 𝑝-graphs with 𝑝 > 2 and the
graph under consideration is not uniquely colorable, there are
certain pathologies which need to be overcome. For example,
in Figure 9(I), we have a graph with no unit representation;
if the interval color assignment is as indicated, vertices 𝑓 and
𝑏 should be adjacent. But, in Figure 9(II), the interval color
assignment is conducive to a unit representation.

However we conjecture that the absence of any graph
from the infinite family of graphs in Figure 3 and the absence
of asteroidal triples completely characterizes proper interval
3-graphs.

If we consider proper interval 𝑝-graphs with a higher
chromatic number, say 4, we find more forbidden induced
subgraphs, including the graphs in Figure 10. Although
characterizing all proper interval 4-graphs using forbidden
induced subgraphs may be a difficult problem, it would be
interesting to restrict the search to a well-known family of
graphs, say 3-trees or uniquely 4-colorable graphs.
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