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We prove general theorems for the explicit evaluations of the level 13 analogue of Rogers-Ramanujan continued fraction and find
some new explicit values. This work is a sequel to some recent works of S. Cooper and D. Ye.

1. Introduction

For 𝑞 = 𝑒
2𝜋𝑖𝑧 and Im(𝑧) > 0, the Dedekind eta function 𝜂(𝑧)

and Ramanujan’s function 𝑓(−𝑞) are defined by

𝑓 (−𝑞) := (𝑞; 𝑞)
∞
=: 𝑞
−1/24

𝜂 (𝑧) , (1)

where (𝑎; 𝑞)
∞
= ∏
∞

𝑛=0
(1−𝑎𝑞

𝑛
).The famous Rogers-Ramanu-

jan continued fractionR(𝑞) is defined by

R (𝑞) := 𝑞
1/5

∞

∏

𝑛=1

(1 − 𝑞
5𝑛−4

) (1 − 𝑞
5𝑛−1

)

(1 − 𝑞5𝑛−3) (1 − 𝑞5𝑛−2)
. (2)

This continued fraction was introduced by Rogers [1] in
1894 and rediscovered by Ramanujan in approximately 1912.
In his notebooks [2], lost notebook [3], and his first two
letters to Hardy [4], Ramanujan recorded several explicit
values of R(𝑞). These values are first proved by Watson
[5, 6] and Ramanathan [7]. For further references on explicit
evaluations ofR(𝑞) see [8–14].

The Rogers-Ramanujan continued fractionR(𝑞) is close-
ly related to the function𝑓(−𝑞) by the following two beautiful
relations:

1

R (𝑞)
− 1 −R (𝑞) =

𝑓 (−𝑞
1/5
)

𝑞1/5𝑓 (−𝑞5)
,

1

R5 (𝑞)
− 11 −R5 (𝑞) =

𝑓
6
(−𝑞)

𝑞𝑓6 (−𝑞5)
,

(3)

which are stated by Ramanujan [15, page 267, (11.6)] and first
proved by Watson [5].

In his second notebook [2, 15, Chapter 20, Entry 8(i)]
Ramanujan stated an interesting analogue ofR(𝑞). If

𝑅 (𝑞) := 𝑞

∞

∏

𝑛=1

((1 − 𝑞
13𝑛−12

) (1 − 𝑞
13𝑛−10

)

× (1 − 𝑞
13𝑛−9

) (1 − 𝑞
13𝑛−4

)

× (1 − 𝑞
13𝑛−3

) (1 − 𝑞
13𝑛−1

))

× ((1 − 𝑞
13𝑛−11

) (1 − 𝑞
13𝑛−8

)

× (1 − 𝑞
13𝑛−7

) (1 − 𝑞
13𝑛−6

)

× (1 − 𝑞
13𝑛−5

) (1 − 𝑞
13𝑛−2

))
−1

,

(4)

then

1

𝑅 (𝑞)
− 3 − 𝑅 (𝑞) =

𝑓
2
(−𝑞)

𝑞𝑓2 (−𝑞13)
. (5)

Proofs of (5) can be found in [16, 17]. The function 𝑅(𝑞) is
studied by Cooper and Ye [18, 19]. In [18] Cooper and Ye
evaluated or indicated the explicit values of 𝑅(𝑒−2𝜋√𝑛/13) and
𝑅(−𝑒
−𝜋√𝑛/13

) for 𝑛 = 1, 2, 3, 5, 7, 9, 13, 15, 31, 55, 69, 129, 231,
and 255 by using the methods of reciprocity formulas, 𝑃-𝑄
modular equations, Ramanujan-Weber class invariant, and
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Kronecker’s limit formula and in terms of the functions 𝐹(𝑞)
and 𝑇(𝑞) [18, page 94, (1.7) and (1.8)] which are defined by

𝐹 (𝑞) :=
1

𝑅 (𝑞)
− 3 − 𝑅 (𝑞) =

𝑓
2
(−𝑞)

𝑞𝑓2 (−𝑞13)
, (6)

𝑇 (𝑞) :=
𝐹 (𝑞)

𝐹2 (𝑞) + 6𝐹 (𝑞) + 13

=
𝑅 (𝑞) (1 − 3𝑅 (𝑞) − 𝑅

2
(𝑞))

(1 + 𝑅2 (𝑞))
2

.

(7)

From (6) and (7), it is clear that if we know 𝐹(𝑞) or 𝑇(𝑞) for
any particular value of 𝑞, then 𝑅(𝑞) can be determined by
solving the corresponding quadratic equations.

Cooper and Ye [18, page 104, Theorem 4.1] further
established that

𝐹 (𝑞
2
)

𝑉 (𝑞)
−
13𝑉 (𝑞)

𝐹 (𝑞2)

= −𝐹 (−𝑞)𝑉 (𝑞) +
13

𝐹 (−𝑞)𝑉 (𝑞)

= (𝑉 (𝑞) −
1

𝑉 (𝑞)
)

3

+ 7(𝑉 (𝑞) −
1

𝑉 (𝑞)
) ,

(8)

where

𝑉 (𝑞) =
𝜒 (𝑞
13
)

𝑞1/2𝜒 (𝑞)
, (9)

and 𝜒(𝑞) = (−𝑞; 𝑞
2
)
∞
. They also indicated that if we

know 𝑉(𝑞) for any particular 𝑞, then 𝐹(𝑞
2
) and 𝐹(−𝑞) can

be determined by appealing to (8) and therefrom 𝑅(𝑞
2
)

and 𝑅(−𝑞) can be determined at the same 𝑞. For this they
evaluated 𝑉(𝑒−𝜋√𝑛/13) for 𝑛 = 5, 9, 13, 69, and 129.

In this paper, we prove some general theorems for the
explicit evaluations 𝑅(𝑞) and 𝑅(−𝑞) by parameterizations of
Dedekind eta function and find some old and new explicit
values. In Section 2, we record some preliminary results
which will be used in the subsequent sections. In Section 3,
we prove general theorems for the explicit evaluations of
𝑅(±𝑞) and evaluate some old and new explicit values. In
Section 4, we find some new explicit values of 𝑉(𝑞) by
parametrization. Finally, in Section 5, we consider the func-
tion 𝐹(𝑞).

2. Preliminaries

Lemma 1 (see [15, page 43, Entry 27(iii), (iv), (vi)]). If𝛼 and𝛽
are such that the modulus of each exponential argument below
is less than 1 and 𝛼𝛽 = 𝜋

2, then

𝑒
−𝛼/12 4√𝛼𝑓 (−𝑒

−2𝛼
) = 𝑒
−𝛽/12 4√𝛽𝑓 (−𝑒

−2𝛽
) , (10)

𝑒
−𝛼/24 4√𝛼𝑓 (𝑒

−𝛼
) = 𝑒
−𝛽/24 4√𝛽𝑓 (𝑒

−𝛽
) , (11)

𝑒
𝛼/24

𝜒 (𝑒
−𝛼
) = 𝑒
𝛽/24

𝜒 (𝑒
−𝛽
) . (12)

Lemma 2 (see [20, page 211, Entry 57]). If 𝑃 = 𝑓(−𝑞)/

𝑞
1/2
𝑓(−𝑞
13
) and 𝑄 = 𝑓(−𝑞

2
)/𝑞𝑓(−𝑞

26
), then

𝑃𝑄 +
13

𝑃𝑄
= (

𝑃

𝑄
)

3

+ (
𝑄

𝑃
)

3

− 4(
𝑃

𝑄
+
𝑄

𝑃
) . (13)

Lemma 3 (see [20, page 237, Entry 72]). If 𝑃 = 𝑓(−𝑞)/

𝑞
1/2
𝑓(−𝑞
13
) and 𝑄 = 𝑓(−𝑞

3
)/𝑞
3/2
𝑓(−𝑞
39
), then

𝑃𝑄 +
13

𝑃𝑄
= (

𝑃

𝑄
)

2

+ (
𝑄

𝑃
)

2

− 3(
𝑃

𝑄
+
𝑄

𝑃
) − 3. (14)

3. General Theorems for Explicit
Evaluations of 𝑅(±𝑞)

In this section we prove general theorems for the explicit
evaluations of 𝑅(±𝑞) and find some explicit values.

Theorem 4. One has the following.

(i) For 𝑞 = 𝑒
−2𝜋√𝑛/13, let

𝑠
𝑛
=

𝑓 (−𝑞)

(13)
1/4

𝑞1/2𝑓 (−𝑞13)
. (15)

Then

1

𝑅 (𝑒−2𝜋
√𝑛/13)

− 3 − 𝑅 (𝑒
−2𝜋√𝑛/13

) = √13𝑠
2

𝑛
. (16)

(ii) For 𝑞 = 𝑒
−𝜋√𝑛/13, let

𝑡
𝑛
=

𝑓 (𝑞)

(13)
1/4

𝑞1/2𝑓 (𝑞13)
. (17)

Then

𝑅(−𝑒
−𝜋√𝑛/13

) + 3 −
1

𝑅 (−𝑒−𝜋
√𝑛/13)

= √13𝑡
2

𝑛
. (18)

Proof. We set 𝑞 := 𝑒
−2𝜋√𝑛/13 in (5) and use the definition of

𝑠
𝑛
to arrive at (i). To prove (ii) we replace 𝑞 by −𝑞 in (5), set

𝑞 = 𝑒
−𝜋√𝑛/13, and use the definition of 𝑡

𝑛
.

Theorem 5. If 𝑠
𝑛
and 𝑡
𝑛
are as defined in Theorem 4, then

𝑠
1/𝑛

=
1

𝑠
𝑛

, 𝑡
1/𝑛

=
1

𝑡
𝑛

. (19)

Proof. We use the definitions of 𝑠
𝑛
and 𝑡
𝑛
and use (10) and

(11), respectively, to complete the proof.

Corollary 6. If 𝑠
𝑛
and 𝑡
𝑛
are as defined in Theorem 4, then

(i) 1/𝑅(𝑒−2𝜋/√13𝑛) − 3 − 𝑅(𝑒−2𝜋/√13𝑛) = √13/𝑠
2

𝑛
,

(ii) 𝑅(−𝑒−𝜋/√13𝑛) + 3 − 1/𝑅(−𝑒−𝜋/√13𝑛) = √13/𝑡
2

𝑛
.
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Proof. We replace 𝑛 by 1/𝑛 in Theorem 4(i) and (ii) and
employTheorem 5 to arrive at (i) and (ii), respectively.

From Theorem 4(i) and Corollary 6(i), it is clear that if
we know the explicit values of the parameter 𝑠

𝑛
, then explicit

values of 𝑅(𝑒−2𝜋√𝑛/13) and 𝑅(𝑒
−2𝜋/√13𝑛

) can be evaluated,
respectively. Similarly, if we know the explicit values of
the parameter 𝑡

𝑛
, then explicit values of 𝑅(−𝑒−𝜋√𝑛/13) and

𝑅(−𝑒
−𝜋/√13𝑛

) can be determined from Theorem 4(ii) and
Corollary 6(ii), respectively.

Next we find some explicit values of the parameters 𝑠
𝑛
and

𝑡
𝑛
.

Corollary 7. One has

𝑠
1
= 1, 𝑡

1
= 1. (20)

Proof. We set 𝑛 = 1 in Theorem 5 to complete the proof.

Remark 8. Setting 𝑛 = 1 in Theorem 4(i), employing the
values 𝑠

1
= 1, and solving the resulting equation, we evaluate

𝑅(𝑒
−2𝜋/√13

) =

(−3 − √13 + √26 + 6√13)

2
.

(21)

Similarly, setting 𝑛 = 1 in Theorem 4(ii), employing the
values 𝑡

1
= 1, and solving the resulting equation, we evaluate

𝑅(−𝑒
−𝜋/√13

) =

(−3 + √13 − √26 + 6√13)

2
.

(22)

The values 𝑅(𝑒−2𝜋/√13) and 𝑅(−𝑒−𝜋/√13) are also evaluated by
Cooper and Ye [18] by using reciprocity formulas.

Theorem 9. One has

√13(𝑠
𝑛
𝑠
4𝑛
+

1

𝑠
𝑛
𝑠
4𝑛

) = (
𝑠
𝑛

𝑠
4𝑛

)

3

+ (
𝑠
4𝑛

𝑠
𝑛

)

3

− 4(
𝑠
𝑛

𝑠
4𝑛

+
𝑠
4𝑛

𝑠
𝑛

) .

(23)

Proof. Weuse the definition of 𝑠
𝑛
in Lemma 2 to complete the

proof.

Corollary 10. One has

(𝑖) 𝑠
4
=

(√3 + √13 + √7 + √17)

2
,

(𝑖𝑖) 𝑠
2

2
=
1

6
[(−6√6 + 27√17)

1/3

+ (6√6 + 27√17)
1/3

]

+
1

6
[(− 36 + ((−6√6 + 27√17)

1/3

+ (6√6 + 27√17)
1/3

)

2

)

1/2

] .

(24)

Proof. Setting 𝑛 = 1 in Theorem 9 and noting 𝑠
1
= 1 from

Corollary 7, we obtain

(4 + √13) (𝑠
4
+
1

𝑠
4

) − (𝑠
3

4
+
1

𝑠
3

4

) = 0. (25)

Set

𝑠
4
+
1

𝑠
4

= 𝑦. (26)

Employing (26) in (25) and simplifying, we obtain

𝑦 = (7 + √13)
1/2

. (27)

Employing (27) in (26), solving the resulting equation, and
noting 𝑠

4
> 1, we arrive at (i).

To prove (ii), we set 𝑛 = 1/2 in Theorem 9 and noting
𝑠
1/𝑛

= 1/𝑠
𝑛
fromTheorem 5, we obtain

𝑠
6

2
+
1

𝑠
6

2

− 4(𝑠
2

2
+
1

𝑠2
2

) − 2√13 = 0. (28)

Solving (28) and choosing the appropriate root, we complete
the proof.

Remark 11. Employing the value of 𝑠
4
in Theorem 4(i) and

Corollary 6(i) and solving the resulting equations, we eval-
uate new explicit values

𝑅(𝑒
−4𝜋/√13

)

= 4(19 + 5√13 + √442 + 130√13

+ √16 + (19 + 5√13 + √442 + 130√13)

2

)

−1

,

(29)

𝑅(𝑒
−𝜋/√13

)

= (−15 − 5√13 − 3√34 + 10√13

+ (1144 + 320√13 + 130√34 + 10√13

+ 38√442 + 130√13)

1/2

)

× (2(5 + √13 + √34 + 10√13))

−1

,

(30)

respectively. Similarly, by employing the value of 𝑠
2
in

Theorem 4(i) and Corollary 6(i) and solving the resulting
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equations we can evaluate explicit values of 𝑅(𝑒−2𝜋√2/13)
and 𝑅(𝑒

−𝜋√2/13
), respectively. The value 𝑅(𝑒−2𝜋√2/13) is also

indicated by Cooper and Ye [18].

Theorem 12. One has

(𝑠
𝑛
𝑠
9𝑛
+

1

𝑠
𝑛
𝑠
9𝑛

) = (
𝑠
𝑛

𝑠
9𝑛

)

2

+ (
𝑠
9𝑛

𝑠
𝑛

)

2

− 3(
𝑠
𝑛

𝑠
9𝑛

+
𝑠
9𝑛

𝑠
𝑛

) − 3.

(31)

Proof. Weemploy the definition of 𝑠
𝑛
in Lemma 3 to complete

the proof.

Theorem 13. One has

(𝑖) 𝑠
9
= (3 + √13 + √6 (7 + √13)

+ √−6 + (3 + √13 + √6 (7 + √13))

2

)

× (4)
−1
,

(𝑖𝑖) 𝑠
2

3
=

(7 + √13 + √46 + 14√13)

4
.

(32)

Proof. Setting 𝑛 = 1 inTheorem 12 andusing the result 𝑠
1
= 1,

we obtain

√13(𝑠
9
+
1

𝑠
9

) = 𝑠
2

9
+
1

𝑠2
9

− 3(𝑠
9
+
1

𝑠
9

) − 3. (33)

Solving (33) and choosing the appropriate root, we arrive at
(i).

Again, setting 𝑛 = 1/3 in Theorem 12 and simplifying
usingTheorem 5, we obtain

2√13 = 𝑠
4

3
+
1

𝑠4
3

− 3(𝑠
2

3
+
1

𝑠2
3

) − 3. (34)

Solving (34) and choosing the appropriate root, we complete
the proof of (ii).

Remark 14. Employing the value of 𝑠
9
in Theorem 4(i) and

Corollary 6(i) and solving the resulting equations we eval-
uate 𝑅(𝑒−6𝜋/√13) and 𝑅(𝑒

−2𝜋/3√13
), respectively. Similarly, by

employing the value of 𝑠
3
in Theorem 4(i) and Corollary 6(i)

and solving the resulting equations, we determine the explicit
values of 𝑅(𝑒−2𝜋√3/13) and 𝑅(𝑒−2𝜋/√39), respectively.

Theorem 15. One has

√13(𝑡
𝑛
𝑡
9𝑛
+

1

𝑡
𝑛
𝑡
9𝑛

) = (
𝑡
𝑛

𝑡
9𝑛

)

2

+ (
𝑡
9𝑛

𝑡
𝑛

)

2

+ 3(
𝑡
𝑛

𝑡
9𝑛

+
𝑡
9𝑛

𝑡
𝑛

) − 3.

(35)

Proof. We replace 𝑞 by −𝑞 in Lemma 3 and employ the
definition of 𝑡

𝑛
.

Theorem 16. One has

(𝑖) 𝑡
9
= (−3 + √13 + √42 − 6√13

+ √−16 + (−3 + √13 + √42 − 6√13)

2

)

× (4)
−1
,

(𝑖𝑖) 𝑡
2

3
=

(1 + √13 + √−2 + 2√13)

4
.

(36)

Proof. We set 𝑛 = 1 in Theorem 15, employ 𝑡
1
= 1 from

Corollary 7, and solve the resulting equation to arrive at (i).
To prove (ii) we set 𝑛 = 1/3, employ the result 𝑡

1/𝑛
= 1/𝑡
𝑛
from

Theorem 5, and solve the resulting equation.We complete the
proof.

Remark 17. Employing the value of 𝑡
9
in Theorem 4(ii) and

Corollary 6(ii) and solving the resulting equations, we can
evaluate the explicit values of 𝑅(−𝑒−3𝜋/√13) and 𝑅(−𝑒−𝜋/3√13),
respectively. Similarly, by employing the value of 𝑡

3
in

Theorem 4(ii) and Corollary 6(ii) and solving the resulting
equations, we can calculate the values of 𝑅(−𝑒−𝜋√3/13) and
𝑅(−𝑒
−𝜋/√39

), respectively.

4. Explicit Evaluations of 𝑉(𝑞)

In this section we evaluate explicit values of the function𝑉(𝑞)
defined in (9) by parametrizationmethod. Cooper andYe [18]
used Ramanujan-Weber class invariants to evaluate 𝑉(𝑞).

Theorem 18. For 𝑞 = 𝑒
−𝜋√𝑛/13, let

𝐼
13,𝑛

=
𝜒 (𝑞)

𝑞−1/2𝜒 (𝑞13)
. (37)

Then

𝑉(𝑒
−𝜋√𝑛/13

) =
1

𝐼
13,𝑛

. (38)

Proof. We set 𝑞 = 𝑒
−𝜋√𝑛/13 in (9) and use the definition of 𝐼

13,𝑛

to complete the proof.

Theorem 19. If 𝐼
13,𝑛

is as defined in Theorem 18, then

(i) 𝐼
13,1/𝑛

= 1/𝐼
13,𝑛

,

(ii) 𝑉(𝑒−𝜋√13𝑛) = 𝐼
13,𝑛

.

Proof. (i) follows easily from the definition of 𝐼
13,𝑛

and (12) or
see [21, Theorem 16(ii)]. To prove (ii) we replace 𝑛 by 1/𝑛 in
Theorem 18 and use part (i).
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From Theorems 18 and 19(ii) it is clear that if we know
the explicit values of 𝐼

13,𝑛
then explicit values of 𝑉(𝑒−𝜋√𝑛/13)

and 𝑉(𝑒
−𝜋√13𝑛

) can be determined. Many explicit values of
the parameter 𝐼

13,𝑛
are evaluated in [21]. In the next theorem

we find some explicit values of𝑉(𝑞) by employing the explicit
values of 𝐼

13,𝑛
from [21, Corollaries 32 and 34] inTheorem 18.

Theorem 20. One has the following:

(i) 𝐼
13,1

= 𝑉(𝑒
−𝜋/√13

) = 1,

(ii) 𝐼
13,1/3

= 𝑉(𝑒
−𝜋√3/13

) = (1 + √13 + √−2 + 2√13)/4,

(iii) 𝐼
13,3

= 𝑉(𝑒
−𝜋/√39

) = (1 + √13 − √−2 + 2√13)/4,

(iv) 𝐼
13,1/9

= 𝑉(𝑒
−3𝜋/√13

) = (2 + √3 + √3 + 4√3)/2,

(v) 𝐼
13,9

= 𝑉(𝑒
−𝜋/√117

) = (2 + √3 − √3 + 4√3)/2,

(vi) 𝐼
13,1/5

= 𝑉(𝑒
−𝜋√5/13

) = (√3 + √65 + √58 + 6√65)/2,

(vii) 𝐼
13,5

= 𝑉(𝑒
−𝜋/√65

) = (√3 + √65 − √58 + 6√65)/2,

(viii) 𝐼
13,1/25

= 𝑉(𝑒
−5𝜋/√13

) = (𝐶 + √−36 + 𝐶2)/6,

(ix) 𝐼
13,25

= 𝑉(𝑒
−𝜋/√325

) = (𝐶 − √−36 + 𝐶2)/6,

where 𝐶 = 6 + (1080 − 15√39)
1/3

+ (1080 + 15√39)
1/3.

Remark 21. (i) The values 𝑉(𝑒−3𝜋/√13) and 𝑉(𝑒
−𝜋√5/13

) are
also evaluated in [18] using Ramanujan’s class invariants 𝐺

𝑛
.

The remaining values of 𝑉(𝑞) in Theorem 20 are new.
(ii) The values 𝑉(𝑒−5𝜋/√13) and 𝑉(𝑒

−𝜋/√325
) can be used

to evaluate new explicit values 𝐹(𝑒−10𝜋/√13) (or 𝑅(𝑒−10𝜋/√13))
and 𝐹(𝑒

−2𝜋/√325
) (or 𝑅(𝑒−2𝜋/√325)), respectively, by appeal-

ing to (6) and (8). Similarly, the explicit values 𝑉(𝑒−5𝜋/√13)
and 𝑉(𝑒

−𝜋/√325
) can be used to evaluate new explicit val-

ues −𝐹(−𝑒−5𝜋/√13) (or 𝑅(−𝑒−5𝜋/√13)) and −𝐹(−𝑒
−𝜋/√325

) (or
𝑅(−𝑒
−𝜋/√325

)), respectively, by appealing to (6) and (8).

Theorem 22. One has the following:

(i) 𝑉(𝑒−𝜋𝛼)𝑉(𝑒−𝜋𝛽) = 1, for 𝛼𝛽 = 1/13,

(ii) 𝑉(𝑒−𝜋√𝑛/13)𝑉(𝑒−𝜋/√13𝑛) = 1.

Proof. (i) follows from the definition of 𝑉(𝑞) and (12). (ii)
follows from Theorems 18 and 19(ii) or from part (i) with
𝛼 = √𝑛/13 and 𝛽 = 1/√13𝑛.

Remark 23. Theorem 22(ii) implies that if we know explicit
value of any one of 𝑉(𝑒

−𝜋√𝑛/13
) and 𝑉(𝑒

−𝜋/√13𝑛
), then

others can be determined. Cooper and Ye [18, pages 107-
108, Theorems 4.4, 4.5, and 4.6] evaluated explicit values of
𝑉(𝑒
−𝜋√𝑛/13

) for 𝑛= 13, 69, and 129 by usingWeber-Ramanujan
class invariants. Employing these values of 𝑉(𝑒−𝜋√𝑛/13) in
Theorem 22(ii) we can evaluate 𝑉(𝑒−𝜋/√𝑛) for 𝑛 = 169, 897,

and 1677, respectively. For example, setting 𝑛 = 129 in
Theorem 22(ii) and employing the value

𝑉(𝑒
−𝜋√129/13

) =
1

4
(√355 + 54√43 + √351 + 54√43)

× (√17 + 2√43 + √13 + 2√43) ,

(39)

from [18, page 108, Theorem 4.6], we evaluate

𝑉(𝑒
−𝜋/√1677

) =
1

4
(√355 + 54√43 − √351 + 54√43)

× (√17 + 2√43 − √13 + 2√43) .

(40)

The explicit values 𝑉(𝑒−𝜋/√𝑛) for 𝑛 = 169, 897, and 1677
can be used to calculate new explicit values 𝐹(𝑒−2𝜋/13) (or
𝑅(𝑒
−2𝜋/13

)), 𝐹(𝑒−2𝜋/√897) (or 𝑅(𝑒−2𝜋/√897)), and 𝐹(𝑒−2𝜋/√1677)
(or 𝑅(𝑒−2𝜋/√1677)), respectively, by appealing to (6) and (8).
Similarly, we can use these values of 𝑉(𝑒−𝜋/√𝑛) to evaluate
new explicit values 𝐹(−𝑒−2𝜋/13) (or 𝑅(−𝑒−2𝜋/13)), (−𝑒−2𝜋/√897)
(or 𝑅(−𝑒−2𝜋/√897)) , and 𝐹(−𝑒

−2𝜋/√1677
) (or 𝑅(−𝑒−2𝜋/√1677)),

respectively, by appealing to (6) and (8).

5. Explicit Evaluations of 𝐹(𝑞)

Theorem 24. If 𝑡
𝑛
is as defined in Theorem 4, then

(i) −𝐹(−𝑒−𝜋√𝑛/13) = √13𝑡
2

𝑛
,

(ii) −𝐹(−𝑒−𝜋/√13𝑛) = √13/𝑡
2

𝑛
.

Proof. Replacing 𝑞 by −𝑞 in (6) and employing the definition
of 𝑡
𝑛
we arrive at (i). To prove (ii) we replace 𝑛 by 1/𝑛 in part

(i) and use the result 𝑡
1/𝑛

= 1/𝑡
𝑛
fromTheorem 5.

Theorem 25. One has the following:

(i) 𝐹(−𝑒−𝜋𝛼)𝐹(−𝑒−𝜋𝛽) = 13, for 𝛼𝛽 = 1/13,

(ii) 𝐹(−𝑒−𝜋√𝑛/13)𝐹(−𝑒−𝜋/√13𝑛) = 13.

Proof. (i) follows from the definition of 𝐹(𝑞) from (6) with 𝑞
replaced by −𝑞 and (11). (ii) follows from Theorem 24(i) and
(ii) or from part (i) with 𝛼 = √𝑛/13 and 𝛽 = 1/√13𝑛.

Remark 26. Theorem 25(ii) implies that if we know explicit
value of any one of 𝐹(−𝑒−𝜋√𝑛/13) and 𝐹(−𝑒

−𝜋/√13𝑛
), then

others can be determined. Using Kronecker’s limit for-
mula Cooper and Ye [18, page 109, Theorem 5.2] evaluated
𝐹(−𝑒
−𝜋√𝑛/13

) for 𝑛 = 15, 31, 55, 231, and 255. Employing these
values of 𝐹(−𝑒−𝜋√𝑛/13) in Theorem 25(ii) we can evaluate
explicit value of 𝐹(−𝑒−𝜋/√𝑛) for 𝑛 = 195, 403, 715, 3003, and
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3315, respectively. For example, setting 𝑛 = 31 in
Theorem 25(ii) and employing the value

𝐹 (−𝑒
−𝜋√31/13

) = −√13(
√13 + 3

2
)

3

, (41)

we evaluate

𝐹(−𝑒
−𝜋/√403

) = −(
√13 − 3

2
)

3

. (42)

The values𝐹(−𝑒−𝜋/√𝑛) for 𝑛 = 195, 403, 715, 3003, and 3315 can
be used to findnew explicit values𝑅(−𝑒−𝜋/√195),𝑅(−𝑒−𝜋/√403),
𝑅(−𝑒
−𝜋/√715

), 𝑅(−𝑒−𝜋/√3003), and 𝑅(−𝑒−𝜋/√3315), respectively.

Theorem 27. One has the following:

(i) 𝐹(𝑒−2𝜋√𝑛/13) = √13𝑠
2

𝑛
,

(ii) 𝐹(𝑒−2𝜋/√13𝑛) = √13/𝑠
2

𝑛
.

Proof. We employ the definition of 𝑠
𝑛
in (6) to arrive at (i).

To prove (ii) we replace 𝑛 by 1/𝑛 in part (i) and use the result
𝑠
1/𝑛

= 1/𝑠
𝑛
fromTheorem 5.

Theorem 28. One has the following:

(i) 𝐹(𝑒−2𝜋𝛼)𝐹(𝑒−2𝜋𝛽) = 13, for 𝛼𝛽 = 1/13,

(ii) 𝐹(𝑒−2𝜋√𝑛/13)𝐹(𝑒−2𝜋/√13𝑛) = 13.

Proof. (i) follows from the definition of 𝐹(𝑞) from (6) and
(10). (ii) follows fromTheorem 27(i) and (ii) or from part (i)
with 𝛼 = √𝑛/13 and 𝛽 = 1/√13𝑛.

Corollary 29. One has the following:

(i) 𝐹(𝑒−2𝜋𝛼)𝐹(𝑒−2𝜋𝛽) = 𝐹(−𝑒
−𝜋𝛼

)𝐹(−𝑒
−𝜋𝛽

), for 𝛼𝛽 = 1/13,

(ii) 𝐹(𝑒−2𝜋√𝑛/13)𝐹(𝑒−2𝜋/√13𝑛) = 𝐹(−𝑒
−𝜋√𝑛/13

)𝐹(−𝑒
−𝜋/√13𝑛

).

Proof. (i) follows from part (i) of Theorems 25 and 28. To
prove (ii) we use part (ii) of Theorems 25 and 28.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] L. J. Rogers, “Second memoir on the expansion of certain
infinite products,” Proceedings of the London Mathematical
Society, vol. 25, no. 1, pp. 318–343, 1894.

[2] S. Ramanujan,Notebooks, vol. 1-2, Tata Institute of Fundamental
Research, Bombay, India, 1957.

[3] S. Ramanujan,TheLostNotebook andOtherUnpublished Papers,
Narosa, New Delhi, India, 1988.

[4] B. C. Berndt and R. A. Rankin, Ramanujan: Letters and Com-
mentary, AmericanMathematical Society, Providence, RI,USA,
1995, jointly published by the London Mathematical Society,
London, UK, 1995.

[5] G. N.Watson, “Theorems stated by Ramanujan (VII): theorems
on continued fractions,” Journal of the London Mathematical
Society, vol. 4, pp. 39–48, 1929.

[6] G. N. Watson, “Theorems stated by Ramanujan (IX): two con-
tinued fractions,” Journal of the London Mathematical Society,
vol. 4, pp. 231–237, 1929.

[7] K. G. Ramanathan, “On Ramanujan’s continued fraction,” Acta
Arithmetica, vol. 43, no. 3, pp. 209–226, 1984.

[8] N. D. Baruah and N. Saikia, “Some new explicit values of
Ramanujan’s continued fractions,” Indian Journal of Mathemat-
ics, vol. 46, no. 2-3, pp. 197–222, 2004.

[9] B. C. Berndt and H. H. Chan, “Some values for the Rogers-
Ramanujan continued fraction,” Canadian Journal of Mathe-
matics, vol. 47, no. 5, pp. 897–914, 1995.

[10] B. C. Berndt,H.H.Chan, and L.-C. Zhang, “Explicit evaluations
of the Rogers-Ramanujan continued fraction,” Journal für die
Reine und Angewandte Mathematik, vol. 480, pp. 141–159, 1996.

[11] S.-Y. Kang, “Ramanujan’s formulas for the explicit evalua-
tion of the Rogers-Ramanujan continued fraction and theta-
functions,” Acta Arithmetica, vol. 90, no. 1, pp. 49–68, 1999.

[12] S.-Y. Kang, “Some theorems on the Rogers-Ramanujan con-
tinued fraction and associated theta function identities in
Ramanujans LostNotebook,”TheRamanujan Journal, vol. 3, pp.
91–111, 1999.

[13] N. Saikia, “Some new explicit values of the parameters 𝑠
𝑛
and

𝑡
𝑛
connected with Rogers–Ramanujan continued fraction and

applications,” Afrika Matematika, vol. 25, no. 4, pp. 961–973,
2014.

[14] J. Yi, “Evaluations of the Rogers-Ramanujan continued fraction
𝑅(𝑞) by modular equations,” Acta Arithmetica, vol. 97, no. 2, pp.
103–127, 2001.

[15] B. C. Berndt, Ramanujan’s Notebooks. Part III, Springer, New
York, NY, USA, 1991.

[16] R. J. Evans, “Theta function identities,” Journal of Mathematical
Analysis and Applications, vol. 147, no. 1, pp. 97–121, 1990.

[17] T. Horie and N. Kanou, “Certain modular functions similar to
the Dedekind eta function,” Abhandlungen aus dem Mathema-
tischen Seminar der Universität Hamburg, vol. 72, pp. 89–117,
2002.

[18] S. Cooper and D. Ye, “Explicit evaluations of a level 13 analogue
of the Rogers-Ramanujan continued fraction,” Journal of Num-
ber Theory, vol. 139, pp. 91–111, 2014.

[19] S. Cooper and D. Ye, “The Rogers-Ramanujan continued
fraction and its level 13 analogue,” Journal of Approximation
Theory, 2014.

[20] B. C. Berndt, Ramanujan’s Notebooks, Part IV, Springer, New
York, NY, USA, 1994.

[21] N. Saikia, “A parameter for Ramanujans function 𝜒(q): its
explicit values and applications,” ISRN Computational Mathe-
matics, vol. 2012, Article ID 169050, 14 pages, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


