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This paper addresses a composite two-time-scale control system for simultaneous three-axis attitudemaneuvering and elasticmode
stabilization of flexible spacecraft. By choosing an appropriate time coordinates transformation system, the spacecraft dynamics
can be divided into double time-scale subsystems using singular perturbation theory (SPT). Attitude and vibration control laws
are successively designed by considering a time bandwidths separation between the oscillatory flexible parts motion describing
a fast subsystem and rigid body attitude dynamics as a slow subsystem. A nonlinear quaternion feedback control, based on
modified sliding mode (MSM), is chosen for attitude control design and a strain rate feedback (SRF) scheme is developed for
suppression of vibrational modes. In the attitude control law, the modification to sliding manifold for slow subsystem ensures that
the spacecraft follows the shortest possible path to the sliding manifold and highly reduces the switching action. Stability proof of
the overall closed-loop system is given via Lyapunov analysis. The proposed design approach is demonstrated to combine excellent
performance in the compensation of residual flexible vibrations for the fully nonlinear system under consideration, as well as
computational simplicity.

1. Introduction

In many missions of today’s spacecraft with high resolution
earth observation payloads and/or large flexible systems, the
operation plan requires high precision control capability in
order to point at certain area of interest. These missions
impose increasingly severe requirements over the modeling
and control of spacecraft dynamics. However the flexible
structural elements such as solar arrays, antennas, and other
light weight parts have received significant focus on pro-
viding the control effort for targeting flexible parts such as
payloads and trackingmaneuver with simultaneous vibration
suppression to accomplish mission objectives. Design of
such control system poses a challenging problem, including
spill-over effects due to the unmodeled dynamics, nonlinear
characteristics of rigid-flexible fully coupled dynamics, and
unexpected perturbations [1]. From the mathematical point
of view, the dynamics of flexible spacecraft involves the cou-
pling of ODEs for attitude dynamics and PDEs for vibration

of flexible appendages. This represented by a set of hybrid
differential equations (HDE) of motion. Therefore, control
strategies have emerged for smoothly shaped maneuvers
with vibration excited [2]. Also, the actual performance
of controllers is highly sensitive to the error introduced
by mathematical model simplification. Therefore the key
issues can be classified into modeling error, control/structure
interaction, robustness, and so forth [3].

There has been a lot of research and investigation
effort for such a problem. Numerical techniques have been
reportedwith analysis and experimental verification. Accord-
ingly, many researchers have surmounted finite dimensional
approximation of the original systems. Simultaneous attitude
maneuver with vibration suppression has been considered by
Vadali [4] and Vadali et al. [5].

The design of robust and practical controllers such as slid-
ingmode control (SMC) which is well known for its powerful
robustness and ease of implementation have been presented
in some previous studies [6, 7]. Also in some approaches,
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the spacecraft flexible dynamics are considered as an external
perturbation which affected the rigid body motion [8, 9].

All the same, in previous works, for the case of three-
axis attitude maneuver with fully nonlinear coupled rigid-
flexible dynamics, the VSC approach has been modified by
ignoring these nonlinear terms. The disadvantage of these
modification techniques lies in shifting of the calculated
parameters away from what has happened in reality. Hu
proposed a robust nonlinear VSC control theory for 3-
axis attitude control and vibration suppression of a flexible
spacecraft simultaneously with parameter uncertainty and
control saturation nonlinearity [10, 11]. Elsewhere the men-
tioned researcher Hu et al. [12] used a control technique
which incorporated both SMC and command input shaping
for the vibration suppression of a flexible spacecraft in
single axis maneuver without proof of global stability of the
system.The traditional sliding mode theory with disturbance
accommodating control is combined for attitude tracking
maneuver of spacecraft [13]. A modified version of classical
SMC called smoothing model-reference control is proposed
by Lo and Chen in which the attitude tracking performance
is increased [14].

The problem of control of residual vibrations has received
tremendous interest and poses a challenge task for spacecraft
designers.They suggested using smartmaterials such as shape
memory alloys (SMA) and piezoelectric material (PZT), for
this problem.The piezoelectric materials have the advantages
of high stiffness, light weight, low power consumption,
high frequency response, and easy implementation. Using
piezoelectric material as actuator (compensator) in the case
of surface bounded layerswithVSCduring attitudemaneuver
for vibration reduction of flexible appendages in single
axis maneuver is proposed by Hu and Ma [15]. Azadi et
al. [16] studied attitude maneuver control and vibration
suppression of a flexible satellite in three-axis rotation using
adaptive robust control. The global stability of the fully
coupled nonlinear system has not been reported in these
researches.

This paper presents a method for degrading the induced
vibration and limiting the control action during the slew
maneuver based on fully nonlinear dynamic model of
the system and using singular perturbation approach. The
control of spacecraft for high precision pointing is for-
mulated incorporating control of attitude by modified
SMC and SRF techniques simultaneously. Global stabil-
ity of the complete system has been guaranteed. Numer-
ical simulations show the effectiveness of the proposed
controller.

The rest of the paper is organized as follows. Section 2
describes the mathematical modeling of three-axis flexible
satellite with embedded piezoelectricmaterials using physical
characteristics of the coupledmotion and the singular pertur-
bation theory. The next section states attitude control design
based on modified SMC and active vibration suppression
based on SRFmethod using piezoelectric patches.The results
of numerical simulations are presented to verify the controller
performance in Section 5. Finally concluding remarks are
given in Section 6.

2. Dynamic Modeling

Figure 1 demonstrates the schematic of the hub with two
flexible appendages. A spacecraft model and rigid main body
with two clamped loaded Euler-Bernoulli beams bounding
with PZT layers are considered to model the elastic defor-
mations of the flexible parts in multiaxis attitude maneuvers.
The coordinates used are shown in Figure 1. By choosing
the center of the mass of the spacecraft as the body fixed
reference frame origin (𝑂 𝑋 𝑌 𝑍)|𝑏, the attitude motions
may be decoupled from the translational motions.The beams
have the same length 𝐿𝑏, thickness 𝑡𝑏, mass per unit length 𝜌𝑏,
bending moment of inertia 𝐼𝑏, and Young’s modulus 𝐸𝑏. The
PZT sensors/actuators patches with the length 𝐿𝑝, thickness
𝑡𝑝, mass per unit length𝜌𝑝, bendingmoment of inertia 𝐼𝑝, and
Young’s modulus 𝐸𝑝 are bounded in both sides of each panel.

The kinematics between the body angular velocity and
attitude parameter need to be established. The orientation of
the body fixed coordinate (𝑂 𝑋 𝑌 𝑍)|𝑏 with respect to an
arbitrary inertial frame (𝑂 𝑋 𝑌 𝑍)|𝐼 may be defined using
orthonormal direction cosine C(𝑡) ∈ R3 × 3 matrix [17]:

{ (𝑂 𝑋 𝑌 𝑍)|𝑏 (𝑡)} = C (𝑡) { (𝑂 𝑋 𝑌 𝑍)|𝐼 (𝑡)} . (1)

The unit quaternion, which is a nonminimal repre-
sentation of an object attitude, completely avoids singular
orientations. A quaternion may be presented as a vector q =

[𝑞0 q1 : 3] ∈ 𝑅4×1; that is,

q1 : 3 = [𝑞1 𝑞2 𝑞3]
𝑇

= 𝑒 (𝑡) Sin(
Φ (𝑡)

2
)

𝑞0 = Cos(Φ (𝑡)

2
)

with 0 ≤ Φ (𝑡) ≤ 2𝜋,

(2)

where Φ(𝑡) is a rotation of a rigid body about the principle
Euler rotation axis 𝑒(𝑡). The time derivative of the unit
quaternion is derived to calculate attitude at any moment:

q̇ (𝑡) =
1

2
[𝑞0I3×3 +

×q
1 : 3

−q𝑇
1 : 3

]
𝑇

𝜔, (3)

where ×q
1 : 3

is the skew-symmetric matrix of q1 : 3 and 𝜔 =

𝜔𝑥𝑋𝑏 + 𝜔𝑦𝑌𝑏 + 𝜔𝑧𝑍𝑏 the body angular velocity of the
spacecraft.

The displacement 𝑟𝑝(𝑡) of any point 𝑝 on the spacecraft
can be defined as

r (𝑃, 𝑡) = r𝑖
𝑅
(𝑃)𝑋𝑏 + u𝑖 (𝑃, 𝑡) 𝑌𝑏, (4)

where r𝑖
𝑅
(𝑃) is a vector from center of the mass to the

undeformed point 𝑝 and u𝑖(𝑃, 𝑡), 𝑖 = 1, 2, represents the
elastic deflection on 𝑖th appendage with respect to nominal
position of point 𝑝.

The velocity of a point 𝑝 with respect to the body fixed
reference frame can be obtained by differentiation of (4):

k (𝑝, 𝑡) = u̇𝑖 (𝑝, 𝑡) + 𝜔 × (r𝑖
𝑅
(𝑃) + u𝑖 (𝑃, 𝑡)) . (5)
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Figure 1: Flexible spacecraft model and parameters.

The kinetic energy of the system including PZT patches
can be expressed as

𝑇 =

2

∑
𝑖=1

𝑇
𝑖

𝑏
+

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

𝑗
𝑇
𝑖

𝑝
, (6)

where 𝑇𝑖
𝑏
, 𝑇𝑖

𝑃
and 𝑛𝑗 represents the kinetic energy of the main

structure, the kinetic energy of the jth sensor/actuator pair,
and the number of PZT patches, respectively, and can be
expressed as

𝑇
𝑖

𝑏
=

1

2
∫
𝑆

𝜌𝑏k (𝑝, 𝑡) ⋅ k (𝑝, 𝑡) 𝑑𝑆 =
1

2
𝜔
𝑇J𝑏𝜔

+
1

2

2

∑
𝑖=1

∫
𝑎+𝐿𝑏

𝑎

𝜌
𝑖

𝑏
u̇𝑖(𝑝, 𝑡)

𝑇u̇𝑖 (𝑝, 𝑡) 𝑑𝑥

+
1

2
𝜔

2

∑
𝑖=1

∫
𝑎+𝐿𝑏

𝑎

𝜌
𝑖

𝑏
(
×r𝑖
𝑅
(𝑃) +

×u𝑖 (𝑃, 𝑡)) u̇𝑖 (𝑝, 𝑡) 𝑑𝑥

𝑇
𝑖

𝑃
=

1

2
𝜔
𝑇J𝑝𝜔 +

1

2

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

∫
𝑥𝑖+𝐿𝑃𝑖

𝑥𝑖

𝑗

𝜌
𝑖

𝑃
u̇𝑖(𝑝, 𝑡)

𝑇u̇𝑖 (𝑝, 𝑡) 𝑑𝑥

+
1

2
𝜔

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

∫
𝑥𝑖+𝐿𝑃𝑖

𝑥𝑖

𝑗

𝜌
𝑖

𝑃
(
×r𝑖
𝑅
(𝑃) +

×u𝑖 (𝑃, 𝑡))

× u̇𝑖 (𝑝, 𝑡) 𝑑𝑥,

(7)

where J is the hub moment of inertia, 𝑎 is the distance from
the hub center to the root of the beam, 𝐿𝑏 is the length of
the flexible beam, 𝜌𝑖

𝑏
is the mass per unit length of the 𝑖th

appendage, 𝑗𝜌
𝑖

𝑃
is the mass per unit length of the 𝑗th PZT

patch and 𝑖th appendage, 𝑥
𝑖
is starting 𝑥-coordinate of PZT

patch, and 𝐿𝑃 is the length of the PZT patch.
The potential energy of the flexible structure including

PZT patches is considered to be

𝑉 =

2

∑
𝑖=1

𝑉
𝑖

𝑏
+

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

𝑗
𝑉
𝑖

𝑝
, (8)

where 𝑉
𝑖

𝑏
and 𝑗

𝑉
𝑖

𝑃
are the potential energy of the 𝑖th main

structure and the 𝑗th sensor/actuator pair, respectively, and
can be written as

𝑉
𝑖

𝑏
=

1

2

2

∑
𝑖=1

∫
𝑎+𝐿𝑏

𝑎

𝐸
𝑖

𝑏
𝐼
𝑖

𝑏
(

𝜕2u𝑖 (𝑃, 𝑡)
𝜕𝑥2

)

2

𝑑𝑥,

𝑗
𝑉
𝑖

𝑃
=

1

2

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

𝑗

𝐸
𝑖

𝑃
(
𝑗
𝜛
𝑖

𝑝

𝑗
ℎ
𝑖

𝑝
)(

𝑗𝑦
𝑖2

+
𝑗𝑦
𝑖 𝑗
ℎ
𝑖

𝑝
+

𝑗
ℎ
𝑖

𝑝

2

3
)

× ∫
𝑥𝑖+𝐿𝑃

𝑥𝑖

(
𝜕2u𝑖 (𝑝, 𝑡)

𝜕𝑥2
)

2

𝑑𝑥,

(9)

where 𝐸𝑖
𝑏
is the modulus of elasticity for the 𝑖th appendage,

𝐼𝑖
𝑏
is the moment of inertia for the beam structure, 𝑗𝑦

𝑖

is the
starting point of the PZT as measured from the neutral axis
of the beam, 𝑗𝜛

𝑖

𝑝
is the width of the 𝑗th PZT layer and 𝑖th

appendage, and 𝑗
ℎ
𝑖

𝑝
is the thickness of each PZT element on

𝑖th appendage.
The virtual work done by the external torques 𝜏 and PZT

patches is given by

𝛿𝑊𝑛𝑐 =

2

∑
𝑖=1

𝛿𝑊𝜏 +

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

𝛿
𝑗
𝑊

𝑖

𝑝
, (10)

where 𝛿𝑗𝑊𝑖

𝑝
is the work done by the jth PZT patch on 𝑖th

appendage.The work done by the external control torque can
be expressed as

𝛿𝑊𝜏 = 𝑊𝑇. (11)
The work done by the jth PZT patch is the combination

of the conservative and nonconservative work terms defined
as an integral over the volume of the PZT patches:

𝛿
𝑗
𝑊

𝑖

𝑝
=

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

𝛿
𝑗
𝑊

𝑖

𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑐

+

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

𝛿
𝑗
𝑊

𝑖

𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛𝑐

, (12)

𝑗
𝑊

𝑖

𝑝
=

1

2

𝑗
𝜛
𝑖

𝑝

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

∫

𝑗
𝑥
𝑖

+𝐿𝑝

𝑗
𝑥
𝑖 ∫

𝑗𝑦
𝑖

+
𝑗
ℎ
𝑖

𝑝

𝑗𝑦
𝑖

{{

{{

{

𝑗
𝐸
𝑖

3

𝑗
𝑆
𝑖

1

}}

}}

}

𝑇

× [
1 0

0 −1
]{

𝑗
𝐷
𝑖

3
𝑗

𝑇
𝑖

1

}𝑑𝑦𝑑𝑥

(13)
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Using constitutive equation of PZT material (See
Appendix A) 𝑗

𝑆
𝑖

1
= −𝑦(𝜕2u(𝑝, 𝑡)/𝜕𝑥2), (13) become

𝑗
𝑊

𝑖

𝑝

=
1

2

𝑗
𝜛
𝑖

𝑝

×

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

∫

𝑗
𝑥
𝑖

+𝐿𝑃

𝑗
𝑥
𝑖 ∫

𝑗

𝑦
𝑖
+
𝑗
ℎ
𝑖

𝑝

𝑗

𝑦
𝑖

{(
𝑗
𝜀
𝑇𝑖

3
−

𝑗
𝑑
𝑖

31

2
𝑗
𝐸
𝑖

𝑃
)
𝑗
𝐸
𝑖

3

2

− (2
𝑗
𝑑
𝑖

31

𝑗
𝐸
𝑖

𝑃

𝑗
𝐸
𝑖

3

× (𝑦
𝜕2u𝑖 (𝑝, 𝑡)

𝜕𝑥2
))}𝑑𝑦𝑑𝑥

−
1

2

𝑗
𝜛
𝑖

𝑝

×

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

∫

𝑗
𝑥𝑖 +𝐿𝑃

𝑗
𝑥𝑖

∫

𝑗𝑦
𝑖
+
𝑗
ℎ
𝑖

𝑝

𝑗
𝑦𝑖

(
𝑗
𝐸

𝑖

𝑃

(𝑦
𝜕2u𝑖 (𝑝, 𝑡)

𝜕𝑥2
)

2

)𝑑𝑦𝑑𝑥

(14)

The last term of (14) is expressed as PZT potential
energy 𝑗

𝑉
𝑖

𝑃
; in other words the potential energy expression

is composed of conservative works, also introducing

𝑗
𝑊

𝑖

𝑝

󵄨󵄨󵄨󵄨󵄨󵄨𝑛𝑐
=

1

2

𝑗
𝜉
𝑖

𝑝

𝑗𝜂
𝑖

𝑝

2

− { q
S
𝑖

𝑘

}
𝑇

{
𝑗
R
𝑖

𝑝
}
𝑗𝜂
𝑖

𝑝
(15)

with

𝑗
𝜉
𝑖

𝑝
=

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

𝑗
𝜛
𝑖

𝑝
𝐿𝑃𝑖

𝑗
ℎ
𝑖

𝑝

(
𝑗
𝜀
𝑇𝑖

3
−

𝑗
𝑑
𝑖

31

2
𝑗
𝐸
𝑖

𝑃
)

𝑗𝜂
𝑖

𝑝
=

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

𝑗
𝐸
𝑖

3
×

𝑗
ℎ
𝑖

𝑝

𝑗
R
𝑖

𝑝
=

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

𝑗
𝑑
𝑖

31

𝑗
𝐸
𝑖

𝑃

𝑗
𝜛
𝑖

𝑝
(

𝑗𝑦
𝑖

+

𝑗
ℎ
𝑖

𝑝

2
)

× ∫

𝑗
𝑥
𝑖

+𝐿𝑃𝑖

𝑗
𝑥
𝑖 {𝜓

󸀠󸀠
(𝑥)}

𝑇

𝑑𝑥,

(16)

where 𝜂
𝑖

𝑝
is the electrode voltage, { q

S
𝑖

𝑘

} = [𝑞1𝑞2 ⋅ ⋅ ⋅ 𝑞𝑛] is the
𝑘th generalized coordinates for 𝑖th appendage, and {𝜓(𝑥)} is
the element shape function. Substituting (11) and (15) into
(10), the total work can be expressed as

𝑊𝑛𝑐 =
1

2
{𝜂}

𝑇
[I] {𝜂} − {𝑞}

𝑇
[𝑅] {𝜂} + 𝑊𝑇, (17)

where

[I] = diag (
𝑗
𝜉
𝑖

𝑝
) ,

[𝑅] = [{
1
R
𝑖

𝑝
} {

2
R
𝑖

𝑝
} ⋅ ⋅ ⋅ {

𝑛𝑗R
𝑖

𝑝
}] ,

𝜂 = [
1

𝜂
𝑖

𝑝

2𝜂
𝑖

𝑝
⋅ ⋅ ⋅

𝑛𝑗𝜂𝑖
𝑝
]
𝑇

.

(18)

Utilizing assumed mode method (AMM) and defining

u𝑖
𝑃
(𝑥, 𝑡) =

𝑚

∑
𝑘=1

𝑖
𝜓
𝑇

𝑘
(𝑥) q

S
𝑖

𝑘

(𝑡) = {𝜓} {q
S
} , (19)

where u𝑖
𝑃
(𝑥, 𝑡) is elastic displacement of 𝑖th appendage

which can be discretized using m mode by AMM expansion
technique. We substitute (6), (8), and (10) into Lagrange’s
equations of the motion in terms of quasi-coordinate in a
vector form; that is,

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜔
) +

×
𝜔(

𝜕𝐿

𝜕𝜔
) = 𝜏 + u

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕 q̇
S𝑘

) −
𝜕𝐿

𝜕 q
S𝑘

= 0.
(20)

Integration over the spatial domains leads to global
mass, stiffness and forcing matrixes. In order to account for
the structural damping effects in spacecraft dynamics, the
Rayleigh’s dissipation function may be considered as

𝑇𝑑 =
1

2
q̇
S
𝑇

𝑘

C q̇
S𝑘

. (21)

Using (6), (8), (10), and (21) and the extended Hamilton’s
principle, the attitude dynamic model of a flexible spacecraft
can be obtained in the following form:

[
M𝑅𝑅 M𝑅𝐹

M𝐹𝑅 M𝐹𝐹

] ⋅ {
𝜔̇

q̈
S𝑘

} + [
C𝑅𝑅 C𝑅𝐹
C𝐹𝑅 C𝐹𝐹

]{
𝜔

q̇
S𝑘

}

+ [
0 0
0 𝐾𝐹𝐹

]{
Φ

q
S𝑘

} = {
𝜏 + u

−[𝑅][𝑔𝑎] {𝜂𝑎}
}

{𝜂𝑆} = [𝑔𝑠] [I]
−1

[𝑅]
𝑇
{q
S𝑘

} ,

(22)

where [𝑔𝑠] and [𝑔𝑎] represent the sensor and actuator
amplifier gains, respectively. The elements of submatricesM,
C, and K are given in Appendix B. The PZT patches will be
used as sensors and actuators; accordingly, they will have
voltage inputs and outputs. As it can be seen from (22), [𝑅]

and [I] matrices can be decomposed in sensor and actuator
parts corresponding to the sensor/actuator voltages, {𝜂𝑆} and
{𝜂𝑎}.

3. Implementation of SPT

The fundamental idea of this approach is to separate the
system dynamics into the slow and fast subsystems. Control
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designmay thenproceed for each lower-order subsystem, and
the results are combined to yield a hybrid stabilized controller
for the overall system. For this case, a new variable Zmay be
considered as follows:

[K𝐹𝐹] { q
S𝑘

} = 𝑘Min [K𝑅
𝐹𝐹

] { q
S𝑘

}

= {Z} 󳨐⇒ [K𝑅
𝐹𝐹

] { q
S𝑘

} =
1

𝑘Min
{Z} ,

(23)

where 𝑘Min is the smallest coefficient of the stiffness matrix
K𝐹𝐹. Introducing a new parameter as a singular perturbation

parameter, 𝜀 = (1/𝑘Min)
0.5 [18], (23) become

[K𝑅
𝐹𝐹

] {q𝑘} = 𝜀
2
{Z} . (24)

Comparing 𝑗
R
𝑖

𝑝
matrix, with√𝜀, it can be concluded that

𝑂(
𝑗
R
𝑖

𝑝
) = 𝑂(𝜀); therefore, 𝑗R

𝑖

𝑝
matrix can be written as

𝑗
R
𝑖

𝑝
= 𝜀

𝑗
R
𝑖

𝑝

𝑅

, (25)

where the superscript 𝑅 denotes to reduced magnitude.
Substituting the new variables into the equations of motion,
the system becomes

𝜔̇ = 𝛼
−1

1
(𝜏 + u − 𝛼2𝜔 − 𝜀

2K𝑅
𝐹𝐹

−1

𝛼3Ż

− {M𝑅𝐹M
−1

𝐹𝐹
(−Z − 𝜀 [𝑅] [𝑔𝑎] {𝜂𝑎})} ) ,

(26)

Z̈ = 𝜀
−2K𝑅

𝐹𝐹
𝛾
−1

1
(−𝜀 [𝑅] [𝑔𝑎] {𝜂𝑎} − 𝛾

2
𝜔 − 𝜀

−2
𝛾
3
K𝑅
𝐹𝐹

−1Ż

−M𝐹𝑅M
−1

𝑅𝑅
(𝜏 + u) − Z) .

(27)

The slow subsystem can be obtained by setting terms of
𝑂(𝜀2) and higher equal to zero in the equations of motion:

ZSlow = (−M𝐹𝑅M
−1

𝑅𝑅
(𝜏 + u) − 𝜀 [𝑅] [𝑔𝑎] {𝜂𝑎} − 𝛼2𝜔) . (28)

Substituting (28) in (26) yields:

𝜔̇Slow = 𝛼
−1

1
(𝜏 − 𝛼2𝜔

−M𝑅𝑅M
−1

𝐹𝐹
(−𝛾

2
𝜔 − M𝐹𝑅M

−1

𝑅𝑅
(𝜏 + u))󵄨󵄨󵄨󵄨󵄨Slow)

(29)

The term including control voltage of PZT actuators is of
𝑂(𝜀) and consequently can be ignored since its magnitude
is much less than the other terms, which leads to an 𝑂(𝜀)

approximation of the slow subsystem.
Fast subsystem can be obtained by setting 𝜓𝑓 = 𝑡/𝜀,

introducing ZFast = Z − ZSlow, lead the slow variables as
constant in fast time scale [19] and considering the terms

of 𝑂(𝜀
2) and higher equal to zero so the equation of the

motion for fast subsystem can be expressed as

𝑑
2

𝑑𝜓2
𝑓

ZFast = K𝑅
𝐹𝐹
𝛾
−1

1
( − (𝜀[𝑅][𝑔𝑎] {𝜂𝑎})

󵄨󵄨󵄨󵄨Fast − 𝛾
3

𝑑

𝑑𝜓𝑓
ZFast

− ZFast − M𝐹𝑅M
−1

𝑅𝑅
(𝜏 + u)󵄨󵄨󵄨󵄨󵄨Fast) .

(30)

The equation of the motion of (26) becomes

[
𝛼1 0
0 𝛾

1

] ⋅ {
𝜔̇

𝜓̈
𝑓

} + [

[

𝛼2 + M𝑅𝐹M𝐹𝐹𝛾2
0

0 𝛾
3

]

]

⋅ {
𝜔

𝜓̇
𝑓

} + [
0 0
0 𝜅𝐹𝐹] ⋅ {

Φ

𝜓
𝑓

}

= {
M−1

𝑅𝑅
𝛼1 (𝜏 + u)

−𝜀 [𝑅] [𝑔𝑎] {𝜂𝑎} − M𝐹𝑅M−1

𝑅𝑅
(𝜏 + u)} ,

(31)

where 𝛼𝑖, 𝛾𝑖 (𝑖 = 1, 2, 3) are defined as

𝛼1 = M𝑅𝑅 − M𝑅𝐹M
−1

𝐹𝐹
M𝐹𝑅,

𝛼2 = C𝑅𝑅 − M𝑅𝐹M
−1

𝐹𝐹
C𝐹𝑅,

𝛼3 = C𝑅𝐹 − M𝑅𝐹M
−1

𝐹𝐹
C𝐹𝐹,

𝛾
1
= M𝐹𝐹 − M𝐹𝑅M

−1

𝑅𝑅
M𝑅𝐹,

𝛾
2
= C𝐹𝑅 − M𝐹𝑅M

−1

𝑅𝑅
C𝑅𝑅,

𝛾
3
= C𝐹𝐹 − M𝐹𝑅M

−1

𝑅𝑅
C𝑅𝐹.

(32)

4. Controller Design

In the present work, three-axis attitude maneuver and vibra-
tion control are considered.

The quaternions are chosen for representation of the
attitude of the spacecraft. By taking angular velocity and
quaternion vectors, a modified sliding manifold is being
proposed as

S = 𝜔𝑒 + K tanh (𝑞0−𝑒) q1 : 3−𝑒, (33)

where 𝜔𝑒 = 𝜔 −𝜔𝑑 is the spacecraft angular velocity tracking
error, q𝑒 = q⟨×⟩q−1

𝑑
is the quaternion tracking error, in which

⟨×⟩ is the quaternion products, q𝑑 and 𝜔𝑑 are the desired
quaternion and angular velocity, respectively.

Theorem 1. The control objective is to stabilize the flexible
spacecraft by forcing the rigid body modes to follow some
desired trajectories, while simultaneously reducing the elastic
modes. The desired attitude maneuver with high mode flexibil-
ity can be realized, if the sliding condition V̇ ≺ 0 is satisfied.
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Proof. The desired state that slides on the sliding surface
can be shown to be asymptotically stable by choosing the
candidate Lyapunov function as

𝑉 =
1

2
S𝑇𝛼1S. (34)

The proposed Lyapunov function is valid since it vanishes
at equilibrium point S = 0 and is globally positive definite
for S ̸= 0 since 𝛼1 is positive definite. The time derivative of
Lyapunov function is given by

𝑉̇ =
1

2
S𝑇𝛼1Ṡ, (35)

where the derivative of sliding surface is defined as

Ṡ = 𝜔̇ + K tanh (𝑞0) q̇1 : 3. (36)

From the equation of the motion we have

𝛼1𝜔̇ = − {𝛼2 + M𝑅𝐹M
−1

𝐹𝐹
𝛾
2
}𝜔

+ {1 − M𝑅𝐹M
−1

𝐹𝐹
M𝐹𝑅M

−1

𝑅𝑅
} (u + 𝜏) ,

(37)

whereu is the control torque generated by actuators placed on
rigid main body. Multiply each side of (36) by 𝛼1 combined
with (37) leads to the following expression for 𝑉̇:

𝑉̇ = S𝑇 (− {𝛼2 + M𝑅𝐹M
−1

𝐹𝐹
𝛾
2
}𝜔

+ {M−1

𝑅𝑅
𝛼1} (u + 𝜏) + (𝐾1 tanh (𝑞0)𝛼1q̇1 : 3) ) ,

(38)

which is clearly negative definite provided that 𝐾1 ≻ 0. The
controller designed by variable structure approach consists of
two different tasks. First one is to define an appropriate sliding
surface and the other one is to improve the sliding condition,
which it commands the states remain on the sliding surface.
By solving the above equation for the control input, the
external control torque can be derived in such a way that

u = ueq + uVS, (39)

where the variable structure and equivalent parts of controller
input are defined as

uVS = − (𝐾2S (𝑡)) − (𝐾3 tanh(
S (𝑡)

𝑃2
)) (40)

ueq = (M−1

𝑅𝑅
𝛼1)

−1

({𝛼2 + M𝑅𝐹M
−1

𝐹𝐹
𝛾
2
}𝜔

− {M−1

𝑅𝑅
𝛼1𝜏} − (𝐾1 tanh (𝑞0)𝛼1q̇1 : 3)) .

(41)

The equivalent control ueq part turns the sliding surface
S(𝑡) into an invariant manifold for the system, to ensure that
Ṡ = 0. Whereas the variable structure part uVS is chosen to
ensure that the S = 0; thus, the designing surface is attractive
and the desired condition can be reached in finite time.

Substitutions of (40) and (41) into the sliding condition
yield

𝑉̇ = −S𝑇 (𝑡) {(𝐾2S (𝑡)) + (𝐾3 tanh(
S (𝑡)

𝑃2
))} ≺ 0, (42)

where 𝐾𝑛 with 𝑛 = 1, 2, 3 are positive definite matrices,
and 𝑃2 is a scalar sharpness function that regulates the
control action rates. Note that the term q̇1 : 3 in (41) introduces
nonlinear terms in variable-structure controller. This implies
from theorem and the 𝐾𝑛 values that as 𝑡 󳨀→ ∞ the control
objective [q 𝜔]𝑇

𝑑
= [1 01×3 01×3]

𝑇and the asymptotic
global stability can be achieved due to the 𝑉̇ = −(1/2)S𝑇uVS.

It can be seen from (40) and (41) that the stability and
robustness of controller performance are guaranteed if the
upper bounds of the perturbations are known. This knowl-
edge may cause the controller to produce the overconserva-
tive high gain𝐾3.This may cause chattering phenomenon. In
order to overcome this source of degradation or overaction,
the hyperbolic tangent function is used to reduce chattering.

Also, the active vibration suppression system using the
PZT sensor and actuator can actively suppress the solar and
environmental induced vibration to the flexible appendages
during attitude maneuver. Since no external field is applied
to the sensor layer, the electric displacement developed on
the sensor surface is directly proportional to the strain acting
on it. Also PZT materials can be used as strain rate sensors.
The output current of the PZT sensor measures the moment
rate of the flexible appendages. This current is converted into
the open circuit sensor voltage𝑉𝑆 using a signal conditioning
device with the gain 𝐺𝐶 and applied to an actuator with a
suitable controller gain. Thus, the sensor output voltage is
obtained as

𝑉𝑆 (𝑡) = 𝐺𝐶𝑖 (𝑡)

= 𝐺𝐶𝑒31 (
ℎ𝑏

2
+ ℎ𝑝)𝜛𝑝 ∫

𝐿𝑃

0

𝜕2

𝜕𝑥2
𝜓
𝑘
(𝑥) q̇𝑘 (𝑡) 𝑑𝑥,

(43)

where 𝑖(𝑡) is circuit current, and the indices 𝑏 and 𝑝 explain
the beam and PZT structures, respectively. This sensor
voltage is given as input to the controller and the output of
the controller is the controller gain multiplied by the sensor
voltage. Thus, the input voltage to the actuator 𝑉𝑎, in other
words the controller input 𝑢(𝑡), is given by

𝑉𝑎 (𝑡) = 𝑢 (𝑡) = K𝑝 × 𝑉𝑆 (𝑡) , (44)

where K𝑝 is the controller gain matrix. Note that feedback
gain matrix K𝑝 consists of each feedback gain which is asso-
ciated with each flexible PZT patch. The actuator equation
is derived from the converse PZT equation and the relative
control force fctrl produced by the actuator that is applied on
the appendages is obtained using bending moment theory:

fctrl = 𝐸𝑃𝑑31𝜛𝑝 (
ℎ𝑃 + ℎ𝑏

2
)∫

𝐿𝑃

0

𝜕

𝜕𝑥
𝜓 (𝑥) 𝑑𝑥𝑉𝑎 (𝑡) . (45)
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Table 1: Parameters of flexible spacecraft.

Parameters Flexible
appendage

Piezoelectric
layer

Young’s Modulus (GPa) 𝐸 = 39.72 𝐸𝑝 = 68

Density (kg/m) 𝜌𝑏 = 4 𝜌𝑝 = 2.31

Thickness (m) 𝑡𝑏 = 0.01 𝑡𝑝 = 0.003

Width (m) 𝑏 = 0.5 𝑏 = 0.1

Length (m) 𝐿𝑏 = 2 𝐿𝑝 = 0.1

PZT Strain constant
(m/V) — 𝑑31 = 125 × 10−12

PZT Stress constant
(Vm/N) — 𝑒31 = 10.5 × 10−3

Hub dimension (m) 𝑎 = 1

Spacecraft moment of
inertia (kg⋅m2)

[
[

[

200 0 0

0 210 0

0 0 180

]
]

]

5. Numerical Simulations and Results

Simulation of fully nonlinear 3-axis attitude maneuver of
a flexible spacecraft has been carried out using MAT-
LAB/SIMULINK software to demonstrate the performance
of proposed approach.The proposed control system objective
of a flexible spacecraft model is to reduce the induced
vibration and tracking a target in sample mission.

The desired maneuver is 160
∘ slew with simultaneous

vibration suppression. This is usually a fast and large angle
maneuver. The numerical values of the parameters used in
the simulation study are presented in Table 1.

The initial conditions for the angular velocity are set to
𝜔(𝑡0) = [0 0 0]

𝑇 and for quaternion parameters are given
by q(𝑡0) = [0.174 −0.263 0.789 −0.526]

𝑇. The first two
flexible modes are retained in the model for discretization
of elastic deformations. For control implementation, design
parameters are considered as K1 = 0.4I3×3, K2 = 15I3×3
andK3 = 0.28I3×3.

Dynamical behavior of the controlled system is shown in
Figures 2, 3, 4, 5, 6, 7, 8, and 9. Smoothness and convergence
of attitude error in terms of quaternions and angular rate are
shown in Figures 2 and 3. Figures 4–6 show the required
control torques for different states.

As shown in these figures, using SPT and accounting
complete coupling of flexible/rigid dynamics in controller
design process causes actually better response of the closed
loop system and controller performance. Also, active sup-
pression of structural vibration causes smooth and fine actu-
ation of attitude controller.This is an important characteristic
for actual implementation of the controller. As shown in
Figure 6, using classical SMC (without modification) causes
steady state error arising fromflexiblemodes excitation. Con-
vergence of the flexible body coordinates and PZT actuation
voltage are shown in Figures 7–9.

6. Conclusion

A new methodology and control design approach for multi-
axis attitude maneuver and vibration suppression of flexible
spacecraft has been proposed. The proposed scheme is based
on mapping of the fully coupled nonlinear system dynamics
into slow and fast subsystemdomain using SPT anddesigning
of hybrid control modified SMC/SRF for system. The hybrid
controller can obtain asymptotical reference attitude and
suppress structural vibrations excited by, for example, rapid
maneuvers or other disturbances. Stability proof of the overall
system has been proved using Lyapunov stability analysis.

It has been shown that the performance of the resultant
closed-loop system being improved compared to those of
traditional, while fast targeting, suppression of residual struc-
tural vibration and assuring overall stability.

Appendices

A. Piezoelectric Constitutive Equations

The 3D constitutive equation for a piezoelectric element can
be shown to have the following standard notation [20] as

[
𝐷𝑖

𝑆𝑗
] =

[
[
[

[

𝜀𝑇
𝑖

𝑑1
𝑖𝑗

𝑑2
𝑖𝑗

𝑑
1𝑇

𝑖𝑗
𝑆
𝐸1

𝑖𝑗
0

𝑑2
𝑖𝑗

0 𝑆𝐸2
𝑖𝑗

]
]
]

]

[
𝐸𝑖
𝑇𝑗

] , (A.1)

where𝐷𝑖 (𝑖 = 1, 2, 3) denotes the electric displacement along
the 𝑖th axis, 𝐸𝑖 (𝑖 = 1, 2, 3) represents the applied electrical
field density, 𝑆𝑖 (𝑖 = 1, . . . , 6) represents strain, 𝜎𝑖 (𝑖 =

1, . . . , 6) represents the stress, 𝜀𝑇
𝑖

(𝑖 = 1, 2, 3), 𝑆𝐸𝑘
𝑖𝑗

(𝑖 =

1, 5, 𝑗 = 1, 2, 3, 5, 𝑘 = 1, 2), and 𝑑𝑘
𝑖𝑗

(𝑖 = 1, 3, 𝑗 =

1, 3, 5, 𝑘 = 1, 2) are permittivity, elastic compliance, and
piezoelectricity (strain) coefficient constants of the PZT
material, respectively:

𝜀
𝑇

𝑖
= [

[

𝜀𝑇
1

0 0

0 𝜀𝑇
1

0

0 0 𝜀𝑇
3

]

]

, 𝑑
1

𝑖𝑗
= [

[

0 0 0

0 0 0

𝑑31 𝑑31 𝑑33

]

]

,

𝑑
2

𝑖𝑗
=

[
[
[
[

[

0 𝑑15 0

𝑑15 0 0

0 0 0

]
]
]
]

]

(A.2)

𝑆
𝐸1

𝑖𝑗
=

[
[
[
[
[

[

𝑆
𝐸

11
𝑆𝐸
12

𝑆𝐸
13

𝑆𝐸
12

𝑆𝐸
11

𝑆𝐸
13

𝑆𝐸
13

𝑆𝐸
13

𝑆𝐸
13

]
]
]
]
]

]

, 𝑆
𝐸2

𝑖𝑗
= [

[

𝑆𝐸
55

0 0

0 𝑆𝐸
55

0

0 0 𝑆𝐸
55

]

]

(A.3)

The strain condition based on Euler-Bernoulli beam
theory is defined as

𝜀𝑥 = −𝑦
𝜕2𝑤

𝜕𝑥2
, 𝜀𝑦 = 𝜀𝑧 = 𝛾𝑥𝑦 = 𝛾 = 𝛾𝑦𝑥 = 0. (A.4)
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Figure 2: Time history of Attitude quaternion.
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Figure 3: Time history of angular velocity.

It can be seen from (A.4) that (A.1) reduced to 1-D Constitu-
tive equation of PZT material and is thereby found to be

{
𝐷3

𝑆1
} = [

[

𝜀𝑇
3

𝑑31

𝑑31 𝑆𝐸
11

]

]

{

{

{

𝐸3

𝑇1

}

}

}

(A.5)

Using the fact that 𝑆
𝐸

𝑖𝑗
= 𝐸−1

𝑃
, where 𝐸𝑃 is Young’s

modulus, (A.3) can be expressed as below:

{
𝐷3

𝑇1
} = [

𝜀𝑇
3
− 𝑑2

31
𝐸𝑃 𝑑31𝐸𝑃

−𝐸𝑃𝑑31 𝐸𝑃
]{

𝐸3
𝑆1

} . (A.6)
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Figure 4: Time history of control torque with active vibration suppression.
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Figure 5: Time history of control torque without active vibration suppression.

B. The Elements of the Matrices M, C, K and J

The elements of the sub matrices of the system are:

J = Jℎ + J𝑏 + J𝑝 = [𝐽
𝑖𝑗
]
3×3

,

𝐽
11

= 𝐼𝑋𝑋 +

2

∑
𝑖=1

∫
𝑎+𝐿𝑏

𝑎

𝜌
𝑖

𝑏

𝑖u2𝑑𝑥

+

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

∫
𝑥𝑖+𝐿𝑃𝑖

𝑥𝑖

𝑗𝜌
𝑖

𝑃

𝑖u2𝑑𝑥

𝐽
12

= 𝐽
21

= −

2

∑
𝑖=1

∫
𝑎+𝐿𝑏

𝑎

𝜌
𝑖

𝑏

𝑖u 𝑑𝑥

+

2

∑
𝑖=1

𝑛𝑗

∑
𝑗=1

∫
𝑥𝑖+𝐿𝑃𝑖

𝑥𝑖

𝑗

𝜌
𝑖

𝑃

𝑖u 𝑑𝑥
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Figure 6: Time history of control action using classical (Not-
modified) SMC.

𝐽
13

= 𝐽
31

= 0,

𝐽
22

= 𝐼𝑌𝑌,

𝐽
23

= 𝐽
32

= 0,

𝐽
33

= 𝐼𝑍𝑍 +

2

∑
𝑖=1

∫
𝑎+𝐿𝑏

𝑎

𝜌
𝑖

𝑏

𝑖u2 𝑑𝑥

+

2

∑
𝑖=1

𝑁𝑗

∑
𝑗=1

∫
𝑥𝑖+𝐿𝑃𝑖

𝑥𝑖

𝑗

𝜌
𝑖

𝑃

𝑖u2 𝑑𝑥,

M𝑅𝑅 = [𝑀
𝑖𝑗

𝑅𝑅
]
3×3

,

𝑀
11

𝑅𝑅
= 𝐼𝑋𝑋 +

2

∑
𝑖=1

{

{

{

𝑖

q
S
𝑇

𝑘

𝑖
Υ
𝑦𝑦

𝑖q
S𝑘

+
𝑖
𝑎𝑦 (𝜌𝑏 +

𝑁𝑗

∑
𝑗=1

𝑗
𝜌𝑃)

+ 2
𝑖
𝑎𝑦

𝑖

Υ
𝑇

𝑦

𝑖q
S𝑘

}

}

}

,

𝑀
12

𝑅𝑅
= 𝑀

21

𝑅𝑅
= −

2

∑
𝑖=1

{

{

{

𝑖
Υ
𝑇

𝑦𝑥

𝑖q
S𝑘

+
𝑖
𝑎
𝑥

𝑖
𝑎
𝑦
+

𝑖
𝑎
𝑥

𝑖
Υ
𝑇

𝑦𝑦

𝑖q
S𝑘

+
𝑖
𝑎
𝑦
(𝜌𝑏

𝐿2
𝑏

2
+

𝑁𝑗

∑
𝑗=1

𝑗
𝜌𝑃

𝑗
𝐿
2

𝑃

2
)

}

}

}

,

𝑀
13

𝑅𝑅
= 𝑀

31

𝑅𝑅
= 0,

𝑀
22

𝑅𝑅
= 𝐼𝑌𝑌,

𝑀
23

RR = 𝑀
32

RR = 0,

𝑀
33

𝑅𝑅
= 𝐼𝑍𝑍 +

2

∑
𝑖=1

{

{

{

𝑖

q
S
𝑇

𝑘

𝑖
Υ
𝑦𝑦

𝑖q
S𝑘

+
𝑖

𝑎
2

𝑦
(𝜌𝑏 +

𝑁𝑗

∑
𝑗=1

𝑗
𝜌𝑝)

}

}

}

+ 2
𝑖
𝑎𝑦

𝑖

Υ
𝑇

𝑦

𝑖q
S𝑘

+𝜌𝑏 ∫
𝐿𝑏𝑖

0

𝑥
2
𝑑𝑥

+

𝑁𝑗

∑
𝑗=1

𝑗
𝜌𝑃 ∫

𝑥𝑖+𝐿𝑃𝑖

𝑥𝑖

𝑥
2
𝑑𝑥,

M𝑅𝐹 = [
1
𝑎𝑥

2
𝑎𝑥]

[

[

1

Υ
𝑇

𝑦
0

0
2

Υ
𝑇

𝑦

]

]

− [
1

Υ
𝑇

𝑦𝑥

2

Υ
𝑇

𝑦𝑥
] ,

M𝐹𝑅 = [
1
𝑎𝑥

2
𝑎𝑥]

[

[

1

Υ
𝑇

𝑦
0

0
2

Υ
𝑇

𝑦

]

]

− [
1

Υ
𝑇

𝑦𝑥

2

Υ
𝑇

𝑦𝑥
] ,

M𝐹𝐹 = [

1
Υ𝑦𝑦 0
0 2

Υ𝑦𝑦
] ,

C𝑅𝑅 = [𝐶
𝑖𝑗

𝑅
]
3×3

,

𝐶
11

𝑅𝑅
= 𝜔𝑧

2

∑
𝑖=1

{

{

{

𝑖

Υ
𝑇

𝑦𝑥

𝑖q
S𝑘

+
𝑖
𝑎𝑥

𝑖
𝑎𝑦 +

𝑖
𝑎𝑥

𝑖

Υ
𝑇

𝑦

𝑖q
S𝑘

+
𝑖
𝑎𝑦(𝜌𝑏

𝐿2
𝑏

2
+

𝑁𝑗

∑
𝑗=1

𝑗
𝜌𝑃

𝑗

𝐿
2

𝑃

2
)

}

}

}

+ 2

2

∑
𝑖=1

{
𝑖

q̇
S
𝑇

𝑘

𝑖

Υ
𝑇

𝑦𝑦

𝑖q
S𝑘

+
𝑖
𝑎𝑦

𝑖

Υ
𝑇

𝑦

𝑖 q̇
S𝑘

} ,

𝐶
21

𝑅𝑅
= 𝜔𝑧

{

{

{

2

∑
𝑖=1

{

{

{

𝑖

q
S
𝑇

𝑘

𝑖

Υ
𝑇

𝑦𝑦

𝑖q
S𝑘

+
𝑖

𝑎
2

𝑦
(𝜌𝑏 +

𝑁𝑗

∑
𝑗=1

𝑗
𝜌𝑃)

+ 2𝑎𝑦 (𝜌𝑏 +

𝑁𝑗

∑
𝑗=1

𝑗
𝜌𝑃)

𝑖

Υ
𝑇

𝑦

𝑖q
S𝑘

}

}

}

,

+ (𝐼𝑍𝑍 − 𝐼𝑦𝑦)
}

}

}

,

𝐶
31

𝑅𝑅
= 0,

𝐶
21

𝑅𝑅
= −2

2

∑
𝑖=1

{
𝑖

Υ
𝑇

𝑦𝑥

𝑖 q̇
S𝑘

+
𝑖
𝑎𝑥

𝑖

Υ
𝑇

𝑦

𝑖 q̇
S𝑘

} + 𝜔𝑧 (𝐼𝑋𝑋 − 𝐼𝑦𝑦) ,

𝐶
22

𝑅𝑅
= 𝜔𝑧

2

∑
𝑖=1

{

{

{

𝑖

Υ
𝑇

𝑦𝑥

𝑖q
S𝑘

+
𝑖
𝑎𝑥

𝑖
𝑎𝑦 +

𝑖
𝑎𝑥

𝑖

Υ
𝑇

𝑦

𝑖q
S𝑘

+
𝑖
𝑎𝑦(𝜌𝑏

𝐿2
𝑏

2
+

𝑁𝑗

∑
𝑗=1

𝑗
𝜌𝑃

𝑗

𝐿
2

𝑃

2
)

}

}

}

,
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𝐶
32

𝑅𝑅
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𝐶
31

𝑅𝑅
= −𝜔𝑥

2

∑
𝑖=1

{

{

{

𝑖

Υ
𝑇

𝑦𝑥

𝑖q
S𝑘

+
𝑖
𝑎𝑥

𝑖
𝑎𝑦 +

𝑖
𝑎𝑥

𝑖

Υ
𝑇

𝑦

𝑖q
S𝑘

+
𝑖
𝑎𝑦 (𝜌𝑏

𝐿
2

𝑏

2
+

𝑁𝑗

∑
𝑗=1

𝑗
𝜌𝑃

𝑗

𝐿
2

𝑃

2
)

}

}

}

− 𝜔𝑦
{

{

{

2

∑
𝑖=1

{

{

{

𝑖

q
S
𝑇

𝑘

𝑖

Υ
𝑇

𝑦𝑦

𝑖q
S𝑘

+
𝑖

𝑎
2

𝑦
(𝜌𝑏 +

𝑁𝑗

∑
𝑗=1

𝑗
𝜌𝑃) + 2𝑎𝑦

× (𝜌𝑏 +

𝑁𝑗

∑
𝑗=1

𝑗
𝜌𝑃)

𝑖

Υ
𝑇

𝑦

𝑖q
S𝑘

}

}

}

+ (𝐼𝑌𝑌 − 𝐼𝑋𝑋)
}

}

}

,

𝐶
32

𝑅
= −𝜔𝑦

2

∑
𝑖=1

{

{

{

𝑖

Υ
𝑇

𝑦𝑥

𝑖q
S𝑘

+
𝑖
𝑎𝑥

𝑖
𝑎𝑦 +

𝑖
𝑎𝑥

𝑖

Υ
𝑇

𝑦

𝑖q
S𝑘

+
𝑖
𝑎𝑦 (𝜌𝑏

𝐿2
𝑏

2
+

𝑁𝑗

∑
𝑗=1

𝑗𝜌
𝑃

𝑗
𝐿
2

𝑃

2
)

}

}

}

,

𝐶
33

𝑅
= 2

2

∑
𝑖=1

{
𝑖

q̇
S
𝑇

𝑘

𝑖

Υ
𝑇

𝑦𝑥

𝑖 q̇
S𝑘

+
𝑖
𝑎
𝑥

𝑖
Υ
𝑇

𝑦

𝑖 q̇
S𝑘

} ,

𝐶
11

𝐹𝑅
= 𝐶

21

𝐹𝑅
= 𝐶

31

𝐹𝑅
,

𝐶
11

𝐹𝑅
= −𝜔𝑥 {[

1
Υ𝑦𝑦 0
0 2

Υ𝑦𝑦
]

𝑖q
S𝑘

+ [

1
Υ
𝑦

0
0 2

Υ
𝑦

] [
1
𝑎𝑦

2
𝑎
𝑦
]
𝑇

}
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Figure 9: Time history of PZT actuation voltage.
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