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The aimof this paper is to study the dynamics of a reaction-diffusion SIR epidemicmodel with specific nonlinear incidence rate.The
global existence, positivity, and boundedness of solutions for a reaction-diffusion system with homogeneous Neumann boundary
conditions are proved. The local stability of the disease-free equilibrium and endemic equilibrium is obtained via characteristic
equations. By means of Lyapunov functional, the global stability of both equilibria is investigated. More precisely, our results show
that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than or equal to unity,
which leads to the eradication of disease from population.When the basic reproduction number is greater than unity, then disease-
free equilibrium becomes unstable and the endemic equilibrium is globally asymptotically stable; in this case the disease persists
in the population. Numerical simulations are presented to illustrate our theoretical results.

1. Introduction

In this paper, we consider the following SIR epidemic model
with a specific nonlinear incidence rate described by

𝑑𝑆

𝑑𝑡
= Λ − 𝜇𝑆 −

𝛽𝑆𝐼

1 + 𝛼
1
𝑆 + 𝛼
2
𝐼 + 𝛼
3
𝑆𝐼

,

𝑑𝐼

𝑑𝑡
=

𝛽𝑆𝐼

1 + 𝛼
1
𝑆 + 𝛼
2
𝐼 + 𝛼
3
𝑆𝐼

− (𝜇 + 𝑑 + 𝑟) 𝐼,

𝑑𝑅

𝑑𝑡
= 𝑟𝐼 − 𝜇𝑅,

(1)

where 𝑆, 𝐼, and 𝑅 are susceptible, infectious, and recovered
classes, respectively. Λ is the recruitment rate of the popu-
lation, 𝜇 is the natural death rate of the population, 𝑑 is the
death rate due to disease, 𝑟 is the recovery rate of the infective
individuals, 𝛽 is the infection coefficient, and 𝛽𝑆𝐼/(1 + 𝛼

1
𝑆 +

𝛼
2
𝐼 + 𝛼
3
𝑆𝐼) is the incidence rate, where 𝛼

1
, 𝛼
2
, 𝛼
3

≥ 0 are
constants. It is very important to note that this incidence rate
becomes the bilinear incidence rate if 𝛼

1
= 𝛼
2
= 𝛼
3
= 0, the

saturated incidence rate if 𝛼
1

= 𝛼
3

= 0 or 𝛼
2

= 𝛼
3

= 0,

the Beddington-DeAngelis functional response introduced
in [1, 2] and used in [3] when 𝛼

3
= 0, and Crowley-

Martin functional response presented in [4–6] if 𝛼
3
= 𝛼
1
𝛼
2
.

Moreover, the function 𝛽𝑆/(1 + 𝛼
1
𝑆 + 𝛼

2
𝐼 + 𝛼
3
𝑆𝐼) satisfies

the hypotheses (𝐻1), (𝐻2), and (𝐻3) of general incidence
rate presented by Hattaf et al. in [7]. From the biological
point of view, the transmission rate of infectious diseases
remains unknown in detail and may be different from one
disease to another. In the classical epidemic models, this rate
was assumed to be linear with respect to the numbers of
susceptible and infected individuals.This assumption is based
on the law of mass action which is more appropriate for
communicable diseases such as influenza but not for sexually
transmitted diseases such as HIV/AIDS. For one reason, the
transmission rate in system (1) is assumed to be nonlinear
and has the form 𝛽𝐼/(1 + 𝛼

1
𝑆 + 𝛼
2
𝐼 + 𝛼
3
𝑆𝐼) that measures

the saturation effect which represents that the number of
individual contacts reaches a certain maximum value due
to social or spatial distribution of the population. For more
details on the choice of the nonlinearity of the incidence rate,
we refer the reader to the book of Capasso [8].
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On the other hand, the spatial content of the environment
has been ignored in the model (1). However, due to the
large mobility of people within a country or even worldwide,
spatially uniform models are not sufficient to give a realistic
picture of disease diffusion. For this reason, the spatial effects
cannot be neglected in studying the spread of epidemics.

Therefore, we consider the following SIR epidemic model
with specific nonlinear incidence rate and spatial diffusion:

𝜕𝑆

𝜕𝑡
= 𝑑
𝑆
Δ𝑆 + Λ − 𝜇𝑆 (𝑥, 𝑡)

−
𝛽𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡)

1 + 𝛼
1
𝑆 (𝑥, 𝑡) + 𝛼

2
𝐼 (𝑥, 𝑡) + 𝛼

3
𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡)

,

𝜕𝐼

𝜕𝑡
= 𝑑
𝐼
Δ𝐼 +

𝛽𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡)

1 + 𝛼
1
𝑆 (𝑥, 𝑡) + 𝛼

2
𝐼 (𝑥, 𝑡) + 𝛼

3
𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡)

− (𝜇 + 𝑑 + 𝑟) 𝐼 (𝑥, 𝑡) ,

𝜕𝑅

𝜕𝑡
= 𝑑
𝑅
Δ𝑅 + 𝑟𝐼 (𝑥, 𝑡) − 𝜇𝑅 (𝑥, 𝑡) ,

(2)

where 𝑆(𝑥, 𝑡), 𝐼(𝑥, 𝑡), and 𝑅(𝑥, 𝑡) represent the numbers of
susceptible, infected, and removed individuals at location 𝑥

and time 𝑡, respectively. The positive constants 𝑑
𝑆
, 𝑑
𝐼
, and

𝑑
𝑅
denote the corresponding diffusion rates for these three

classes of individuals.
The aim of this work is to investigate the global dynamics

of the reaction-diffusion system (2). Note that 𝑅 does not
appear in the first two equations; this allows us to study the
system

𝜕𝑆

𝜕𝑡
= 𝑑
𝑆
Δ𝑆 + Λ − 𝜇𝑆 (𝑥, 𝑡)

−
𝛽𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡)

1 + 𝛼
1
𝑆 (𝑥, 𝑡) + 𝛼

2
𝐼 (𝑥, 𝑡) + 𝛼

3
𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡)

,

𝜕𝐼

𝜕𝑡
= 𝑑
𝐼
Δ𝐼 +

𝛽𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡)

1 + 𝛼
1
𝑆 (𝑥, 𝑡) + 𝛼

2
𝐼 (𝑥, 𝑡) + 𝛼

3
𝑆 (𝑥, 𝑡) 𝐼 (𝑥, 𝑡)

− (𝜇 + 𝑑 + 𝑟) 𝐼 (𝑥, 𝑡) ,

(3)

with homogeneous Neumann boundary conditions

𝜕𝑆

𝜕]
=

𝜕𝐼

𝜕]
= 0, on 𝜕Ω × (0, +∞) , (4)

and initial conditions

𝑆 (𝑥, 0) = 𝜙
1
(𝑥) ≥ 0, 𝐼 (𝑥, 0) = 𝜙

2
(𝑥) ≥ 0, 𝑥 ∈ Ω. (5)

Here, Ω is a bounded domain in R𝑛 with smooth boundary
𝜕Ω. 𝜕𝑆/𝜕] and 𝜕𝐼/𝜕] are, respectively, the normal derivatives
of 𝑆 and 𝐼 on 𝜕Ω.

The rest of paper is organized as follows.The next section
deals with the global existence, positivity, and boundedness
of solutions of problem (3)–(5). In Section 3, we discuss
the stability analysis of equilibria. In Section 4, we present

the numerical simulation to illustrate our result. Finally, the
conclusion of our paper is in Section 5.

2. Global Existence, Positivity, and
Boundedness of Solutions

In this section, we establish the global existence, positivity,
and boundedness of solutions of problem (3)–(5) because
this model describes the population. Hence, the population
should remain nonnegative and bounded.

Proposition 1. For any given initial data satisfying the con-
dition (5), there exists a unique solution of problem (3)–(5)
defined on [0, +∞) and this solution remains nonnegative and
bounded for all 𝑡 ≥ 0.

Proof. System (3)–(5) can be written abstractly in the Banach
space 𝑋 = 𝐶(Ω) × 𝐶(Ω) of the form

𝑢
󸀠
(𝑡) = 𝐴𝑢 (𝑡) + 𝐹 (𝑢 (𝑡)) , 𝑡 > 0,

𝑢 (0) = 𝑢
0
∈ 𝑋,

(6)

where 𝑢= col(𝑆, 𝐼), 𝑢
0
= col(𝜙

1
, 𝜙
2
), 𝐴𝑢(𝑡) = col(𝑑

𝑆
Δ𝑆, 𝑑
𝐼
Δ𝐼),

and

𝐹 (𝑢 (𝑡)) = (

Λ − 𝜇𝑆 −
𝛽𝑆𝐼

1 + 𝛼
1
𝑆 + 𝛼
2
𝐼 + 𝛼
3
𝑆𝐼

𝛽𝑆𝐼

1 + 𝛼
1
𝑆 + 𝛼
2
𝐼 + 𝛼
3
𝑆𝐼

− (𝜇 + 𝑑 + 𝑟) 𝐼

) .

(7)

It is clear that 𝐹 is locally Lipschitz in𝑋. From [9], we deduce
that system (6) admits a unique local solution on [0, 𝑇max),
where 𝑇max is the maximal existence time for solution of
system (6).

In addition, system (3) can be written in the form
𝜕𝑆

𝜕𝑡
− 𝑑
𝑆
Δ𝑆 = 𝐹

1
(𝑆, 𝐼) ,

𝜕𝐼

𝜕𝑡
− 𝑑
𝐼
Δ𝐼 = 𝐹

2
(𝑆, 𝐼) .

(8)

It is easy to see that the functions 𝐹
1
(𝑆, 𝐼) and 𝐹

2
(𝑆, 𝐼) are

continuously differentiable satisfying 𝐹
1
(0, 𝐼) = Λ ≥ 0 and

𝐹
2
(𝑆, 0) = 0 ≥ 0 for all 𝑆, 𝐼 ≥ 0. Since initial data of system (3)

are nonnegative, we deduce the positivity of the local solution
(see the book of Smoller [10]).

Now, we show the boundedness of solution. From (3)–(5)
we have

𝜕𝑆

𝜕𝑡
− 𝑑
𝑆
Δ𝑆 ≤ Λ − 𝜇𝑆,

𝜕𝑆

𝜕]
= 0,

𝑆 (𝑥, 0) = 𝜙
1
(𝑥) ≤

󵄩󵄩󵄩󵄩𝜙1
󵄩󵄩󵄩󵄩∞ = max

𝑥∈Ω

𝜙
1
(𝑥) .

(9)

By the comparison principle [11], we have 𝑆(𝑥, 𝑡) ≤ 𝑆
1
(𝑡),
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where 𝑆
1
(𝑡) = 𝜙

1
(𝑥)𝑒
−𝜇𝑡

+ (Λ/𝜇)(1 − 𝑒
−𝜇𝑡

) is the solution of
the problem

𝑑𝑆
1

𝑑𝑡
= Λ − 𝜇𝑆

1
,

𝑆
1
(0) =

󵄩󵄩󵄩󵄩𝜙1
󵄩󵄩󵄩󵄩∞.

(10)

Since 𝑆
1
(𝑡) ≤ max{Λ/𝜇, ‖𝜙

1
‖
∞
} for 𝑡 ∈ [0,∞), we have that

𝑆 (𝑥, 𝑡) ≤ max{
Λ

𝜇
,
󵄩󵄩󵄩󵄩𝜙1

󵄩󵄩󵄩󵄩∞} , ∀ (𝑥, 𝑡) ∈ Ω × [0, 𝑇max) .

(11)
FromTheorem2 given byAlikakos in [12], to establish the

𝐿
∞ uniform boundedness of 𝐼(𝑥, 𝑡), it is sufficient to show the

𝐿
1 uniform boundedness of 𝐼(𝑥, 𝑡).
Since 𝜕𝑆/𝜕] = 𝜕𝐼/𝜕] = 0 and (𝜕/𝜕𝑡)(𝑆+𝐼)−Δ(𝑑

𝑆
𝑆+𝑑
𝐼
𝐼) ≤

Λ − 𝜇(𝑆 + 𝐼), we get
𝜕

𝜕𝑡
(∫
Ω

(𝑆 + 𝐼) 𝑑𝑥) ≤ mes (Ω)Λ − 𝜇(∫
Ω

(𝑆 + 𝐼) 𝑑𝑥) .

(12)
Hence,

∫
Ω

(𝑆 + 𝐼) 𝑑𝑥 ≤ mes (Ω)max{
Λ

𝜇
,
󵄩󵄩󵄩󵄩𝜙1 + 𝜙

2

󵄩󵄩󵄩󵄩∞} , (13)

which implies that sup
𝑡≥0

∫
Ω
𝐼(𝑥, 𝑡)𝑑𝑥 ≤ 𝐾 :=

mes(Ω)max{Λ/𝜇, ‖𝜙
1
+ 𝜙
2
‖
∞
}. Using [12, Theorem 3.1],

we deduce that there exists a positive constant 𝐾
∗ that

depends on 𝐾 and on ‖𝜙
1
+ 𝜙
2
‖
∞

such that

sup
𝑡≥0

‖𝐼 (⋅, 𝑡)‖∞ ≤ 𝐾
∗
. (14)

From the above, we have proved that 𝑆(𝑥, 𝑡) and 𝐼(𝑥, 𝑡) are
𝐿
∞ bounded on Ω × [0, 𝑇max). Therefore, it follows from the

standard theory for semilinear parabolic systems (see [13])
that 𝑇max = +∞. This completes the proof of the proposition.

3. Qualitative Analysis of the Spatial Model

Using the results presented by Hattaf et al. in [7], it is easy
to get that the basic reproduction number of disease in the
absence of spatial dependence is given by

𝑅
0
=

𝛽Λ

(𝜇 + 𝛼
1
Λ) (𝜇 + 𝑑 + 𝑟)

, (15)

which describes the average number of secondary infections
produced by a single infectious individual during the entire
infectious period.

It is not hard to show that the system (3) is always a
disease-free equilibrium of the form 𝐸

𝑓
(Λ/𝜇, 0). Further, if

𝑅
0

> 1, the system (3) has an endemic stationary state
𝐸
∗
(𝑆
∗
, 𝐼
∗
) where

𝑆
∗
=

2 (𝑎 + 𝛼
2
Λ)

𝛽 − 𝛼
1
𝑎 + 𝛼
2
𝜇 − 𝛼
3
Λ + √𝛿

,

𝐼
∗
=

Λ − 𝜇𝑆
∗

𝑎
,

(16)

with 𝑎 = 𝜇 + 𝑑+𝑟 and 𝛿 = (𝛽−𝛼
1
𝑎+𝛼
2
𝜇−𝛼
3
Λ)
2
+4𝛼
3
𝜇(𝑎+

𝛼
2
Λ).

The objective of this section is to discuss the local and
global stability of the equilibria.

3.1. Local Stability of the Equilibria. First, we linearize the
dynamical system (3) around arbitrary spatially homoge-
neous fixed point𝐸(𝑆, 𝐼) for small space- and time-dependent
fluctuations and expand them in Fourier space. For this, let

𝑆 (𝑥⃗, 𝑡) ∼ 𝑆𝑒
𝜆𝑡
𝑒
𝑖𝑘⃗⋅ ⃗𝑥

,

𝐼 (𝑥⃗, 𝑡) ∼ 𝐼𝑒
𝜆𝑡
𝑒
𝑖𝑘⃗⋅ ⃗𝑥

,

(17)

where 𝑥⃗ = (𝑥, 𝑦) and 𝑘⃗ ⋅ 𝑘⃗ := ⟨𝑘⃗, 𝑘⃗⟩ := 𝑘
2; 𝑘⃗ and 𝜆 are the

wavenumber vector and frequency, respectively.Then we can
obtain the corresponding characteristic equation as follows:

det (𝐽 − 𝑘
2
𝐷 − 𝜆𝐼

2
) = 0, (18)

where 𝐼
2
is the identity matrix, 𝐷 = diag(𝑑

𝑆
, 𝑑
𝐼
) is the dif-

fusion matrix, and 𝐽 is the Jacobian matrix of (3) without
diffusion (𝑑

𝑆
= 𝑑
𝐼
= 0) at 𝐸 which is given by

𝐽 =(

(

−𝜇 −

𝛽𝐼 (1 + 𝛼
2
𝐼)

(1 + 𝛼
1
𝑆 + 𝛼
2
𝐼 + 𝛼
3
𝑆 𝐼)
2
−

𝛽𝑆 (1 + 𝛼
1
𝑆)

(1 + 𝛼
1
𝑆 + 𝛼
2
𝐼 + 𝛼
3
𝑆 𝐼)
2

𝛽𝐼 (1 + 𝛼
2
𝐼)

(1 + 𝛼
1
𝑆 + 𝛼
2
𝐼 + 𝛼
3
𝑆 𝐼)
2

𝛽𝑆 (1 + 𝛼
1
𝑆)

(1 + 𝛼
1
𝑆 + 𝛼
2
𝐼 + 𝛼
3
𝑆 𝐼)
2
− 𝑎

)

)

.

(19)
The characterization of the local stability of disease-free
equilibrium 𝐸

𝑓
is given by the following result.

Theorem 2. The disease-free equilibrium 𝐸
𝑓
is locally asymp-

totically stable if 𝑅
0
< 1 and it is unstable if 𝑅

0
> 1.

Proof. Evaluating (18) at 𝐸
𝑓
, we have

(𝜇 + 𝑘
2
𝑑
𝑆
+ 𝜆) (𝑎 (𝑅

0
− 1) − 𝑘

2
𝑑
𝐼
− 𝜆) = 0. (20)

Clearly, the roots of (20) are 𝜆
1
(𝑘) = −(𝜇 + 𝑘

2
𝑑
𝑆
) < 0 and

𝜆
2
(𝑘) = 𝑎(𝑅

0
−1) − 𝑘

2
𝑑
𝐼
. Note that 𝜆

2
(𝑘) is negative if 𝑅

0
< 1

for all 𝑘. Hence 𝐸
𝑓
is locally asymptotically stable if 𝑅

0
< 1. If

𝑅
0
> 1, 𝜆

2
(0) is positive. So 𝐸

𝑓
is unstable.

Next, we focus on the local stability of the endemic
equilibrium 𝐸

∗.

Theorem 3. The endemic equilibrium 𝐸
∗ is locally asymptoti-

cally stable if 𝑅
0
> 1.

Proof. Evaluating (18) at 𝐸∗(𝑆∗, 𝐼∗), we have

𝜆
2
+ 𝑎
1
(𝑘) 𝜆 + 𝑎

2
(𝑘) = 0, (21)

where
𝑎
1
(𝑘) = 𝜇 + 𝑘

2
(𝑑
𝑆
+ 𝑑
𝐼
)

+ 𝑎(
𝐼
∗
(1 + 𝛼

2
𝐼
∗
)

(1 + 𝛼
1
𝑆∗ + 𝛼

2
𝐼∗ + 𝛼

3
𝑆∗𝐼∗) 𝑆∗

+
𝛼
2
𝐼
∗
+ 𝛼
3
𝑆
∗
𝐼
∗

1 + 𝛼
1
𝑆∗ + 𝛼

2
𝐼∗ + 𝛼

3
𝑆∗𝐼∗

) ,
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𝑎
2
(𝑘) = (𝜇 +

𝛽𝐼
∗
(1 + 𝛼

2
𝐼
∗
)

(1 + 𝛼
1
𝑆∗ + 𝛼

2
𝐼∗ + 𝛼

3
𝑆∗𝐼∗)

2
+ 𝑘
2
𝑑
𝑆
)

× (𝑘
2
𝑑
𝐼
+

𝛽𝑆
∗
(𝛼
2
𝐼
∗
+ 𝛼
3
𝑆
∗
𝐼
∗
)

(1 + 𝛼
1
𝑆∗ + 𝛼

2
𝐼∗ + 𝛼

3
𝑆∗𝐼∗)

2
)

+
𝛽
2
𝑆
∗
𝐼
∗
(1 + 𝛼

2
𝐼
∗
) (1 + 𝛼

1
𝑆
∗
)

(1 + 𝛼
1
𝑆∗ + 𝛼

2
𝐼∗ + 𝛼

3
𝑆∗𝐼∗)

4
.

(22)

We have 𝑎
1
> 0 and 𝑎

2
> 0; then 𝐸

∗ is locally asymptotically
stable.

3.2. Global Stability of the Equilibria. The purpose of this
subsection is to determine the global stability for reaction-
diffusion equations (3)–(5) by constructing Lyapunov func-
tionals. These Lyapunov functionals are obtained from those
for ordinary differential equations (1) by applying themethod
of Hattaf and Yousfi presented in [14].

The system (1) is particular case of themodel proposed by
Hattaf et al. [7] with 𝑓(𝑆, 𝐼) = 𝛽𝑆/(1 + 𝛼

1
𝑆 + 𝛼
2
𝐼 + 𝛼
3
𝑆𝐼). To

study the global stability of 𝐸
𝑓
for (1), the authors Hattaf et al.

[7] proposed the following Lyapunov functional:

𝑉
1
= 𝑆 − 𝑆

0
− ∫

𝑆

𝑆
0

𝑓 (𝑆
0
, 0)

𝑓 (𝑋, 0)
𝑑𝑋 + 𝐼, (23)

where 𝑆
0
= Λ/𝜇.

From [14], we construct the Lyapunov functional for
system (3)–(5) at 𝐸

𝑓
as follows:

𝑊
1
= ∫
Ω

𝑉
1
(𝑆 (𝑥, 𝑡) , 𝐼 (𝑥, 𝑡)) 𝑑𝑥. (24)

Calculating the time derivative of 𝑊
1
along the solution of

system (3)–(5), we have

𝑑𝑊
1

𝑑𝑡
= ∫
Ω

{−
𝜇(𝑆 − 𝑆

0
)
2

𝑆 (1 + 𝛼
1
𝑆
0
)

+𝑎𝐼 (
1 + 𝛼
1
𝑆

1 + 𝛼
1
𝑆 + 𝛼
2
𝐼 + 𝛼
3
𝑆𝐼

𝑅
0
− 1)}𝑑𝑥

−
𝑑
𝑆
𝑆
0

1 + 𝛼
1
𝑆
0

∫
Ω

|∇𝑆|
2

𝑆2
𝑑𝑥

≤ ∫
Ω

{−
𝜇(𝑆 − 𝑆

0
)
2

𝑆 (1 + 𝛼
1
𝑆
0
)
+ 𝑎𝐼 (𝑅

0
− 1)}𝑑𝑥

−
𝑑
𝑆
𝑆
0

1 + 𝛼
1
𝑆
0

∫
Ω

|∇𝑆|
2

𝑆2
𝑑𝑥.

(25)

Since 𝑅
0

≤ 1, we have 𝑑𝑊
1
/𝑑𝑡 ≤ 0. Thus, the disease-free

equilibrium 𝐸
𝑓
is stable, and 𝑑𝑊

1
/𝑑𝑡 = 0 if and only if 𝑆 = 𝑆

0

and 𝐼(𝑅
0
− 1) = 0. We discuss two cases as follows.
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Space
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Figure 1:The initial distributions of the numbers of susceptibles and
infectious individuals for Figures 2 and 3.

(i) If 𝑅
0
< 1, then 𝐼 = 0.

(ii) If 𝑅
0
= 1, from 𝑆 = 𝑆

0
and the first equation of (3), we

have

𝜕𝑆

𝜕𝑡
=

𝜕𝑆
0

𝜕𝑡
= 𝑑
𝑆
Δ𝑆
0
+ Λ − 𝜇𝑆

0
− 𝑓 (𝑆

0
, 𝐼) 𝐼 = 0. (26)

Then, 𝑓(𝑆
0
, 𝐼)𝐼 = (𝛽𝑆

0
𝐼)/(1 +𝛼

1
𝑆
0
+𝛼
2
𝐼 +𝛼
3
𝑆
0
𝐼) = 0.

Since 𝛽 > 0 and 𝑆
0
> 0, then 𝐼 = 0.

By the above discussion, we deduce that the largest compact
invariant set in Γ = {(𝑆, 𝐼) | (𝑑𝑊

1
)/𝑑𝑡 = 0} is just the single-

ton 𝐸
𝑓
. From LaSalle invariance principle [15], we conclude

that 𝐸
𝑓
is globally asymptotically stable.

Using same technique, we construct a Lyapunov func-
tional 𝑊

2
for system (3)–(5) at 𝐸

∗ from the Lyapunov
functional 𝑉

2
defined by Hattaf et al. in [7]. It is easy to

show that 𝑉
2
verifies the condition (15) given in [14]. Hence,

it follows from [14, Proposition 2.1] that 𝑊
2
is a Lyapunov

functional for the reaction-diffusion system (3)–(5) at 𝐸
∗

when𝑅
0
> 1.We summarize the above in the following result.

Theorem 4. (i) If 𝑅
0

≤ 1, the disease-free equilibrium 𝐸
𝑓

of (3)–(5) is globally asymptotically stable for all diffusion
coefficients.

(ii) If 𝑅
0

> 1, the endemic equilibrium 𝐸
∗ of (3)–(5) is

globally asymptotically stable for all diffusion coefficients.

4. Numerical Simulations

In this section, we present the numerical simulations to
illustrate our theoretical results. To simplify, we consider
system (3) under Neumann boundary conditions

𝜕𝑆

𝜕]
=

𝜕𝐼

𝜕]
= 0, 𝑡 > 0, 𝑥 = 0, 1, (27)
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Figure 2:The temporal solution found by numerical of problem (3) with the Neumann boundary conditions (27) and initial conditions (28).

Figure 3:The temporal solution found by numerical of problem (3) with the Neumann boundary conditions (27) and initial conditions (28).

and initial conditions

𝑆 (𝑥, 0) = {
1.1𝑥, 0 ≤ 𝑥 < 0.5,

1.1 (1 − 𝑥) , 0.5 ≤ 𝑥 ≤ 1,

𝐼 (𝑥, 0) = {
0.5𝑥, 0 ≤ 𝑥 < 0.5,

0.5 (1 − 𝑥) , 0.5 ≤ 𝑥 ≤ 1.

(28)

In Figure 1, we show that themaximum value of the num-
bers of susceptibles and infectious individuals is concentrated
at themiddle of the interval [0, 1] and these numbers decrease
linearly to zero at the boundaries 𝑥 = 0 and 𝑥 = 1.

Now, we choose the following data set of system (3): 𝑑
𝑆
=

0.1, 𝑑
𝐼

= 0.5, Λ = 0.5, 𝛽 = 0.2, 𝜇 = 0.1, 𝛼
1

= 0.1,
𝛼
2
= 0.02, 𝛼

3
= 0.03, 𝑑 = 0.1 and 𝑟 = 0.5. By calculation, we

have 𝑅
0
= 0.9524. In this case, system (3) has a disease-free

equilibrium 𝐸
𝑓
(5, 0). Hence, by Theorem 4(i), 𝐸

𝑓
is globally

asymptotically stable. Numerical simulation illustrates our
result (see Figure 2).

In Figure 3, we choose 𝛽 = 0.6 and do not change the
other parameter values. By calculation, we have 𝑅

0
= 2.8571

which satisfyTheorem4(ii); then the disease-free equilibrium
is still present and the system (2) has a unique endemic

equilibrium 𝐸
∗
(1.3625, 0.5196). Therefore, by Theorem 2

and Theorem 4(ii), 𝐸
𝑓

is unstable, while 𝐸
∗ is globally

asymptotically stable. Numerical simulation illustrates our
result (see Figure 3).

5. Conclusion

In this paper, we investigated the dynamics of a reaction-
diffusion epidemic model with specific nonlinear incidence
rate.This specific nonlinear incidence rate includes the tradi-
tional bilinear incidence rate, the saturated incidence rate, the
Beddington-DeAngelis functional response, and Crowley-
Martin functional response. The global dynamics of the
model are completely determined by the basic reproduction
number 𝑅

0
. We proved that the disease-free equilibrium is

globally asymptotically stable if 𝑅
0

≤ 1,, which leads to
the eradication of disease from population. When 𝑅

0
> 1

then disease-free equilibrium becomes unstable and a unique
endemic equilibrium exists and is globally asymptotically sta-
ble, which means that the disease persists in the population.

From our theoretical and numerical results, we conclude
that the spatial diffusion has no effect on the stability behavior
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of equilibria in the case of Neumann conditions and spatially
constant coefficients.
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