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The invariant imbedding technique is applied to the problems of radiation transfer in a plane-parallel inhomogeneous atmosphere.
All the parameters which describe the elementary event of scattering and the distribution of the energy sources are allowed to vary
with depth. Mathematically, the considered standard problems of the theory are reduced to initial-value problems which are better
adapted to capabilities of the modern high speed computers. The reflectance of an atmosphere is shown to play a prominent role
in describing the diffusion process since all the other characteristics of the radiation field are expressed through it. Three transfer
problems frequently encountered in astrophysical applications are discussed: the radiation diffusion in the source-freemedium, in a
medium with arbitrarily distributed energy sources, as well as the problem of finding the statistical mean quantities, characteristics
of the multiple scattering in the atmosphere.

1. Introduction

The fast progress in observational capabilities of astrophys-
ical instruments enables to obtain a fairly detailed picture
of investigated phenomena in cosmic objects. The high-
resolution spectra available nowadays afford an opportunity
to study different types of inhomogeneities, the theoretical
interpretation of which encounters, in general, much dif-
ficulty. Additional difficulties appear in the line-formation
problems when one has to take proper account of the
multiple scattering effects. This is due to coupling set in
between various volumes of the radiating medium and the
redistribution of radiation over frequency and directions.
The classical treatment of such problems usually leads to
integrodifferential equations with the conditions specified at
the boundaries of the medium.

The mathematical complexity of these problems for-
mulated for homogeneous media, stimulated to develop a
variety of analytical techniques applicable to one or another
specific class of the radiation transfer problems. There exists
a vast literature on the field, particularly in astrophysical
context. Of different methods concerning our discussion

the most important is Ambartsumian’s invariance principle
[1, 2], which overcomes the above difficulties by finding
the requisite intensity of emerging radiation without prior
knowledge of the radiation field in the entire atmosphere. An
alternative approach developed by Bellman [3] and Sobolev
[4, 5] is based on extensive use of the so-called “surface”
resolvent function.The idea of this approach, in its turn, goes
back to Krĕın [6].

From the pioneeringworks treating the transfer problems
is in inhomogeneous absorbing and scattering atmospheres
we note here the papers by Preisendorfer [7, 8] and Busbridge
[9]. Later the theory was developed by Sobolev [4, 10] and
Yanovitskij [11]. The further progress of the theory is based
on Ambartsumian’s method of addition of layers [1, 12]
generalised by the present author [13–16] over the case of
inhomogeneous media. In these papers we proposed also
a new approach for solving the linear radiation transfer
problems which assumes a preliminary determination of the
global optical properties of an atmosphere for a family of
atmospheres with different optical thicknesses. This appre-
ciably facilitates finding of the internal field of radiation.
For instance, in the simplest scalar one-dimensional case,
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knowledge of the reflection coefficient alone is sufficient to
determine the radiation field inside the medium without
solving any new equations [14].

In this paper we use the invariant imbedding technique
[17–19] to inhomogeneous atmospheres with the plane-
parallel geometry and reformulate the classical boundary-
value problems to reduce them to initial-value problems.The
numerical solution of resulting problems for integrodifferen-
tial equations is easy to obtain on the modern high speed
electronic computers and, what is important, they are usually
numerically stable. We show that, again, as in the scalar case,
one needs to solve only one such problem for the reflectance
of the medium since the other quantities of interest are found
from explicit formulas.

It is important to note that under inhomogeneous atmo-
sphere in this paper we mean an atmosphere in which any
parameter defining the elementary processes of absorption
and diffusion (the profile of the absorption coefficient, the
probability of reradiation in scattering, and the lawof redistri-
bution of radiation over directions and frequencies as well as
the role of absorption in the continuum) can vary with depth.
In theoretical treatments one usually takes the averaged in
some sense values of these parameters and restricts oneself
to taking account of the depth-dependent distribution of
the internal energy sources due to changes in characteristic
thermodynamic parameters within the medium [20, 21].

The outline of the paper is as follows. We begin in
Section 2 by treating the source-free problem for a plane-
parallel inhomogeneous atmosphere of finite optical thick-
ness. The case of isotropic scattering with complete redistri-
bution over frequency is discussed for expository reason. In
Section 3, we consider the problem of the radiation transfer
in an atmosphere with arbitrarily distributed energy sources.
It is shown that the radiation field in this case can be found
without solving any new equation. Next section is devoted to
statistical description of the radiation diffusion process. The
mean number of scattering events and the average time of the
photons diffusion in the atmosphere are found.The obtained
results are discussed in the final section.

2. The Problem of Diffuse
Reflection and Transmission

Consider the radiation transfer through a plane-parallel
inhomogeneous atmosphere of finite optical thickness 𝜏

0
in

the centre of the spectral line. For simplicity, the scattering
process is assumed isotropic with complete redistribution of
radiation over frequencies. We limit ourselves by assuming
the depthdependence for only the scattering coefficient. The
interested reader can with only small effort write down the
proper equations for a more general situation. The broaden-
ing of the spectral line is generally described by the Voigt
profile of the absorption coefficient 𝛼(𝑥) = 𝐻(𝑥, 𝑎), where
𝑎 is the Voigt parameter and 𝑥 is the so-called dimensionless
frequency measured by the displacement from the centre of
the line in the units of the Doppler widths.The normalisation
factor of the Voigt function is 𝐴 = 1/√𝜋. The role of
absorption in the continuum is specified by the parameter 𝛽
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Figure 1: Schematic illustration of the radiation transfer in a finite
plane-parallel medium illuminated from the side of boundary 𝜏 =
𝜏
0
.

which is the ratio of the absorption coefficient in continuum
to that in the centre of the spectral line. We introduce the
notation 𝜆(𝜏) for the depth-dependent probability of the
photon reradiation during elementary event of scattering.

We begin by determining the global optical characteris-
tics of the medium when it is illuminated from the side of the
boundary 𝜏 = 𝜏

0
(Figure 1). We denote the azimuth-averaged

reflection coefficient by 𝜌(𝑥, 𝜂; 𝑥, 𝜉, 𝜏
0
), where 𝑥 and 𝜉 are the

frequency and cosine of the angle of the incident photon and
𝑥

, 𝜂 are the similar quantities for the reflected photon. It is

introduced in such away that𝜌/𝜉has a probabilisticmeaning.
The function 𝜌 satisfies the equation [22, 23]
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) ,

(1)

where ̃𝜆 = 𝐴𝜆, 𝛾(𝑥) = 𝛼(𝑥)+𝛽 is assumed to be independent
of the optical depth,
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and 𝜌(𝑥, 𝜂; 𝑥, 𝜉, 0) = 0.
Proceeding to the transmission coefficient, 𝑞(𝑥, 𝜂;

𝑥, 𝜉, 𝜏
0
), we introduce the notation 𝜎(𝑥, 𝜂; 𝑥, 𝜉, 𝜏

0
) for its

diffuse part, so that
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(3)

The function 𝜎 is determined from equation
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with
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or
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and 𝜎(𝑥, 𝜂; 𝑥, 𝜉, 0) = 0 as an initial condition.
Equations (1) and (4) are obtained by using the invariant

imbedding standard procedure, that is, by adding an infinitely
thin layer to the boundary 𝜏 = 𝜏

0
and then letting its thickness

tend to zero in the limit (see for details [14]). We use the same
procedure below in obtaining the internal field of radiation.

Let us begin with the quantity 𝑈(𝑥, 𝜂, 𝜏; 𝑥, 𝜉, 𝜏
0
) which

specifies the probability that the incident photon will be
found after multiple scattering at depth 𝜏 as a photon within
the frequency and direction intervals (𝑥, 𝑥 + 𝑑𝑥; 𝜂, 𝜂 + 𝑑𝜂).
Here, again, it is expedient to separate out its diffuse part 𝑢 by
analogy to that for transmission coefficient:
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Performing the invariant imbedding procedure we arrive
at
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where
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and 𝑢(𝑥, 𝜂, 𝜏; 𝑥, 𝜉, 𝜏) = 0.
It is obvious that 𝑢(𝑥, 𝜂, 0; 𝑥, 𝜉, 𝜏

0
) = 𝜎(𝑥
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0
), so that on solving (8) one

also finds the transmission coefficient for a family of media.
When one needs to determine the function 𝑢 for different
depths but for an atmosphere with a fixed optical thickness,
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Figure 2: Schematic illustration of the radiation transfer in a finite
plane-parallel medium illuminated from the side of boundary 𝜏 = 0.

that is, in order to solve the ordinary transfer equations,
knowledge of the transmission coefficient makes it possible
to deal again with the initial-value problem. Note also that
once the reflectance of the atmosphere is determined (i.e., the
function 𝜑 is known), one can use (8) to derive an explicit
formula for the function 𝑢.

Now we will show that knowledge of the functions
𝜌(𝑥

, 𝜂; 𝑥, 𝜉, 𝜏

0
) and 𝑢(𝑥, 𝜂, 𝜏; 𝑥, 𝜉, 𝜏

0
) is essentially enough to

find the other quantities of interest. For instance, on the base
of simple physical arguments, we find
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Up to now we have considered the case of a medium
illuminated from the side of the boundary 𝜏 = 𝜏

0
. Let

the medium be illuminated now from the opposite side (see
Figure 2).We shall see that the quantities 𝜌 and 𝑢 found above
fully determine the optical characteristics and the internal
field of radiation also in this problem (the quantities applying
to this case will be supplied by an overhead bar). For example,
the invariant imbedding method leads to the following
equation for the reflection coefficient 𝜌(𝑥, 𝜂; 𝑥, 𝜉, 𝜏

0
):

𝑑 𝜌
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with the initial condition 𝜌(𝑥, 𝜂; 𝑥, 𝜉, 0) = 0. It is easily seen
that solution of (11) is reduced to computing the ordinary
integral. As for the transmission coefficient, the reversibility
principle of optical phenomena implies 𝑞(𝑥, 𝜂; 𝑥, 𝜉, 𝜏

0
) =

𝑞(𝑥, 𝜉; 𝑥

, 𝜂, 𝜏
0
).

The radiation field inside the medium found with the
same method is reduced to computing simple integrals. For
instance, the function 𝑉(𝑥, 𝜂, 𝜏; 𝑥, 𝜉, 𝜏

0
), which specifies the

intensity of radiation directed to the boundary 𝜏 = 0, satisfies
equation
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with the initial condition 𝑉(𝑥, 𝜂, 𝜏; 𝑥, 𝜉, 𝜏) = 0. Here again,
since the right-hand side of (12) is known, its solution is
equivalent to computing the following integral:
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Knowledge of𝑉 allows, in its turn, finding the last of requisite
quantities yielding the intensity of radiation in the opposite
direction:
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This completes the solution of the source-free problem. We
saw that this requires solving only two initial-value problems
(1) and (8) for integrodifferential equations. Let us turn next
to the solution of another problem frequently encountered in
astrophysical applications.

3. Internal Energy Sources

Once the problem of diffuse reflection and transmission
is solved, one may obtain much easier the solution of
another standard problem concerning the radiation field in
an atmosphere containing energy sources. One of the vari-
ous parameters whose distribution influenced the observed
spectra is the power of the internal energy sources, which are
specified by the values of thermodynamic parameters and are
generally distributed nonuniformly in the atmosphere. Thus,
the problem of determining the effects of an inhomogeneous
distribution of the internal energy sources naturally arises in
any realistic astrophysical problem of the spectra interpreta-
tion.

Consider a three-dimensional plane-parallel and inho-
mogeneous atmosphere of finite optical thickness contain-
ing energy sources of the power 𝐵(𝜏, 𝑥, 𝜂). We denote the
intensities of radiation emerging from the medium through
the boundaries 𝜏 = 𝜏

0
and 𝜏 = 0 by 𝐼
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taking into account the reversibility principle of the optical
phenomena applied to the functions𝑈 and𝑉, which now can
be interpreted as the probabilities that the photons moving at
the depth 𝜏 to the right and to the left in Figure 1 will escape
the atmosphere from the boundary 𝜏 = 𝜏
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Similarly, having in mind the alternative probability meaning
of the functions 𝑈 and 𝑉, we find

𝐼
2
(𝑥, 𝜉, 𝜏

0
) = ∫

∞

−∞

𝑑𝑥

∫

1

0

𝑑𝜂

× ∫

𝜏0

0

𝐵 (𝜏, 𝑥

, 𝜂)𝑊(𝑥


, 𝜂, 𝜏; 𝑥, 𝜉, 𝜏

0
) 𝑑𝜏,

(17)

where

𝑊(𝑥

, 𝜂, 𝜏; 𝑥, 𝜉, 𝜏

0
)

= ∫

∞

−∞

𝑑𝑥

∫

1

0

𝜒 (𝑥

, 𝜂; 𝑥

, 𝜂

, 𝜏) 𝑉 (𝑥, 𝜉, 𝜏; 𝑥


, 𝜂

, 𝜏
0
)

𝑑𝜂


𝜂

.

(18)

We now proceed to the problem of determining the
radiation field inside the treated atmosphere. To this end,
we introduce the notation 𝐼−(𝑥, 𝜂, 𝜏; 𝜏

0
) for the intensity of

radiation of frequency 𝑥 at the optical depth 𝜏 directed to
the boundary 𝜏 = 0 at the angle cos−1𝜂. Similarly, the
intensity directed to the boundary 𝜏 = 𝜏

0
is denoted by
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invariant imbedding procedure yields
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with the condition 𝐼−(𝑥, 𝜂, 𝜏; 0) = 0. It is discernable that
all the quantities appearing in the right-hand side of (19) are
known so that the problem is simply reduced to calculating
of the ordinary integral.
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Once 𝐼−(𝑥, 𝜂, 𝜏; 𝜏
0
) is known, it is easy to find the last of

the requisite quantities, 𝐼+(𝑥, 𝜂, 𝜏; 𝜏
0
), since they are related

by a simple formula with an obvious physical significance:

𝐼
+
(𝑥, 𝜂, 𝜏; 𝜏

0
) = 𝐼
1
(𝑥, 𝜂, 𝜏) + ∫

∞

−∞

𝛼 (𝑥

) 𝑑𝑥


× ∫

1

0

𝜌 (𝑥, 𝜂; 𝑥

, 𝜂

, 𝜏) 𝐼
−
(𝑥

, 𝜂

, 𝜏; 𝜏
0
)

𝑑𝜂


𝜂

.

(20)

Thus, solving the diffuse reflection and transmission problem
of the preceding section is an important prelude to solving the
radiation transfer problem in atmospheres containing energy
sources. Finally, we remind that the approach used here
provides a solution to the problem for a family of atmospheres
of different optical thicknesses.

4. The Statistical Description of
the Radiation Diffusion

In treating different astrophysical problems, one often needs
to estimate various statistical averages characterizing the
radiation diffusion in an atmosphere. This facilitates better
understanding of the physical essence of a number of effects
predicted by the mathematical solution of the problem.
The statistical investigation of multiple scattering makes
it possible to determine a number of important physical
characteristics of an atmosphere such as the mean radiation
density and the mean degree of excitation of the atoms. One
of the important statistical averages is the mean number of
scattering events (MNS) underwent by the photon during
its travel in the atmosphere. Of the extensive literature
on this topic we mention here Ambartsumian’s pioneer-
ing work [1, 24], in which for determining this quantity
for homogeneous atmosphere the following formula was
proposed:

𝑁 = 𝜆

𝜕 ln 𝐼
𝜕𝜆

, (21)

where 𝐼 is the radiation intensity. As it was shown in [25],
this formula is valid for any flux of “moving” photons (i.e.,
not for those subsequently destroyed in the medium). The
problemof estimating theMNS in the case of inhomogeneous
media was examined in [14], and it was shown that the
procedure of the formal differentiation over 𝜆 remains in
force also in this general case despite the fact that now the
scattering coefficient varies with depth. This may be con-
cluded by observing theway this function enters in the proper
equations.

Consider, for instance, the statistics of multiple scattering
of the photon of frequency 𝑥 incident on the boundary 𝜏 = 𝜏

0

of the medium at the angle cos−1𝜉. We are interested in the
MNS for three types of photons: reflected, transmitted, and
destroyed in themedium independent of their final frequency
and direction. Denoting the probabilities for each of these

processes by
_
𝜌 (𝑥, 𝜉, 𝜏

0
),

_
𝑞 (𝑥, 𝜉, 𝜏

0
), and

_
𝑠 (𝑥, 𝜉, 𝜏

0
), it easy

to derive from (1)–(4)

𝑑

_
𝜌

𝑑𝜏
0

= −

𝛾 (𝑥)

𝜉

_
𝜌 (𝑥, 𝜉, 𝜏

0
) − [1 −

̃
𝜆 (𝜏
0
)

2

𝜑
0
(𝜏
0
)] 𝜑 (𝑥, 𝜉, 𝜏

0
)

+ 𝛼 (𝑥) − 𝛽

_
𝜌 (𝑥, 𝜉, 𝜏

0
) ,

(22)

𝑑

_
𝑞

𝑑𝜏
0

= −

𝛾 (𝑥)

𝜉

_
𝑞 (𝑥, 𝜉, 𝜏

0
)

+

̃
𝜆 (𝜏
0
)

2

𝜓
0
(𝜏
0
) 𝜑 (𝑥, 𝜉, 𝜏

0
) ,

(23)

𝑑

_
𝑠

𝑑𝜏
0

= −

𝛾 (𝑥)

𝜉

_
𝑠 (𝑥, 𝜉, 𝜏

0
)

− [1 − 𝜆 (𝜏
0
) +

̃
𝜆 (𝜏
0
)

2

𝜙
0
(𝜏
0
)] 𝜑 (𝑥, 𝜉, 𝜏

0
)

+ 𝛽 [1+

_
𝜌 (𝑥, 𝜉, 𝜏

0
)] ,

(24)

where we have introduced the notations

𝜑
0
(𝜏
0
) = ∫

∞

−∞

𝛼 (𝑥) 𝑑𝑥∫

1

0

𝜑 (𝑥, 𝜂, 𝜏
0
)

𝑑𝜂

𝜂

,

𝜓
0
(𝜏
0
) = ∫

∞

−∞

𝛼 (𝑥) 𝑑𝑥∫

1

0

𝜓 (𝑥, 𝜂, 𝜏
0
)

𝑑𝜂

𝜂

,

𝜙
0
(𝜏
0
) = ∫

∞

−∞

𝛼 (𝑥) 𝑑𝑥∫

1

0

_
𝑠 (𝑥, 𝜂, 𝜏

0
)

𝑑𝜂

𝜂

.

(25)

Once (1), (4) (or (8)) are solved, the zeroth moments of the
functions 𝜑 and 𝜓 can be regarded as known. To solve (24),
we need to find also 𝜙

0
(𝜏
0
). One can easily derive Volterra-

type integral equation for this function from the same (24):

𝜙
0
(𝜏
0
) =

1

2

∫

𝜏0

0

𝜆 (𝜏) 𝐿 (𝜏
0
− 𝜏) 𝜙

0
(𝜏) 𝑑𝜏 + 𝐺 (𝜏

0
) , (26)

where the kernel-function 𝐿 given by

𝐿 (𝜏) = ∫

∞

−∞

𝛼 (𝑥) 𝑑𝑥∫

1

0

𝜑 (𝑥, 𝜉, 𝜏) exp(−
𝛾 (𝑥)

𝜉

𝜏)

𝑑𝜉

𝜉

(27)

is well known in the radiative transfer theory and

𝐺 (𝜏) = ∫

𝜏0

0

[1 − 𝜆 (𝜏)] 𝐿 (𝜏) 𝑑𝜏 + 𝛽𝐹 (𝜏) , (28)

𝐹 (𝜏) = ∫

∞

−∞

𝛼 (𝑥) 𝑑𝑥∫

1

0

[1+

_
𝜌 (𝑥, 𝜉, 𝜏)] exp(−

𝛾 (𝑥)

𝜉

𝜏)

𝑑𝜉

𝜉

.

(29)

Further, the formal differentiation of (22) and (23)
over 𝜆 allows obtaining separate equations for the expected
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number of scattering events,𝑁
∗
(𝑥, 𝜉, 𝜏

0
),𝑁
0
(𝑥, 𝜉, 𝜏

0
) corres-

pondingly for the reflected and transmitted photons:

𝑑𝑁
∗

𝑑𝜏
0

= −

𝛾 (𝑥)

𝜉

𝑁
∗
(𝑥, 𝜉, 𝜏

0
)

+

̃
𝜆 (𝜏
0
)

2

[𝑓
0
(𝜏
0
) + 𝜑
0
(𝜏
0
)] 𝜑 (𝑥, 𝜉, 𝜏

0
)

− [1 −

̃
𝜆 (𝜏
0
)

2

𝜑
0
(𝜏
0
)]𝑓 (𝑥, 𝜉, 𝜏

0
) − 𝛽𝑁

∗
(𝑥, 𝜉, 𝜏

0
) ,

𝑑𝑁
0

𝑑𝜏
0

= −

𝛾 (𝑥)

𝜉

𝑁
0
(𝑥, 𝜉, 𝜏

0
)

+

̃
𝜆 (𝜏
0
)

2

[𝑔
0
(𝜏
0
) + 𝜓
0
(𝜏
0
)] 𝜑 (𝑥, 𝜉, 𝜏

0
)

+

̃
𝜆 (𝜏
0
)

2

𝜓
0
(𝜏
0
) 𝑓 (𝑥, 𝜉, 𝜏

0
) ,

(30)

where 𝑓(𝑥, 𝜉, 𝜏
0
) = 𝜆𝜕𝜑(𝑥, 𝜉, 𝜏

0
)/𝜕𝜆, 𝑓

0
(𝜏
0
) = 𝜆𝜕𝜑

0
(𝜏
0
)/𝜕𝜆,

and 𝑔
0
(𝜏
0
) = 𝜆𝜕𝜓

0
(𝜏
0
)/𝜕𝜆. As the initial conditions, we

have 𝑁
∗
(𝑥, 𝜉, 0) = 𝑁

0
(𝑥, 𝜉, 0) = 0. The ratios 𝑁

∗
/

_
𝜌 and

𝑁
0
/

_
𝑞 obviously give the requisite MNS for the reflected and

transmitted photons.
Let us turn further to the photons which are destroyed

in the course of multiple scattering in the atmosphere. The
invariant imbedding technique must be now applied by
counting the number of scattering events for each elementary
process appearing in adding a complementary layer to the
initial medium.The generating function approach developed
in [25] allows finding the expected number of scattering
events,𝑁

𝑎
, for this type of photons from

𝑑𝑁
𝑎

𝑑𝜏
0

= −

𝛾 (𝑥)

𝜉

𝑁
𝑎
(𝑥, 𝜉, 𝜏

0
)

+

̃
𝜆 (𝜏
0
)

2

[ℎ
0
(𝜏
0
) + 𝜙
0
(𝜏
0
) + 1 − 𝜆 (𝜏

0
)]

× 𝜑 (𝑥, 𝜉, 𝜏
0
)

+ [

̃
𝜆 (𝜏
0
)

2

𝜙
0
(𝜏
0
) + 1 − 𝜆 (𝜏

0
)]𝑓 (𝑥, 𝜉, 𝜏

0
)

+ 𝛽 [1+

_
𝜌 (𝑥, 𝜉, 𝜏

0
) + 𝑁
∗
(𝑥, 𝜉, 𝜏

0
)] ,

(31)

where ℎ
0
(𝜏
0
) = 𝜆𝜕𝜙

0
(𝜏
0
)/𝜕𝜆 and the initial condition is

𝑁
𝑎
(𝑥, 𝜉, 0) = 0. It is readily seen that ⟨𝑁⟩ = 𝑁

∗
+ 𝑁
0
+ 𝑁
𝑎

represents the MNS for the photons of frequency 𝑥 incident
on the medium at the angle cos−1𝜉 irrespective of whether or
not they are subsequently destroyed in the medium or leave

it. Taking into account that
_
𝜌 +

_
𝑞 +

_
𝑠 = 1 and𝜑

0
+𝜓
0
+𝜙
0
=

2√𝜋 and introducing the notation

Φ(𝜏
0
) = 𝑓
0
(𝜏
0
) + 𝑔
0
(𝜏
0
) + ℎ
0
(𝜏
0
)

= ∫

∞

−∞

𝛼 (𝑥) 𝑑𝑥∫

1

0

⟨𝑁 (𝑥, 𝜂, 𝜏
0
)⟩

𝑑𝜂

𝜂

,

(32)

we arrive at

𝑑 ⟨𝑁⟩

𝑑𝜏
0

= −

𝛾 (𝑥)

𝜉

⟨𝑁 (𝑥, 𝜉, 𝜏
0
)⟩

+ [

̃
𝜆 (𝜏
0
)

2

Φ (𝜏
0
) + 1]𝜑 (𝑥, 𝜉, 𝜏

0
)

+ 𝛽 [1+

_
𝜌 (𝑥, 𝜉, 𝜏

0
)]

(33)

with the initial condition ⟨𝑁(𝑥, 𝜉, 0)⟩ = 0.
As above in the case of

_
𝑠 (𝑥, 𝜉, 𝜏

0
) (24), we deal with the

similar initial-value problem which can be solved if only the
zeroth moment Φ(𝜏

0
) is determined. It is easy to show that

this function satisfies integral equation (26) with the only
difference that now the free term is

𝐺 (𝜏
0
) = ∫

𝜏0

0

𝐿 (𝜏) 𝑑𝜏 + 𝛽𝐹 (𝜏
0
) , (34)

where the functions 𝐿 and 𝐹 are given by (27), (29).
We see that knowledge of only reflection function is

sufficient to find the MNS for all the incident photons
independent of their future “fate.” Equations (24), (25) easily
yield the numerical solution. Some analytical results can be
obtained in the specific case of homogeneous medium [25,
26], for which all the above-introduced functions dependent
on frequency and direction are, in fact, the functions of the
combined variable 𝛾(𝑥)/𝜉. Note also that taking derivatives
in these equations to zero we are led to the results previously
derived in the mentioned paper for semi-infinite media.
Comparing (33) and (24) for 𝛽 = 0, that is, neglecting the
role of absorption in continuum, we find ⟨𝑁(𝑥, 𝜉, 𝜏

0
)⟩ =

_
𝑠

(𝑥, 𝜉, 𝜏
0
)/(1 − 𝜆).

Let us pursue our considerations further and apply the
same approach to determine the continuously distributed
random quantities describing the radiation diffusion. As an
illustration, we consider here the problem of finding the
average time spent by the photon onmultiple scattering in the
medium. Because of the important role which this statistical
mean quantity plays in astrophysical applications, it was a
subject of investigations by a number of researchers [27–
30]. In the general case, when the photons are destroyed
not only during scattering but also in flight, this average
makes it possible to gauge the relative importance of the
energy dissipation in the medium and its flow through a
boundary. Another important application of this average is
associated with the problem usually arising in the presence
of the nonstationary sources of energy in atmosphere, when
one needs to reveal whether the radiative equilibrium is
established or not [31].



Journal of Astrophysics 7

Turning directly to our problem, we note that math-
ematically the only case of interest is that for which the
photon spends time only on travelling the path between two
successive scattering events. With regard to the mean time
spent by the diffusing photon while the atoms are in the
excited state, it can be taken into account when necessary
by simple multiplication of the MNS and the average time
required by each of the atoms for the reemission process.
This is admissible because these two random variables are
statistically independent.

For convenience, we will measure the time intervals in
the units of 𝑡 = 1/𝑛𝑐𝑘]0 , where 𝑛 is the number of scattering
particles in 1 cm3 and 𝑘]0 is the absorption coefficient in the
centre of the line, calculated for one atom. It is easy to see
that 𝑡 represents the time required to travel the mean free
path between two successive scattering events for a photon
in the line centre if there is no absorption in continuum. We
denote the dimensionless time by 𝜔. In determining the time
averages, we, again, as above, consider three types of photons:
reflected, transmitted, and destroyed in the course ofmultiple
scattering. Here we confine ourselves to relatively detailed
treatment of the problem for the first of these categories of
photons. In the case of two other types, we present only the
final results.

Starting with the process of reflection, let us introduce the
generalised reflection coefficient 𝜌(𝑥, 𝜂; 𝑥, 𝜉; 𝜏

0
, 𝜔) which is

the time-dependent analogue of that defined in Section 2 and
concerns the photons reflected in the time interval (𝜔, 𝜔 +
𝑑𝜔). Invariant imbedding approach allows to write

𝑑𝜌

𝑑𝜏
0

+ (

1

𝜂

+

1

𝜉

)

𝑑𝜌

𝑑𝜔

= −[

𝛾 (𝑥

)

𝜂

+

𝛾 (𝑥)

𝜉

] 𝜌 (𝑥

, 𝜂; 𝑥, 𝜉; 𝜏

0
, 𝜔)

+

̃
𝜆 (𝜏
0
)

2

{𝛼 (𝑥) 𝛼 (𝑥

) 𝛿 (𝜔)

+ 𝛼 (𝑥) ∫

∞

−∞

𝛼 (𝑥

) 𝑑𝑥


× ∫

1

0

𝜌 (𝑥

, 𝜂; 𝑥

, 𝜂

; 𝜏
0
, 𝜔)

𝑑𝜂


𝜂


+ 𝛼 (𝑥

)∫

∞

−∞

𝛼 (𝑥

) 𝑑𝑥


× ∫

1

0

𝜌 (𝑥

, 𝜂

; 𝑥, 𝜉; 𝜏

0
, 𝜔)

𝑑𝜂


𝜂


+ ∫

𝜔

0

𝑑𝜔

∫

∞

−∞

𝛼 (𝑥

) 𝑑𝑥


× ∫

1

0

𝜌 (𝑥

, 𝜂; 𝑥

, 𝜂

; 𝜏
0
, 𝜔

)

𝑑𝜂


𝜂


× ∫

∞

−∞

𝛼 (𝑥

) 𝑑𝑥


× ∫

1

0

𝜌 (𝑥

, 𝜂

; 𝑥, 𝜉; 𝜏

0
, 𝜔 − 𝜔


)

𝑑𝜂


𝜂

} ,

(35)

where 𝛿 is the Dirac 𝛿-function.
The method of characteristic functions applied to this

equation is equivalent to performing the Laplace transforma-
tion [27]. For the Laplace transform of the time-dependent
reflection coefficient

𝑇 (𝑥

, 𝜂; 𝑥, 𝜉; 𝜏

0
, 𝑠) = ∫

∞

0

𝜌 (𝑥

, 𝜂; 𝑥, 𝜉; 𝜏

0
, 𝜔) 𝑒
−𝑠𝜔
𝑑𝜔, (36)

one can write

𝑑𝑇

𝑑𝜏
0

= −{[

𝛾 (𝑥

)

𝜂

+

𝛾 (𝑥)

𝜉

] − 𝑠 (

1

𝜉

+

1

𝜂

)}

× 𝑇 (𝑥

, 𝜂; 𝑥, 𝜉; 𝜏

0
, 𝑠)

+

𝜆 (𝜏
0
)

2

𝜛 (𝑥

, 𝜂, 𝜏
0
, 𝑠) 𝜛 (𝑥, 𝜉, 𝜏

0
, 𝑠) ,

(37)

where

𝜛 (𝑥, 𝜉, 𝜏
0
, 𝑠) = 𝛼 (𝑥) + ∫

∞

−∞

𝛼 (𝑥

) 𝑑𝑥


× ∫

1

0

𝑇 (𝑥

, 𝜂

; 𝑥, 𝜉, 𝜏

0
, 𝑠)

𝑑𝜂


𝜂

.

(38)

Taking 𝑠 = 0, we go back to (1). For finding the required
average time for reflected photons, we need the derivative
Ω
∗
(𝑥, 𝜂; 𝑥, 𝜉; 𝜏

0
) = 𝑑𝑇/𝑑𝑠|

𝑠=0
. It follows from (37) that

𝑑Ω
∗

𝑑𝜏
0

= − [

𝛾 (𝑥

)

𝜂

+

𝛾 (𝑥)

𝜉

]Ω
∗
(𝑥

, 𝜂; 𝑥, 𝜉; 𝜏

0
)

− (

1

𝜉

+

1

𝜂

) 𝜌 (𝑥

, 𝜂; 𝑥, 𝜉; 𝜏

0
)

+

𝜆 (𝜏
0
)

2

[𝜑 (𝑥

, 𝜂, 𝜏
0
)
̃
𝑓 (𝑥, 𝜉, 𝜏

0
)

+
̃
𝑓 (𝑥

, 𝜂, 𝜏
0
) 𝜑 (𝑥, 𝜉, 𝜏

0
)] ,

(39)

where

̃
𝑓 (𝑥, 𝜉, 𝜏

0
) = ∫

∞

−∞

𝛼 (𝑥

) 𝑑𝑥

∫

1

0

Ω
∗
(𝑥

, 𝜂; 𝑥, 𝜉, 𝜏

0
)

𝑑𝜂


𝜂

.

(40)

It is not difficult to show that this equation can be
obtained by formal differentiating (1) with respect to 𝛽 and
exchanging the sign. Similar result for homogeneous atmo-
sphere was obtained for the first time in [27]. Thus, now we
arrive at an important generalization of this result by showing
that it remains valid also for inhomogeneousmedia. As above
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in the case of MNS, the differentiation procedure holds true
only for reflected and transmitted photons. It is obvious that
the ratio Ω

∗
/𝜌 gives the detailed information on the average

time spent by reflected photons dependent on their initial and
final frequency and directional characteristics.

We are interested here by the average time,
_
Ω∗
(𝑥, 𝜉, 𝜏

0
),

spent by all the reflected photons irrespective of their final
frequency and direction. Integration of (39) over 𝑥 and 𝜂
yields

𝑑

_
Ω∗

𝑑𝜏
0

= −

𝛾 (𝑥)

𝜉

_
Ω∗
(𝑥, 𝜉, 𝜏

0
) +

1

𝜉

_
𝜌 (𝑥, 𝜉, 𝜏

0
)

+

̃
𝜆 (𝜏
0
)

2

̃
𝑓
0
(𝜏
0
) 𝜑 (𝑥, 𝜉, 𝜏

0
)

− [1 −

̃
𝜆 (𝜏
0
)

2

𝜑
0
(𝜏
0
)]
̃
𝑓 (𝑥, 𝜉, 𝜏

0
)

+ 1+

_
𝜌 (𝑥, 𝜉, 𝜏

0
) − 𝛽

_
Ω∗
(𝑥, 𝜉, 𝜏

0
) ,

(41)

where ̃𝑓
0
(𝜏
0
) = −𝜕𝜑

0
(𝜏
0
)/𝜕𝛽 and

_
Ω∗
(𝑥, 𝜉, 0) = 0.

By analogous manner we obtain the mean expected time
_
Ω0
(𝑥, 𝜉, 𝜏

0
) for all the transmitted photons if the boundary

𝜏 = 𝜏
0
of the atmosphere is illuminated by photons with (𝑥, 𝜉)

characteristics:

𝑑

_
Ω0

𝑑𝜏
0

= −

𝛾 (𝑥)

𝜉

_
Ω0
(𝑥, 𝜉, 𝜏

0
) +

1

𝜉

_
𝑞 (𝑥, 𝜉, 𝜏

0
)

+

̃
𝜆 (𝜏
0
)

2

[𝑔
0
(𝜏
0
) 𝜑 (𝑥, 𝜉, 𝜏

0
) + 𝜓
0
(𝜏
0
)
̃
𝑓 (𝑥, 𝜉, 𝜏

0
)] ,

(42)

where 𝑔
0
(𝜏
0
) = −𝜕𝜓

0
(𝜏
0
)/𝜕𝛽 and the initial condition is

_
Ω0
(𝑥, 𝜉, 0) = 0.
As for the photons destroyed in the atmosphere, deriva-

tion of appropriate equation for the expected timeΩ
𝑎
cannot

be found by direct differentiation and must be obtained by
employing the imbedding technique. As a result, we obtain

𝑑

_
Ω𝑎

𝑑𝜏
0

= −

𝛾 (𝑥)

𝜉

_
Ω𝑎
(𝑥, 𝜉, 𝜏

0
) +

1

𝜉

_
𝑠 (𝑥, 𝜉, 𝜏

0
)

+

̃
𝜆 (𝜏
0
)

2

[
̃
ℎ
0
(𝜏
0
) 𝜑 (𝑥, 𝜉, 𝜏

0
) + 𝜙
0
(𝜏
0
)
̃
𝑓 (𝑥, 𝜉, 𝜏

0
)]

+ [1 − 𝜆 (𝜏
0
)]
̃
𝑓 (𝑥, 𝜉, 𝜏

0
) + 𝛽

_
Ω∗
(𝑥, 𝜉, 𝜏

0
) ,

(43)

where we introduced notations ̃ℎ
0
(𝜏
0
) = −𝜕𝜙

0
(𝜏
0
)/𝜕𝛽 and the

initial condition
_
Ω𝑎
(𝑥, 𝜉, 0) = 0. Once (41)–(43) are solved,

the ratios
_
Ω∗
/

_
𝜌 ,

_
Ω0
/

_
𝑞 , and

_
Ω𝑎
/

_
𝑠 give the requisite values

of the average time for three categories of photons. Further,
⟨Ω⟩ =

_
Ω∗
+

_
Ω0
+

_
Ω𝑎

represents the average time for incident
photons diffusion in the atmosphere irrespective of whether

they escape from the medium or are destroyed in it. From
(41)–(43) we obtain

𝑑 ⟨Ω⟩

𝑑𝜏
0

= −

𝛾 (𝑥)

𝜉

⟨Ω (𝑥, 𝜉, 𝜏
0
)⟩

+

̃
𝜆 (𝜏
0
)

2

Φ̃ (𝜏
0
) 𝜑 (𝑥, 𝜉, 𝜏

0
) + 1+

_
𝜌 (𝑥, 𝜉, 𝜏

0
) ,

(44)

where

Φ̃ (𝜏
0
) =

̃
𝑓
0
(𝜏
0
) + 𝑔
0
(𝜏
0
) +
̃
ℎ
0
(𝜏
0
)

= ∫

∞

−∞

𝛼 (𝑥) 𝑑𝑥∫

1

0

⟨Ω (𝑥, 𝜂, 𝜏
0
)⟩

𝑑𝜂

𝜂

(45)

and initial condition ⟨Ω(𝑥, 𝜉, 0)⟩ = 0. As for the function
Φ̃(𝜏
0
), it satisfies integral equation (26) with the free term

𝐺(𝜏
0
) = 𝛽𝐹(𝜏

0
).

Equation (44) implies that again, as in the case of
MNS, knowledge of the reflection coefficient alone ensures
the temporal description of the diffusion process in the
atmosphere. In fact, solution of similar initial-value problems
for integrodifferential equations gives a detailed statistical
description on the multiple scattering in inhomogeneous
media. As it was pointed out, in the treated special case
of completely incoherent scattering, the form of the proper
functions and equations can be simplified by introducing
the combined variables of the 𝛾(𝑥)/𝜉 type. However, we give
preference to separation of these arguments, which is better
suited for numerical calculations. Note in conclusion that in
the particular case of homogeneous media comparison of
(24), (33), and (44) yields the well-known relation between
different statistical mean quantities (1 − 𝜆)⟨𝑁⟩ + 𝜆𝛽⟨Ω⟩ =

_
𝑠 .

5. Concluding Remarks

We discussed two frequently encountered model problems
of the radiative transfer in a plane-parallel inhomogeneous
medium and showed that they can be mathematically
reduced to the solution of only one initial-value problem
for integrodifferential equations for reflectance (1) with the
subsequent evaluation of several ordinary integrals. This
allows overcoming the well-known difficulties specific to the
boundary-value problems, to which the classical formulation
of the physical problems usually leads. For simplicity, the
inhomogeneity of the medium was explicitly indicated only
in the scattering coefficient, while all other parameters con-
trolling the elementary scattering and absorption processes
can be also allowed to be dependent on optical depth. All the
requisite quantities are found for a family of atmospheres of
different optical thicknesses.

The same approach was applied in finding the MNS
and the average time of the photons travel in the medium
for different types of photons. Solution of the resulting
integrodifferential equations gives the detailed statistical
description of the radiation diffusion process depending
on the angular and frequency parameters of the incident,
reflected, transmitted, and destructed photons. The statisti-
cal mean quantities are of special interest for applications
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concerning all the diffusing photons independent of that
whether they are destroyed in the medium or escape from it.
These quantities are completely determined by the reflection
properties of the medium. It is apparent that by analogous
manner one can find the statistical averages for any discretely
or continuously distributed random quantities describing the
radiation diffusion process.

Summarizing the results obtained in the paperwe observe
that the starting point in all of the considered problems is
the determination of the reflectance of an atmosphere. In
other words, knowledge of only the reflection coefficient
makes it possible to gain complete insight into the field of
radiation inside the medium and the statistical properties of
the diffusion process. This is of great importance in view of
that this coefficient is defined from a separate equation and
that it is an observable and measurable quantity in contrast
to the source function which plays an important role in the
classical theory of the radiative transfer. In fact, the obtained
results can be regarded as a generalization, in some sense, of
Ambartsumian’s invariance idea to the finite inhomogeneous
atmosphere.

From pure mathematical point of view, the proposed
approach facilitates solving the traditional and frequently
used model problems to a large extent. It is based on obvious
physical arguments, so it is intuitively clear, universal, and
easy to use.
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