
Research Article
Mutation Analysis Approach to Develop Reliable
Object-Oriented Software

Monalisa Sarma

Indian Institute of Technology Kharagpur, Kharagpur 721302, India

Correspondence should be addressed to Monalisa Sarma; monalisa@iitkgp.ac.in

Received 4 April 2014; Revised 19 August 2014; Accepted 22 September 2014; Published 25 December 2014

Academic Editor: Henry Muccini

Copyright © 2014 Monalisa Sarma. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In general, modern programs are large and complex and it is essential that they should be highly reliable in applications. In order
to develop highly reliable software, Java programming language developer provides a rich set of exceptions and exception handling
mechanisms. Exception handling mechanisms are intended to help developers build robust programs. Given a program with
exception handling constructs, for an effective testing, we are to detect whether all possible exceptions are raised and caught or
not. However, complex exception handling constructs make it tedious to trace which exceptions are handled and where and which
exceptions are passed on. In this paper, we address this problem and propose a mutation analysis approach to develop reliable
object-oriented programs. We have applied a number of mutation operators to create a large set of mutant programs with different
type of faults. We then generate test cases and test data to uncover exception related faults. The test suite so obtained is applied to
the mutant programs measuring the mutation score and hence verifying whether mutant programs are effective or not. We have
tested our approach with a number of case studies to substantiate the efficacy of the proposed mutation analysis technique.

1. Introduction

Of late, computer applications have permeated heavily into
every sphere of the daily life of an average person. Many
of these applications are large, complex, and safety critical,
requiring the software to be extremely reliable. An exception
occurrence during a program execution is an abnormal com-
putation state [1] and thus is a threat to the reliability of soft-
ware. It is advocated that software should be tested adequately
to trace if there is any exception in intended behavior [2].
To realize this software developers prefer exception handling
mechanisms to be embedded inside code so that software
can arrest and raise alarm whenever there is any exception
and then cause of exception can be eliminated. Many reasons
may be attributed to causes of exceptions such as erroneous
input, hardware faults, logical errors in the code, semantic
violation, linking errors, and limitation of system resources.
It is reported that more than 50% of the operational failures
that may occur in a system are due to faults in exception
handling and recovery [3]. To cope with the system failures
due to exceptions, most modern programming languages
such as Ada, C++ and Java incorporate explicit mechanisms

for exception handling. Syntactically, an exception handling
mechanism consists of a means to explicitly raise an excep-
tional condition at a programpoint and ameans of expressing
a block of code to handle one ormore exceptional conditions.
In other words, an exception handling mechanism provides
a way to separate code that deals with unusual situations and
abnormal program termination.

Exception handling constructs are responsible for the
detection and handling of system conditions that could
potentially lead to failure. Recent studies of Java programs
indicate that exception handling constructs occur frequently
and approximately 15%–25% of the classes contained excep-
tion handling constructs [4, 5]. Despite the frequency of their
occurrences, the behavior of exception handling constructs is
often the least understood andpoorly tested part of a program
[6]. Testing strategy to test object-oriented programs, in
general, and exception handling constructs, in particular, is
scarcely reported [7]. For testing exception handling con-
structs, some works have been reported [4, 6, 8]. Sinha and
Harrold [9] proposed a class of adequacy criteria that can be
used to test the behavior of exception handling constructs.
Sinha and Harrold [9] described a methodology for applying

Hindawi Publishing Corporation
Advances in Soware Engineering
Volume 2014, Article ID 197983, 16 pages
http://dx.doi.org/10.1155/2014/197983

2 Advances in Software Engineering

the criteria to unit and integration testing of programs that
contain exception handling constructs. However, to the best
of our literature survey, no approach has been reported so far
to generate exception handling related faulty programs and
then to test the adequacy of test suites. Adequacy testing is an
important issue because a test suite may not locate all excep-
tion points. For example, in Java, an exception can be raised
implicitly. In that case, it is not possible to drawproper control
flow graph [4, 10, 11]. Further, even if all exception paths are
known from the control flow graph [4] and satisfy exception-
coverage criteria [9], it needs to design test data manually for
raising all possible potential exceptions.Thismanual test case
generation is not only tedious [6] but raising exceptions is not
always guaranteed. As a consequence we need to determine
the adequacy of test cases to raise exceptions. In general,
determining the path of exceptions is a difficult problem and
manual synthesis of test data may not be sufficient to raise
all exceptions. In this context, efficiency of a test suite is
necessary to be evaluated in order to assure the reliability of a
systemunder test. In summary, given a program,we are to test
whether the exception handling constructs are sufficient to
throw and catch all possible exceptions or not.

Mutation analysis is a practical method to evaluate the
quality of test suites [12–14]. In this work, we propose a
mutation analysis method to evaluate test suites for testing
exception handling constructs. We consider a set of mutation
operators with which different types of faults can be injected
to the original programs.Themutation operators are adopted
from the work of Ji et al. [15]. The mutant programs are
then analyzed with some test suites. We consider test suites
generated according to the control flow based structural
analysis approach proposed in [4, 9] for a given Java program.
We also analyzed the program in JUnit 4.6 [16] and Jumble 1.0
[17] testing environment and their mutant programs. Our
experimental results substantiate the efficiency of the pro-
posed mutation analysis approach.

The rest of the paper is organized as follows. We discuss
basic concepts, related terminologies, and tools in Section 2.
In Section 3, we discuss the mutation operators followed in
this work. Mutation analysis is discussed in Section 4. Our
experimental results are presented in Section 5. Related work
and comparison of our work with others are discussed in
Section 6. Finally, Section 7 concludes the paper.

2. Basic Concepts

In this section, we discuss some basic concepts and termi-
nologies which are referred to in our subsequent discussions.
We also briefly introduce the tools used in our work.

2.1. Exception Handling Constructs in Java. Java [18] pro-
gramming language is considered as a model language in this
work. In this subsection, we provide an overview of exception
handling constructs in Java. Details of exception handling
constructs in Java can be found in [19, 20].

In Java, exceptions are first-class objects. Each exception
is an instance of a class that is derived from the class
java.lang.Throwable, which is defined in the stan-
dard Java API [19]. An exception can be raised at any

point in the program through a throw statement. A throw
statement is associated with an expression denoting an
exception object, which may be a variable (e.g., throw e),
a method call (e.g., throw m()) or a new instantiation
(e.g., throw new E()), and so forth. A throw statement can
appear anywhere in the program. Java exception handling
construct includes three blocks: try, catch and finally
(see Figure 1(a)). Code can be guarded for exceptions
within a try block. Exceptions raised through execution of
code (implicitly) or a throw statement (explicitly) within
a try block may be caught in one or more catch clause(s)
declared immediately following the try block. The finally
block is executed independently of what happens in the
try block. It may be noted that a try statement consists of
a try block and optionally one or more catch blocks and
finally block (see Figure 1(a)). The valid instances of a
try statement are try{. . .} catch (. . .){. . .}[catch (. . .){. . .}]
[. . .] [finally{. . .}], where the blocks in square brackets
indicate optional. Here, a try block contains statement
whose execution is monitored for exception occurrences.
A catch block specifies the type of exception it handles
and exception handler; that is, it contains a block of code
that is executed when an exception of that type is raised in
the associated try block. If a finally block is associated
with a try block, then the finally block is always executed,
irrespective of how control transfers out of the try block.

2.2. Java Exception Hierarchy. Similar to other Java objects,
exceptions are typed, and types are organized into a hierarchy.
All exceptions inherit from the class type Throwable defined
in java.lang API. The exception type hierarchy defines
three different groups of exceptions: errors, runtime excep-
tions, and checked exception (defined in Java.lang.
Exception) (also see Figure 1(b)). Note that errors and
runtime exceptions are unchecked exceptions. Unchecked
exceptions can be thrown at any point in a Java program
and, if uncaught, may propagate back to the program
entry point, causing the Java Virtual Machine [20] to
terminate. The class Error is responsible for giving errors
in some catastrophic failures. The exceptions of type
RuntimeException are typically created automatically
during runtime in response to some execution errors. The
exceptions of the type Exception are checked exceptions
and are used for exceptional conditions that user programs
can catch. A list of exceptions that a Java programmer can
catch in programs is available in [19]. There are 11 runtime
exceptions, 17 errors, and 7 checked exceptions defined in
Java.langAPI [19] as per the release of Java 6. Programmers
can define and extend existing exception type in Java API to
customize their needs. Some new exception types can also
be defined [20].

2.3. Call Exception Hierarchy. In this subsection, we discuss
the flow of exceptions within the context of the structure of
a given program.This flow of exceptions, we specially term it
as call exception hierarchy (CEH), is useful to understand and
evaluate how exceptions are handled within a method, which
exceptions might arise during the execution of a method,

Advances in Software Engineering 3

. . . //Guarded block,

. . . //where exception can

. . . //be raised

. . . //Exception handler for

. . . //Exception handler for

}

}

}

}

}

. . . //Exception handler for

. . . //Must executable code

try {

finally {

. . . //exception type Exceptionm

. . . //exception type Exception2

. . . //exception type Exception1

catch (Exception1 e1) {

catch (Exception2 e2) {

catch (Exceptionm em) {

(a) Exception handling constructs in Java

Java.lang.Object

Java.lang.Throwable

Java.lang.Error Java.lang.Exception

Java.lang.RuntimeException

(b) Exception class hierarchy in Java

Figure 1: Exception handling constructs and exceptions in Java [19].

which exceptions are handled and where, and which excep-
tions are passed on. Alternatively, a call exception hierarchy
specifies which exceptions may propagate to its caller. In
essence, the call exception hierarchy is precisely specifying
the behavior of the program as far as the exceptions and
handling exceptions are concerned [21].

We identify three basic control flow constructs to obtain
the call exception hierarchy in any program. These are
method calls, nesting, andmulticatch. Any complex and arbi-
trary call exception hierarchy can be resolved with the help of
the above three basic constructs. We discuss the three basic
constructs as follows.

2.3.1. Method Calls. A method say Main can call a method
𝑚
𝑖
, which in turn may call another method say 𝑚

𝑗
and

so on. Any method can throw and catch exceptions. The
call exception hierarchy, in this case, implies the parent-
child relationship among exceptions. An exception 𝐸

2
is a

child of another exception, say 𝐸
1
, if 𝐸
2
occurs in a method

that is called by the method where 𝐸
1
may occur. The call

exception hierarchy with method calls is illustrated with an
example in Figure 2(a). In Figure 2(a), the method Main calls
the method 𝑀

1
() and is supposed to catch an exception 𝐸.

Now, themethod𝑀
1
() callsmethod𝑀

2
() andmay throw two

exceptions, namely, 𝐸
11

and 𝐸
12
. The method𝑀

2
() in turns

may throw exception 𝐸
21
and 𝐸

22
. In this case, the exception

𝐸 should be at the root of the hierarchy because𝐸 is supposed
to represent all instances of exceptions when the invocation
of the method𝑀

1
occurs. The exceptions 𝐸

11
and 𝐸

12
are 𝐸’s

children because they are instances, which may propagate to
𝐸. Similarly, 𝐸

1
is a child of 𝐸 and 𝐸

21
, 𝐸
22
are the children of

𝐸
1
. Note that here the exceptions 𝐸

21
and 𝐸

22
are supposed to

be caught through the exception 𝐸
1
, if it fails then through 𝐸.

The call exception hierarchy for a situation of method calls in
Figures 2(a)(i)–2(a)(iii) is shown in Figure 2(a)(iv).

2.3.2. Nested try Blocks. In Java, a try block can be nested
within another try block and so on. In this case, the call
exception hierarchy can be obtained as discussed below. All
exceptions at outer try block are at the root. All exceptions
at the next inner try blocks are the children of the root.
Any exceptions in a try block at the next level are the
children of exceptions at its upper try level and so on. We
illustrate such a situation with an example. We consider a
two-level nested try structure as shown in Figure 2(b). In
Figure 2(b)(i) the method Main is supposed to catch the
exception 𝐸, which is at the outermost try block. Now, Main
calls method𝑀

1
() at the innermost try block. The method

𝑀
1
()may raise two exceptions, namely, 𝐸

11
and 𝐸

12
. 𝐸
11
and

𝐸
12
would be the successor of 𝐸

1
, which is supposed to catch

these two exceptions. In turn 𝐸
1
would be the successor of

𝐸. The call exception hierarchy of the program structure of
Figures 2(b)(i) and 2(b)(ii) is shown in Figure 2(b)(iii).

2.3.3. Multiple catch Blocks. There may be multiple catch
blocks corresponding to a try block [19, 20]. In this case,
all exceptions, which are supposed to be caught, would
be placed as a single node and all exceptions, which are
raised by a called method inside the try block, would be
the children of this node. As an example, let us consider a
simple try with multiple catch as shown in Figure 2(c). In
Figure 2(c)(i), the method Main contains a try block and
this try block is associated with three parallel catch blocks.
These three catch blocks are corresponding to handle three
different exceptions, namely, 𝐸

1
, 𝐸
2
, and 𝐸

3
. Further, the

method Main() calls the method𝑀
1
(), which is supposed to

throw the exceptions 𝐸
11
and 𝐸

12
(see Figure 2(c)(ii)). In this

case, the exceptions 𝐸
1
, 𝐸
2
, and 𝐸

3
of the callermethod Main

is at the root and the exceptions 𝐸
11

and 𝐸
12

of the called
method𝑀

1
() are the children of the exceptions 𝐸

1
, 𝐸
2
, and

4 Advances in Software Engineering

(i)

Main

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

(iii)

(ii)

(iv)

M1

· · ·
· · ·

· · ·

try {

try {

· · ·

· · ·

· · ·

· · ·

} catch E1

} catch E

· · ·
M2

· · ·

· · ·

· · ·

throw E21;

throw E11;

throw E12;

· · ·

· · ·

throw E22;

E

E11
E1

E21 E22

E12

if ⟨condition 2⟩

if ⟨condition 1⟩

M1() ;

M2() ;

(a) Call exception hierarchy with method calls

(i)

(ii)

(iii)

Main

· · ·
· · ·

· · ·
· · ·

· · ·

· · ·

· · ·
· · ·

· · ·
· · ·

M1
· · ·

· · ·

· · ·

· · ·

· · ·

E

E11

E1

E12

if ⟨condition 1⟩
throw E11;

throw E12;

if ⟨condition 2⟩

try {

try {

} catch E1

} catch E

M1() ;

(b) Call exception hierarchy with nested try blocks
Main

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

}

(i)

M1

· · ·

· · ·

· · ·

· · ·

· · ·

(ii)

E1,E2,E3

E11 E12

(iii)

try {

catch E1
catch E2
catch E3

if ⟨condition 1⟩
throw E11;

throw E12;

if ⟨condition 2⟩

M1() ;

(c) Call exception hierarchy with multiple catch blocks

Figure 2: Basic constructs of call exception hierarchy.

𝐸
3
. The call exception hierarchy for this case (Figures 2(c)(i)

and 2(c)(ii)) is shown in Figure 2(c)(iii).
Related to the call exception hierarchy, we define the

following terminologies.

Caller Exception. An exception 𝐸 in a CEH for a program
𝑃 is called the caller exception if it is a parent of any other
exception 𝐸

𝑖
∈ 𝐶𝐸𝐻. In other words, all exceptions except at

the leaf of call exception hierarchy are the caller exceptions.

Callee Exception. An exception 𝐸 in a CEH for a program
𝑃 is called the callee exception if it is a child of any other

exception 𝐸
𝑖
∈ 𝐶𝐸𝐻. In other words, all exceptions except

the exception(s) at the root of a call exception hierarchy are
callee exceptions.

Direct Caller Exception. In CEH, if an exception 𝐸
𝑖
is the

immediate predecessor of another exception 𝐸
𝑗
, then the

exception 𝐸
𝑖
is called the direct caller exception.

Direct Callee Exception. In CEH, if an exception 𝐸
𝑖
is the

immediate successor of another exception𝐸
𝑗
, then the excep-

tion 𝐸
𝑖
is called the direct callee exception.

Advances in Software Engineering 5

Input
program P

Input test
program Pn

Create Input test
suite T

Modify test
suite

Fix program

No

No YesYesProgram test
correct?

Run test
cases on
each live
mutant

All mutants
dead? Quit

Run test
cases on P,

mutants 𝜙(P)

𝜙(P)

Figure 3: Mutation testing framework.

2.4. Mutation Testing. Mutation testing [22] is a widely
accepted and practical method to evaluate the quality of a test
suite to test programs.Mutation testing is a fault-based testing
adequacy criterion proposed by DeMillo et al. [23] initially
with the name mutation analysis. Given a program 𝑃, a
set of alternative programs, say 𝜙(𝑃), is considered in order to
measure the test adequacy of a test suite 𝑇. A test set 𝑇 is ade-
quate to 𝑃 in relation to 𝜙(𝑃) if for each program 𝑄 ∈ 𝜙(𝑃),
either 𝑄 is equivalent to 𝑃 or 𝑄 differs from 𝑃 on at least one
test case 𝑡 ∈ 𝑇 [24]. Amutation testing framework is shown in
Figure 3. In the context of mutation analysis some commonly
known terminologies are mentioned below.

2.4.1. Mutant. A set of alternative programs 𝜙(𝑃) is called
mutants of 𝑃. A mutant program 𝑄 ∈ 𝜙(𝑃) is different from
𝑃 only on some simple syntactic changes.This is also alterna-
tively called fault injection to 𝑃.

2.4.2. Mutation Operator. Mutation operator is a set of rules
to decide syntactic changes in the program 𝑃 to obtain
mutants 𝜙(𝑃).

2.4.3. Mutant Dead. To assess the adequacy of a test set 𝑇,
each mutant 𝑄 ∈ 𝜙(𝑃), as well as the program 𝑃, has to be
executed against the test cases in 𝑇. If the observed output of
the mutant 𝑄 is the same as that of 𝑃 for all test cases in 𝑇,
then 𝑄 is considered alive; otherwise it is considered dead or
distinguished.

2.4.4. Equivalent Mutant. Let 𝐷 be the input domain of the
test suite𝑇. Amutant𝑄 is called an equivalentmutant if ∀𝑥 ∈
𝐷,𝑃, and𝑄 produce the same results. Note that an equivalent
mutant cannot be distinguished and should be discarded
from the mutant set as it does not contribute to the adequacy
of 𝑇.

2.4.5. Mutation Score. Test adequacy is measured by the
mutation score 𝜇(𝑃, 𝑇) as defined in

𝜇 (𝑃, 𝑇) =
DM

TM − EM
, (1)

where DMdenotes the number of deadmutants of𝑃 for a test
suite 𝑇 and TM and EM are the total number of mutants in
𝜙(𝑃) and equivalent mutants, respectively. In summary, a low
value of the mutation score implies either test suite unable to
cover sufficient faults or there is less faults and vice versa.

2.5. Java Program Testing Tools. Of late, Java programming
has been extensively practiced in industries. A number of
Java tools are available to support the Java practitioners. Two
commonly used tools are JUnit [16, 25] and Jumble [17, 26].
These two tools are used in this work. We introduce these
tools briefly in the following.

2.5.1. JUnit. JUnit [16] is an API framework and is used to
automate unit and regression testing. Using JUnit, an entire
class, part of a class, that is, a method or some interacting
methods and interactions among several objects, can be
tested. To test using JUnit, a tester class is required.The tester
class contains more than one test case where each test case
is written into one test method [25]. The tester class also
includes a test executor to run the test cases and methods to
set up the state(s) of object(s) before and update the state(s)
after the execution of each test case.

The advantages with JUnit are that it allows assertions for
testing expected results, it has test features for sharing com-
mon data, and it helps to isolate and localize errors.The limi-
tation with JUnit is that developers have to write test methods
themselves, which requires a substantial amount of coding
effort. Further, JUnit is designed to call methods and compare
the results they return against expected results.This works for
methods that return some results, but many methods instead
of returning values have side effects, such as displaying

6 Advances in Software Engineering

output, modifying states of constituent objects, and modify-
ing attributes’ values. Also, JUnit cannot directly test private
methods and not suitable for system or integration testing.

2.5.2. Jumble. Jumble [17] is a mutation testing tool for Java
programs, which interoperates with JUnit. Jumble takes a
class to be mutation tested and a set of JUnit test classes
as parameters. The output is the overall score of how many
mutations are successfully caught as well as details about
thosemutationswhich are not. Jumble performs itsmutations
by directly modifying Java byte code using BCEL package
[26]. This allows the mutation testing to be done with no
compilations.

The advantages with Jumble are that it mutates a program
at the byte code level; hence, Jumble is faster and it can be used
to test the programs even when the source code is not avail-
able. Moreover, Jumble uses a heuristic to improve its perfor-
mance. Using the heuristic, it determines the order in which
to run the test cases so that a test fails at a faster rate. It ensures
that the longer test cases run only when there is no shorter
test case to cover mutations.

The major limitation with Jumble is that it only provides
mutations operators for conditional, arithmetic, initialization
and assignment, expressions, return values, and switch state-
ments [26]. Jumble cannot discriminate boolean, short,
and char data types because all these data types in byte code
is represented as 32 bits integer. Further, Jumble uses strong
mutation [26]. Weak mutation is not possible with Jumble
because if JUnit test case uses a value that causes a mutated
expression to return a different value, there is no guarantee
that the JUnit test case will detect that different value.

3. Mutation Operators

We consider eight mutation operators to create mutant
programs [15]. These mutation operators are listed in Table 1.
There are two types of mutation operators: related to catch
block and try block. These mutation operators are discussed
in the following subsections. First, we discuss the proposed
mutation operators to change in catch blocks. We then
discuss the mutation operators related to alteration in try
blocks. We refer to CEH as the call exception hierarchy of a
Java program 𝑃 in our discussions.

3.1. BD: Deletion of catch Block. The mutation operator BD
is proposed to delete a catch block, say CB, following a try
block, say TB. Deleting a catch block < 𝑆2 > using themuta-
tion operator BD can be formally stated as

𝐵𝐷 ⇒ [𝑇𝐵 :]try{. . .}[𝐶𝐵 :]catch(𝐸){. . .} → [𝑇𝐵 :]
try{. . .}.

Figure 4 explains the operation of the mutation operator
BD. If there are more than one catch block, then it can
delete in an arbitrary way one or more catch block(s). The
objective of this mutation operator is to alter the exception
propagation path. When an exception, say 𝐸, is thrown in
TB, the mutant program with BD should not handle the
exception 𝐸 appropriately because of the absence of CB. As

Table 1: Exception handling related mutation operators.

Operator Description
BD Catch block deletion
BR Catch block replacement
BI Catch block insertion
RE Catch and rethrow exception
TD Deletion in try block
TR Replacement in try block
TI Insertion in try block
TA Alter try block

· · ·
· · ·
· · ·

· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·

}

BD

· · ·
· · ·
· · ·

try { try {

} catch (Exception e) {· · · }

Figure 4: Mutation operator BD.

a consequence, the exception raised at TB should be back
propagated to the caller exception, if any in the CEH. The
exception 𝐸 then may be handled at an upper level if the
exception type of 𝐸 matches with some other exception at
upper level. It may be noted that the original program and
a mutant version may cause same exception meeting some
reachability at the try block TB. In that case, deleting the
whole catch block CB would not produce any distinctions
between the two programs for a test case. Hence, this operator
may produce equivalent mutants.

3.2. BR: Replacement of catch Block. Themutation operator
BR is proposed to cover faults such that a program does
not handle exception correctly. Let CB be the catch block
to be altered. The mutation operator BR attempts to deviate
from the exception propagation path. The mutation operator
BR creates mutant program(s) depending on the level of the
occurrence of the catch block CB. Also, see Figure 5, which
states the three different levels of CBs and their possible
mutants. Three rules are to be followed.

Rule 1. If the CB is at the root node in the CEH, then BR
replaces the exception parameter type ofCBwith that ofDCE,
whereDCE denotes the direct callee exception of the exception
of CB.

Rule 2. If the CB is at any leaf node in the CEH, then BR
replaces the exception parameter type ofCBwith that ofDPE,
whereDPE denotes the direct caller exception of the exception
of CB.

Rule 3. If the CB is at an intermediate level, that is, neither at
the root nor at leaf of theCEH, thenCBR replicates the catch
block CB into two blocks CB1 and CB2, such that BR replaces

Advances in Software Engineering 7

R1: replace by direct callee
exception parameter type

R3: replace by direct
caller + direct callee

R2: replace by
direct caller

E

E2
E1

E12
E23

Figure 5: Mutation operator BR.

the exception parameter type ofCBwith that ofDCE andDPE
as CB1 and CB2, respectively. Here, DPE andDCE denote the
direct caller and direct callee exceptions of the exception type
of CB in CEH, respectively.

The mutation operator BR can be formally stated as
follows.

Rule 1. If CB is at the root of CEH

𝐵𝑅 ⇒ [𝑇𝐵 :]try{. . .}[𝐶𝐵 :]catch(𝐸){. . .} → [𝑇𝐵 :]
try{. . .}[𝐶𝐵 :]catch(𝐸󸀠){. . .}

where 𝐸󸀠 is the DCE of 𝐸.

Rule 2. If CB is any leaf node in CEH

𝐵𝑅 ⇒ [𝑇𝐵 :]try{. . .}[𝐶𝐵 :]catch(𝐸){. . .} → [𝑇𝐵 :]
try{. . .}[𝐶𝐵 :]catch(𝐸󸀠){. . .}

where 𝐸󸀠 is the DPE of 𝐸.

Rule 3. If CB is any node other than root and leaf node in
CEH

𝐵𝑅 ⇒ [𝑇𝐵 :]try{. . .}[𝐶𝐵 :]catch(𝐸){. . .} → [𝑇𝐵 :]
try{. . .}[𝐶𝐵1:]catch(𝐸󸀠){. . .}[𝐶𝐵2 :]catch(𝐸󸀠󸀠){. . .}

where 𝐸󸀠 and 𝐸󸀠󸀠 are the DCE and DPE of 𝐸, respectively.

3.3. BI: Insertion in catch Block. The purpose of the muta-
tion operator catch block insertion BI is to catch all possible
exceptions that might arise at a try block TB. In other words,
if CB is the catch block associated with the try block TB,
then BI tries to create mutant programs, which hide all
exceptions in the try block TB. The mutation operator BI
inserts catch blocks 𝐶𝐵

1
, 𝐶𝐵
2
, . . . , 𝐶𝐵

𝑛
for all the exception

parameter types 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
where 𝐸

1
, 𝐸
2
, . . . , 𝐸

𝑛
are the

callee exceptions in the CEH for the exception at the try
block TB.

Table 2: Mutation operator TD.

Operator Description Level
AOD Arithmetic operator deletion

Method-levelCOD Conditional operator deletion
LOD Logical operator deletion
IHD Information hiding deletion

Class-level

IOD Overriding method deletion
ISD Super keyword deletion
OMD Overloading method deletion
JTD This keyword deletion
JSD Static modifier deletion
JID Member variable initialization deletion

It can be formally stated as

𝐵𝐼 ⇒ [𝑇𝐵 :]try{. . .}[𝐶𝐵 :]catch(𝐸){. . .} → [𝑇𝐵 :]
try{. . .}[𝐶𝐵

𝑖
]catch(𝐸

𝑖
){. . .}

where 𝐶𝐵
𝑖
is a catch block with exception 𝐸

𝑖
for each 𝐸

𝑖
∈

𝐶𝐸𝐻.
The operation of BI mutation operator is depicted in

Figure 6. Since the mutation operator BI hides some excep-
tions to propagate upward, it may produce equivalent
mutants.

3.4. RE: Catch and Rethrow Exception. A situation that may
arise in a program is that exception raised in a try block
may not be propagated down the exception handling stack.
To cover such a fault, the mutation operator called catch
and rethrow exception and denoted by RE is proposed. The
mutation operator RE for a catch block, say CB, associated
with a try block, say TB, catches the exception type E of CB
and rethrows the exception E inside the CB (see Figure 7, the
operation of RE).

Rethrowing an exception using the mutation operator RE
can be formally stated as

𝑅𝐸 ⇒ [𝑇𝐵 :]try{. . .}[𝐶𝐵 :]catch(𝐸){. . .} → [𝑇𝐵 :]
try{. . .}[𝐶𝐵 :]catch(𝐸){. . . ; 𝑡ℎ𝑟𝑜𝑤𝐸

𝑖
; . . .}

for all 𝐸
𝑖
∈ 𝐶𝐸𝐻.

Let 𝐸 be the exception type at the catch block CB. Also,
let 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
be the callee exceptions of the exception

E according to call exception hierarchy CEH. The mutation
operator RE creates the mutant programs by inserting a
throw statement to throw the exception 𝐸

𝑖
for each 𝐸

𝑖
∈

𝐸, 𝐸
1
, 𝐸
2
, . . . , 𝐸

𝑛
. Note the difference between BI and RE. In

BI, a catch block is inserted with an exception, whereas, in
RE, it inserts a throw statement in the catch block to throw
exception of callee exception type of the exception at catch
block including itself.

3.5. TD: Deletion in try Blocks. The mutation operator TD
consists of two types of operators: method-level and class-
level mutation operators. Concepts of these operators are
taken from [27]. These operators are listed in Table 2.

The first three mutation operators in Table 2 are the
method-level mutation operators and they modify Java

8 Advances in Software Engineering

· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

E1 E2

E21 E22

E

(i) Original program with CEH (ii) Mutant program with BI

try {

try {

E)} catch (Exception {· · · }

E)} catch (Exception {· · · }

1 1)Ecatch (Exception {· · · }

2 2)Ecatch (Exception {· · · }

3 21)Ecatch (Exception {· · · }

4 22)Ecatch (Exception {· · · }

Figure 6: Mutation operator BI.

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

· · ·

· · ·
· · ·
· · ·

{
E1 E2

E11 E12

E

throw e∗i

}

(i) Original program with CEH (ii) Mutant program with RE

}

try {

try {

{E)} catch (Exception {· · · }

E)} catch (Exception {· · · }

∗For each ei 𝜀 {E, E1, E2, E11, E12}

Figure 7: Mutation operator RE.

expressions by deleting primitive operators in Java program-
ming language [19]. The rest of the mutation operators in
Table 2 are the class-level mutation operators dealing with
object-oriented features such as inheritance, polymorphisms,
and dynamic binding. These operators are to modify dec-
larations, modifiers, initializations, and so forth. A detailed
description of these mutant operators can be found in [28].

The mutant operator TD can be mathematically stated as
follows:

𝑇𝐷 ⇒ [𝑇𝐵 :]try{. . . ; 𝑆; . . .}[𝐶𝐵 :]catch(𝐸){. . .} →
[𝑇𝐵 :]try{. . . ; 𝑆󸀠; . . .}[𝐶𝐵 :]catch(𝐸){. . .}

where 𝑆󸀠 is an altered statement of 𝑆 after deleting one ormore
operator(s) or declaration(s).

3.6. TR: Replacement in try Blocks. Like the mutation oper-
ator TD, the mutation operator TR consists of method-level
and class-levelmutation operators [27, 28], which are listed in
Table 3. As shown in Table 3, the first six mutation operators
are to modify expressions by replacing some compatible Java
primitive operators. The remaining mutation operators in
Table 3 are to replace modifiers, assignments, initialization,
and so forth [28].

Themutant operator TR can be formally stated as follows:
𝑇𝑅 ⇒ [𝑇𝐵 :]try{. . . ; 𝑆; . . .}[𝐶𝐵 :]catch(𝐸){. . .} →
[𝑇𝐵 :]try{. . . ; 𝑆󸀠; . . .}[𝐶𝐵 :]catch(𝐸){. . .}

where 𝑆󸀠 is an altered statement of 𝑆 after replacing one or
more operator(s) or declaration(s).

3.7. TI: Insertion in try Blocks. Different mutation operators
belonging to the proposedmutation operatorTI are shown in
Table 4. In Table 4, the mutation operators in first three rows
are to modify expressions by inserting some compatible Java
primitive operators. The rest of the operators in Table 4 are
related to insertions ofmodifiers, assignments, initializations,
and so forth [28].

The mutant operator TD can be mathematically stated as
follows:
𝑇𝐼 ⇒ [𝑇𝐵 :]try{. . . ; 𝑆; . . .}[𝐶𝐵 :]catch(𝐸){. . .} →
[𝑇𝐵 :]try{. . . ; 𝑆󸀠; . . .}[𝐶𝐵 :]catch(𝐸){. . .}

where 𝑆󸀠 is an altered statement of 𝑆 after inserting one or
more operator(s) or declaration(s).

3.8. TA: Alter try Block. The mutation operators discussed
in the previous subsections are proposed to modify some

Advances in Software Engineering 9

Table 3: Mutation operator TR.

Operator Description Level
AOR Arithmetic operator replacement

Method-level

ROR Relation operator replacement

COR Conditional operator
replacement

LOR Logical operator replacement

ASR Assignment operator
replacement

SOR Shift operator replacement

IOP Overridden method calling
position change

Class-level

IOR Overridden method rename
PCC Cast type change

OMR Overloading method content
change

EOA Reference and assignment
replacement

EOC Reference and content
replacement

EAM Accessor method change
EMM Modifier method change

Table 4: Mutation operator TI.

Operator Description Level
AOI Arithmetic operator insertion

Method-levelCOI Conditional operator insertion
LOI Logical operator insertion
IHI Hiding variable information

Class-level
ISI Super keyword insertion
PCI Type cast operation insertion
JTI This keyword insertion
JSI Static modifier insertion

statements within try blocks. In the mutation operator
TA, we propose to include some statements, which are
outside try blocks, or move some statements outside try
blocks. Figure 8(ii) shows the working of the mutation oper-
ator TA. In Figure 8(i), 𝑃

1
is a Java program and there is a try

block such that a variable, say 𝑖𝑛, is initialized in the try block
and it is referenced later outside the try block. Suppose that
𝑖𝑛 is initialized with a null pointer. In that case, it may throw
null pointer exception [29]. We mutate the program 𝑃

1
to 𝑃󸀠
1

by including the statement of reference within the try block
with the objective that whether the catch block correspond-
ing to try block is able to catch the exception type which
might raise due to the reference of 𝑖𝑛. Here, the variable 𝑖𝑛 is
initialized and referencedwithin the try block and exception
raised say due to null pointer assignment in statementmarked
as (𝐴) may be caught in the catch block. Alternatively, let
us consider the case of Java program 𝑃, where a variable 𝑥
is initialized and referenced in a try block. We apply the
mutation operator TA to 𝑃 to have a mutant program 𝑃󸀠 such
that the reference statement is moved from the try block and

place it outside the try-catch block. The objective of this
type ofmutation is to checkwhether the exception raisedmay
be propagated and catch in any caller exception or not. In the
mutant program, it is now placed outside the try block and
which is now beyond the scope of the catch block of the try
block.

The mutant operator TA can be mathematically stated as
follows:

𝑇𝐼 ⇒ [𝑇𝐵 :]try{. . . ; 𝑆; . . .}[𝐶𝐵 :]catch(𝐸){. . .} →
[𝑇𝐵 :]try{. . . ; 𝑆󸀠; . . .}[𝐶𝐵 :]catch(𝐸){. . .}

where 𝑆󸀠 is an altered statement of 𝑆 obtained after either
keeping both declaration and reference of an object within
the same try block if they were not together or declaration
in the try block but its reference outside the try block, when
they were originally together within a try block.

4. Mutation Analysis

In the last section, we have discussed the proposed mutation
operators to test the effectiveness of test cases for testing
exception handling constructs in Java. In this section, we dis-
cuss our analysis to evaluate the effectiveness of the proposed
mutation operators. To do this, we have considered a number
of Java programs.We then apply mutation operators to create
a number of mutant programs for each Java program. A
number of test cases which are used in our analysis is then
discussed. All these steps are discussed in the following
subsections.

4.1. Subject Programs. In order to verify the effectiveness of
our approach, we have carried out a number of experiments.
In our experiments, we have considered five different types
of subject programs from different application domains. The
Java programs considered are:

(i) library information systems (LIS): automating the
regular routines in library management,

(ii) cell phone system (CPS): designing hand-set services
for mobile communications,

(iii) trading house automation system (TAS): automating
business processes of trading houses,

(iv) conference management systems (CMS): automating
various activities in conference organization,

(v) vending automation system (VAS): automating vend-
ing processes.

The designs of LIS and CPS are followed from [30] and
[31], respectively.The applications, namely,TAS andCMS, are
designed in UML 2.0 by the students of postgraduate course
(software engineering) inComputer Science and Engineering
Department, Indian Institute of Technology Kharagpur [32,
33]. The UML models of the application VAS are taken
from [34]. We follow the designs from the above-mentioned
sources and implemented them in Java. The implementation
characteristics are summarized in Table 5.

The Java programs we have considered are neither very
small nor very large, but of moderate sizes. In column 3 of

10 Advances in Software Engineering

Variable, say x

is initialized in
a try-block and
later x is
referenced in
outside the try-
block.

Variable, x is
initialized and
referenced within
a try-block

TA

(i)

P󳰀
1P1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

public void openFile (String fname)

in.read (readData, 0, 255);

in = new FileInputStream (frame); . . . (A)

} catch (IOException ioe)

(ii) Original program P1

throw FileNotFoundException (“file not found”) {

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

public void openFile (String fname)

byte readData [] = NULL;

. . . (B)

} catch (IOException ioe) {. . . }

(iii) Muatnt program P󳰀
1 of P1

throw FileNotFoundException (“file not found”) {

try {

byte readData [] = NULL;

in = new FileInputStream (frame);
try {

in.read (readData, 0, 255);

Figure 8: Mutation operator TA.

Table 5, the numerator indicates the number of entity and
boundary classes and the denominator indicates the number
of modal classes also called controller classes (classes which
exhibit distinct behavior in different states). The numbers of
total try blocks, catch blocks are shown in columns 4 and 5
of Table 5, respectively. The number of exceptions thrown in

Java methods, which are not within the scope of try block, is
shown in column 6 of Table 5.

4.2. Mutant Programs. In our mutation analysis, we have
considered fault-based mutation analysis technique. For this,
we have generated the mutant programs of the considered

Advances in Software Engineering 11

Table 5: Characteristics of subject programs.

Subject program Size (LOC) Number of classes Exception handling constructs
Try blocks Catch blocks Outside exceptions

LIS 3356 16/04 26 33 18
TAS 2448 16/06 30 38 29
CPS 2257 21/07 24 46 21
CMS 2146 25/09 19 32 27
VAS 1864 10/04 11 25 31

programs (in Table 5). The mutant programs are generated
by seeding faults randomly to the programs based on a fault
model.The faultmodel we have followed in our work is stated
below.

(1) Catch block misses exception: the exception thrown
in a try block does not match with the exception
parameter type of the catch block associated with
the try block.

(2) Catch block handles exceptions incorrectly: the body
of a catch block, that is, the exception handling
routine, is not proper to handle the exceptions.

(3) Catch block rethrows exceptions: catch block handles
an exception and rethrows the same or another
exception(s).

(4) Catch block catches exceptions: exception thrown
matches with the exception parameter type in
a catch block and does not perform any routine but
avoids abnormal exit.

(5) Try block throws exceptions implicitly: due to faults
in expression, keyword, declaration, initialization,
and assignment, some exceptions may be generated
implicitly.

(6) Try block misses or throws explicit exceptions: some
exceptions are missed and thrown outside try block;
some exceptions are thrown deliberately inside try
block.

Based on the above fault model, we have applied the
mutation operators as discussed in Section 3, and the number
of mutant programs created for each programs is shown in
Table 6.

We have also generated a number of mutant programs
with Jumble [17, 26]. The mutant programs with Jumble for
each sample program is shown in the last row of Table 6.
According to the proposed mutation operators we create
149 mutant programs for LIS (see column 2, Table 6), 152
mutant programs for TAS (column 3, Table 6), 163 mutant
programs for CPS (column 4, Table 6), 162 mutant programs
for CMS (column 5, Table 6), and 131 mutant programs for
VAS (column 6, Table 6).

4.3. Generating Test Cases. To test the subject programs and
their mutant versions, we have considered several test cases
for each subject program. Generation of test cases is not the
focus of this work. We have studied the existing test case

Table 6: Mutant programs.

Mutation operator Subject programs
LIS TAS CPS CMS VAS

BR 16 14 19 22 14
BD 17 19 20 26 18
BI 12 18 21 22 15
RE 8 11 16 10 13
TR 34 27 29 26 21
TD 23 26 21 22 20
TI 30 26 25 24 22
TA 9 11 12 10 8
Jumble 98 105 102 118 91

generation approaches and followed an appropriate approach
as discussed in the following.

Structural testing techniques [35] develop test cases to
cover various structural elements of a program such as
control-flow, data-flow, branch, and path. Control-flow based
structural testing criteria [36] use the flow of control in a pro-
gram to generate test cases. Data-flow-based testing criteria
[37–40] use the data-flow relationships to select the test cases.
In branch testing [36, 41], test cases are developed by consid-
ering inputs that cause certain branches in the programunder
test to be executed. Similarly, in path testing [42, 43], test cases
are generated to execute certain paths in programs. All the
existing structural testing techniques, however, not necessar-
ily cover new structural element such as exception handling
constructs, all statements that raise exceptions, and those that
catch exceptions. Please note that these criteriamay be similar
to the traditional coverage criteria [36] that require the
coverage of statements or branches. Nevertheless, the criteria
such as branch testing [41] have weak fault detection capa-
bilities [44]. As a consequence, all-throw, all-catch coverage
criteria are not necessarily strong coverage criteria. In fact,
this coverage criterion does not cover the various exceptional
control flow paths [4]. Sinha andHarrold [9] proposed a fam-
ily of exception testing criteria to adequately test the behavior
of exception handling constructs. Based on the proposed
criteria [9], Sinha and Harrold [4] proposed a testing mech-
anism dealing with exception handling constructs. In [4], a
technique has been proposed to construct control-flow graph
representation of programs with explicit exception occur-
rences, that is, exceptions that are raised explicitly through
throw statements and exception handling constructs. This

12 Advances in Software Engineering

Table 7: Results of mutation analysis.

Program under test Number of test cases Mutant killed Equivalent mutants Mutation score
Jumble Our approach Jumble Our approach Jumble Our approach

LIS 35 18 116 32 16 27 87
TAS 48 14 129 28 12 18 92
CPS 56 23 112 26 15 30 76
CMS 44 29 117 29 23 33 84
VAS 32 20 108 23 16 29 94
Average 21 116 28 16 27 87

control-flow representation is useful to trace various excep-
tional control flow paths and cover different types of excep-
tion that can be raised at a statement or the complex control
and data interactions, both intra- and intermethods, thatmay
have in the presence of exception handling constructs. In our
work, we propose the test case generation scheme following
the control flow representation of programs proposed in [4,
9].

From the control-flow representation, we can specify the
paths to be tested; however, test data to exercise a path is a
challenging task, particularly, for complex and large number
of paths. The existing approaches of test data generation can
be divided into three classes: random, static, and dynamic.
Random test data generation is easy to automate but problem-
atic [45]. First, it produces a statistically insignificant sample
of the possible paths through the programunder test. Second,
it may be expensive to generate the expected output data
for the large amount of input data produced. Finally, given
that exceptions occur only rarely, the input domain which
causes an exception is likely to be small. Random test data
generations may never hit on this small area of the input
domain.

Static approaches to test data generation generally use
symbolic execution. Many test data generation approaches
presented in the literature use symbolic execution to obtain
structural test data [46–50]. Symbolic execution works by
traversing a control flow graph of the program under test
and building up symbolic representations of the internal
variables in terms of the input variables for the desired
path. Branches within the code introduce constraints on the
variables. Solutions to these constraints represent the desired
test data. A number of problems exist with this approach.
Using symbolic execution it is difficult to analyze recursion,
array, and indices which depend on input data and some loop
structures. Also, the problem of solving arbitrary constructs
is known to be undecidable.

Dynamic test-data generation involves execution of the
program under test and a directed search for test data that
meets the desired criterion [51]. Local search techniques
only work effectively for linear continuous functions. Conse-
quently, these techniques are likely to become stuck at a local
optimum [52]. DeMillo and Offutt [53] and Offutt et al. [54]
proposed approaches for test data generation for mutation
testing. The technique proposed in [53] is based on mutation
analysis to create test data approximating the test adequacy.
The technique is to automatically generate constraints and

solve them to create test cases for unit testing. Another tech-
nique proposed in [54] is an extension of previous research
[53] in constraint-based testing. This later method takes an
initial set of values for each input and then refine the values
through the control-flow graph of the program and resolve
the path constraint dynamically. In this work, to generate the
test data for test cases we follow the approach proposed in
[54].

5. Results and Discussion

Test suites for each program considered in our work were
generated as discussed in Section 4. Mutant programs for
each program is also developed using the mutation opera-
tors discussed in Section 3. In this section, we discuss our
experiments and result is obtained. Let 𝑇 be the test suite for
a program 𝑃 and 𝜙(𝑃) its set of mutant programs. For each
test case 𝑡 ∈ 𝑇, we execute the program 𝑃 and all mutant
programs 𝑄 ∈ 𝜙(𝑃). If the observed output of the mutant
𝑄 is different than that of 𝑃, then we increase the count of
the number of mutants killed.This way, we calculate the total
numbers of mutants killed by a given test suite 𝑇. Further, we
also calculate the equivalent mutants, such that two mutant
programs 𝑄

1
∈ 𝜙(𝑃) and 𝑄

2
∈ 𝜙(𝑃) are not distinguishable

as far as the output of the two is concerned. We determine
whether a mutant 𝑄 ∈ 𝜙(𝑃) is an equivalent mutant or not.
To do this, we look through the semantic exception hierarchy
(as discussed in Section 2.2). If the exception parameter
type in any original catch block is a super class of all the
derived types (according to Java exception hierarchy) in the
mutant catch block, then we judge the mutant 𝑄 to be an
equivalent mutant. This is because the base type of exception
can also accommodate all its subclass types. We also check if
some mutants due to the mutation operators BD, BI, TD, TR,
and TI are equivalent or not.

Our experimental results of mutation analysis with five
considered subject programs are presented in Table 7. The
number of mutants killed, equivalent mutants detected, and
mutation score for each program and its number of test cases
in test suite are shown in Table 7. It is observed that the num-
ber of mutants killed by Jumble with the mutant programs
created by Jumble is on average 21. On the other hand, the
number of mutants killed with mutant programs created by
our proposed mutant operators is on average 87. It is also
observed that mutant killed by Jumble is mainly related
to logical, arithmetic, and conditional expression, whereas

Advances in Software Engineering 13

180

160

140

120

100

80

60

40

20

0
LIS TAS CPS CMS VAS

Jumble
Our approach

N
um

be
r o

f m
ut

an
ts

(a) Mutant programs

140

120

100

80

60

40

20

0

LIS TAS CPS CMS VAS

Jumble
Our approach

M
ut

an
t k

ill
ed

(b) Mutants killed

180

160

140

120

100

80

60

40

20

0

LIS TAS CPS CMS VAS

Jumble
Our approach

M
ut

at
io

n
po

in
ts

(c) Mutation points

M
ut

at
io

n
sc

or
e

100

90

80

70

60

50

40

30

20

10

0

LIS TAS CPS CMS VAS

Jumble
Our approach

(d) Mutation scores

Figure 9: Mutation analysis: Jumble versus our approach.

mutant killedwith our approach is largely related to exception
handling constructs. The performance of our mutation anal-
ysis is attributed in Figure 9. Figure 9 compares the mutant
programs created, mutant killed, mutation points with excep-
tion handling constructs, and mutation score according to
Jumble and our approach.

Itmay be noted that JUnit considers onemodule at a time.
In contrast, we have followed the system testing approach.
This is because the unit testing approach is not so effective to
test an object-oriented program asmultiple objects are in col-
laboration to solve a problem [55]. Moreover, our hierarchy
of call exception is not necessarily limited to a single class but
rather distributed across several classes. As a consequence, we
need to have access to all the relevant modules so that from
the callee class we can determine the actual location from
where an exception has been thrown and caught. With
modular approach it cannot be determined. Hence, in our
approach, we have considered the whole program, that is,

a nonmodular analysis technique. We admit that modular
approach is faster but the nonmodular analysis at the use case
level is quite practical and usually followed in object-oriented
software engineering development environment [56].

Time Complexity. The running time complexities of both
Jumble and our approach are 𝑂(𝑛), where 𝑛 is the number
of exceptional handling constructs in a program.

6. Related Work and Comparison

Gallagher andNarasimhan [8] proposed an approach for test-
ing exception handling constructs. They proposed structural
analysis to select the effective test cases from a given set of test
cases to test exception handling constructs in Java programs.
In their structural analysis, the whole structure of a program
under test is analyzed to retrieve all possible execution paths.
They define a fitness function tomeasure the performances of

14 Advances in Software Engineering

test cases. All test cases are executed and then evaluated one
by one and the high quality test cases are selected based on
their fitness measures.

Ji et al. [15] proposed four mutation operators for Java
exception handling constructs. They aimed to develop effec-
tivemutant programs based on thosemutation operators.The
major difference with the work of Ji et al. [15] and our work
is that they proposed the mutation operators to test whether
the Java exceptional handling constructs will be able to catch
the exceptions or not whereas objective of our work is to test
the adequacy of test suites through mutation analysis on Java
exceptions. Further, in Ji et al. [15] work, they considered
exceptions, which are raised implicitly, that is, calling Java
library routines. On the other hand, in addition to implicit
raise of exceptions, we consider the generation of exceptions
explicitly using arithmetic and logical control statements.
That is why we consider many more conventional mutation
operators other than the mutation operators as proposed by
Ji et al. [15]. Moreover, to ensure that there is a sufficient
number of exceptions raised, we have given extra effort to
develop test cases accordingly, which is grossly ignored in the
work of Ji et al. [15]. More significantly, Ji et al. [15] adopted
a trivial experiment with JUnit to test the effectiveness of
their proposedmutation operators, that is, whether their pro-
posed mutation operators really capable of causing mutant
programs or not. It may be noted that JUnit tests a program
at a unit level (i.e., one class at a time), which in fact can catch
exceptions raised by the methods in that class only. But, in
general, an exception can be raised from method(s) located
not necessarily in the same class it is actually caught. Indeed,
it is a difficult task to catch the exceptions unless we have a
full tracking of all paths of exceptions from the point of cause
of exception to the caller routine (and hence main class).
This requires entire program to be taken into account rather
than only a particular unit. Furthermore, in our approach,
emphasize has been given to locate the cause of exception at
any point on a path of execution.

Sinha and Harrold [9] described a class of test adequacy
criteria that can be used to test the behavior of exception
handling constructs. They present a subsumption hierarchy
of the criteria and point out the relationship of the criteria to
those found in traditional subsumption hierarchies.They also
proposed techniques for generating the testing requirements
for the criteria using some control flow representations.

Buhr [21] proposed some exception handling mecha-
nisms in the context of developing rich language features for
developing robust programs. They also discussed the excep-
tion propagation mechanism and proposed propagation
models such as static, dynamic, and propagation.

Sinha andHarrold [4] extended their work reported in [9]
to analyze and test programs with exception handling con-
structs. They proposed techniques to construct control-flow
representations for Java programs with explicit exceptions
occurrences.They used these representation to perform some
analysis such as static and dynamic slicing, structural and
regression testing, and dynamic execution profiling.

Tracey et al. [6] proposed an optimization technique for
automatically generating test data to test exceptions. They
considered Ada as the model language in their approach.The

proposed approach is based on the application of a dynamic
global optimization based search for the required test data.

Adamopoulos et al. [57] reported on the cause of equiv-
alent mutants. Offutt and Pan [58] proposed a technique to
detect equivalent mutants and infeasible paths.

Andrews et al. [14] made a thorough investigation of a
fundamental assumption that has been underlying much of
experimental software testing research that whether faults
generated by hand or from mutation operators is represen-
tative of real faults. They observed that the use of mutation
operators is able to yield trustworthy results; that is, generated
mutants are similar to real faults. Mutants appear, however, to
be different from hand seeded faults that seem to be harder to
detect than real faults.

Ma et al. [27] introduced a number of mutation operators
to create mutant programs in the context of Java program-
ming language. They propose a tool for entire mutation pro-
cess and testing [28]. The mutant operators proposed in [27]
only modify expressions by replacing, deleting, and inserting
primitive features of Java programming language at method-
level and object-oriented specific features such as inheritance,
polymorphisms, and dynamic binding at class-level. How-
ever, Ma et al. did not consider any mutation operators to
handle exceptions related faults.

Work of Gallagher and Narasimhan [8] and Sinha and
Harrold [4] followed static analysis and their approaches
not necessarily locate all exception points, particularly those
exceptions raised implicitly. For example, an exception can be
raised implicitly from calling Java library routine. As a conse-
quence, it is very difficult to draw control flow representations
or path identification to cover all problems. Hence, test case
selection according to these approach may not be adequate.
The proposedmethod, on the other hand, does not determine
exception paths explicitly. We attempt to change exception
propagation path according to the characteristic of Java
exception handling constructs.

Jumble provides mutation operators for arithmetic
expression, conditional predicate, initialization, assignment,
return values, and control constructs such as if-then, if-then-
else, switch, and loop. It is to be noted that the mutation
operators according to Jumble are not sufficient enough for
exception handling constructs.

7. Conclusions

Exception handling is an important mechanism to develop
robust and reliable programs. It is a difficult task to test
whether all exception points are covered and all exception
handler routines are arranged appropriately or not. It is also
not possible to identify all exception paths precisely because
there are some exceptions which can be raised implicitly.This
paper proposes a number of mutation operators to create
mutant programs. With these mutant programs, we verify
the effectiveness of a given test suite, particularly to verify
the exception handling constructs. In other words, mutation
operators used in this paper can generate effective mutant
programs which can raise and handle different type of excep-
tions. The test suite which can kill more mutant programs is
with a higher mutation score. Effectiveness of the proposed

Advances in Software Engineering 15

mutation operators is comparable to that of Jumble. Jumble
also reports the quantity ofmutants killed as the score of a test
suite. Jumble provides mutations operators, which are mainly
limited to arithmetic expressions, conditions, return values,
and control statements such as decision and loop. The main
limitation in Jumble is that there is no explicit mutation oper-
ators in Jumble that can take care exception handling con-
structs. Our experiments with five different programs sub-
stantiate that the proposed mutation operators are 69% (on
average, mutation score in Jumble and our approach is 27 and
87, resp.) more effective to build mutants and then kill the
mutant programs than the mutation analysis technique in
Jumble. Nevertheless, this result is based on experiments
withmoderate sized Java programs from different application
domains and can be taken as indicative. To have conclusive
decision we should go for more experiments with more
subjects.

Using the proposed mutation operators and mutation
analysis method, our work can be further extended to
guide automatic synthesis of test cases for testing exception
handling constructs. Further, themutation operators are pro-
posed considering Java as themodel language.We can extend
the approach for other advanced programming languages.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by Department of Science and
Technology, Government of India, under Women Scientist
Award (WOS-A) granted to the author.The author is thankful
to the postgraduate students who helped in designing and
implementing the applications used in this work.

References

[1] J. B. Goodenough, “Exception handling: issues and proposed
notations,”Communications of the ACM, vol. 18, no. 12, pp. 683–
696, 1975.

[2] J. D. Musa, Software Reliability Engineering, McGraw-Hill,
London, UK, 1998.

[3] W. N. Toy, “Fault tolerant design of local ESS processor,” inThe
Theory and Practice of Reliable System Design, 1981.

[4] S. Sinha and M. J. Harrold, “Analysis and testing of programs
with exception handling constructs,” IEEE Transactions on
Software Engineering, vol. 26, no. 9, pp. 849–871, 2000.

[5] B. G. Ryder, D. Smith, U. Kremer, M. Gordon, and N. Shah, “A
static study of java exceptions using JSEP,” Tech. Rep. DCS-TR-
403, Rutgers University, November 1999.

[6] N. Tracey, J. Clark, K. Mander, and J. McDermid, “Automated
test-data generation for exception conditions,” Software: Prac-
tice and Experience, vol. 30, pp. 61–79, 2000.

[7] A. Bertolino, “Software testing research: achievements, chal-
lenges, dreams,” in Proceedings of the Future of Software Engi-
neering (FoSE ’07), pp. 85–103, May 2007.

[8] M. J. Gallagher and V. L. Narasimhan, “Adtest: a test data
generation suite for ada software systems,” IEEE Transactions
on Software Engineering, vol. 23, no. 8, pp. 473–484, 1997.

[9] S. Sinha and M. J. Harrold, “Criteria for testing exception-
handling constructs in Java programs,” in Proceedings of the
IEEE International Conference on Software Maintenance (ICSM
’99), pp. 265–275, September 1999.

[10] M. P. Robillard and G. C. Murphy, “Analyzing exception flow
in java TM programs,” in Proceedings of the Joint 7 th European
Software Engineering Conference and the 7 th ACM SIGSOFT
Internation al Symposium on the Foundations of Software Engi-
neering (LNCS ’99), vol. 1687, pp. 322–337, Toulouse, France,
Septembe 1999.

[11] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar, “Efficient and pre-
cisemodeling of exceptions for the analysis of Java programs,” in
Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Pro-
gram Analysis for Software Tools and Engineering (PASTE ’99),
pp. 21–31, 1999.

[12] T. A. Budd and D. Angluin, “Two notions of correctness and
their relation to testing,” Acta Informatica, vol. 18, no. 1, pp. 31–
45, 1982.

[13] S.-W. Kim, J. A. Clark, and J. A. McDermid, “Investigating
the effectiveness of object-oriented testing strategies using the
mutation method,” Software Testing Verification and Reliability,
vol. 11, no. 4, pp. 207–225, 2001.

[14] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?” in Proceedings of the
27th International Conference on Software Engineering (ICSE
’05), pp. 402–411, IEEE, May 2005.

[15] C. Ji, Z. Chen, B. Xu, and Z. Wang, “A new mutation analysis
method for testing java exception handling,” in Proceedings of
the 33rd Annual IEEE International Computer Software and
Applications Conference (COMPSAC ’09), vol. 2, pp. 556–561,
IEEE Computer Society Press, July 2009.

[16] http://junit.org/.
[17] http://www.jumble.sourceforge.net/.
[18] http://www.java.com/.
[19] D. Samanta, Object-Oriented Programming with C++ and Java,

Prentice Hall of India, New Delhi, India, 2003.
[20] J. Gosling, B. Joy, and G. Steele,The Java Language Specification,

Addison-Wesley, Reading, Mass, USA, 1996.
[21] P. A. Buhr, “Advanced exception handling mechanisms,” IEEE

Transactions on Software Engineering, vol. 26, no. 9, pp. 820–
836, 2000.

[22] G. J. Myers, The Art of Software Testing, John Wiley & Sons,
Hoboken, NJ, USA, 2nd edition, 2004.

[23] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on
test data selection: help for the practicing programmer,” IEEE
Computer, vol. 11, no. 4, pp. 34–41, 1978.

[24] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “Interface
mutation: an approach for integration testing,” IEEE Transac-
tions on Software Engineering, vol. 27, no. 3, pp. 228–247, 2001.

[25] J. B. Rainsberger and S. Stirling, JUnit Recipes: PracticalMethods
for Programmer Testing, Manning, Greenwich, UK, 2005.

[26] S. A. Irvine, T. Pavlinic, L. Trigg, J. G. Cleary, S. Inglis, and
M. Utting, “Jumble java byte code to measure the effectiveness
of unit tests,” in Proceedings of the IEEE Proceedings of Testing:
Academic and Industrial Conference—Practice and Research
Techniques, pp. 169–175, September 2007.

[27] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “MuJava: a mutation system
for java,” in Proceedings of the 28th International Conference on
Software Engineering (ICSE ’06), pp. 827–830, ACM, May 2006.

16 Advances in Software Engineering

[28] http://cs.gmu.edu/∼offutt/mujava/.
[29] K. Dobolyi andW.Weimer, “Changing java’s semantics for han-

dling null pointer exceptions,” in Proceedings of the 19th Inter-
national Symposium on Software Reliability Engineering (ISSRE
’08), pp. 47–56, November 2008.

[30] L. Briand and Y. Labiche, “A UML-based approach to system
testing,” Tech. Rep. TR SCE-01-01, Version 4, Carleton Univer-
sity, 2002.

[31] A. Abdurazik, J. Offutt, and A. Baldini, “A comparative evalua-
tion of tests generated from different UML diagrams: diagrams
and data,” Tech. Rep. ISE-TR-05-04, George Mason University,
Fairfax, Va, USA, 2005.

[32] M. Sarma,Automatic test specification generation for state-based
system testing [Ph.D. thesis], Indian Institute of Technology,
Kharagpur, India, 2008.

[33] M. Sarma, “System statemodel generation fromUML2.0,” Tech.
Rep. CSE-TR-04-07, Indian Institute of Technology, Kharagpur,
India, April 2007.

[34] L. C. Briand, J. Cui, and Y. Labiche, “Towards automated
support for deriving test data from UML statecharts,” in
Proceedings of the Unified Modeling Language Conference (UML
’03), vol. 2863 of Lecture Notes in Computer Science, pp. 249–
264, Springer, San Francisco, Calif, USA, October 2003.

[35] S. C. Ntafos, “A comparison of some structural testing strate-
gies,” IEEE Transactions on Software Engineering, vol. 14, no. 6,
pp. 868–874, 1988.

[36] J. C.Huang, “An approach to program testing,”ACMComputing
Surveys, vol. 7, no. 3, pp. 114–128, 1975.

[37] P. G. Frankl and E. J.Weyuker, “An applicable family of data flow
testing criteria,” IEEE Transactions on Software Engineering, vol.
14, no. 10, pp. 1483–1498, 1988.

[38] M. J. Harrold and M. L. Soffa, “Interprocedural data flow
testing,” in Proceedings of the ACM SIGSOFT of 3rd Symposium
of Software Testing, Analysis and Verification (SIGSOFT ’89), pp.
158–167, December 1989.

[39] J. W. Laski and B. Korel, “A data flow oriented program testing
strategy,” IEEE Transactions on Software Engineering, vol. 9, no.
3, pp. 347–354, 1983.

[40] S. Rapps and E. J. Weyuker, “Selecting software test data
using data flow information,” IEEE Transactions on Software
Engineering, vol. 11, no. 4, pp. 367–375, 1985.

[41] P. G. Frankl and S. N. Weiss, “Experimental comparison of
the effectiveness of branch testing and data flow testing,” IEEE
Transactions on Software Engineering, vol. 19, no. 8, pp. 774–787,
1993.

[42] W. E.Howden, “Methodology for the generation of program test
data,” IEEE Transactions on Computers, vol. 24, no. 5, pp. 554–
560, 1975.

[43] T. J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[44] P. G. Frankl and E. J. Weyuker, “Provable improvements on
branch testing,” IEEE Transactions on Software Engineering, vol.
19, no. 10, pp. 962–975, 1993.

[45] B. Beizer, Software Testing Techniques, Thomson Computer
Press, New York, NY, USA, 2nd edition, 1990.

[46] R. Boyer, B. Elspas, and K. Levitt, “SELECT—a formal system
for testing and debugging programs by symbolic execution,” in
Proceedings of International Conference on Reliable Software, pp.
234–245, 1975.

[47] L. A. Clarke, “A system to generate test data and symbolically
execute programs,” IEEE Transactions on Software Engineering,
vol. 2, no. 3, pp. 215–222, 1976.

[48] J. C. King, “Symbolic execution and program testing,” Commu-
nications of the Association for ComputingMachinery, vol. 19, no.
7, pp. 385–394, 1976.

[49] C. V. Ramamoorthy, S.-B. F. Ho, and W. T. Chen, “On the
automated generation of program test data,” IEEE Transactions
on Software Engineering, vol. 2, no. 4, pp. 293–300, 1976.

[50] R. A. DeMillo and A. J. Offutt, “Experimental results from an
automatic test case generator,” ACM Transactions on Software
Engineering and Methodology, vol. 2, no. 2, pp. 109–127, 1993.

[51] B. Korel, “Automated software test data generation,” IEEETrans-
actions on Software Engineering, vol. 16, no. 8, pp. 870–879, 1990.

[52] B. F. Jones, H.-H. Sthamer, and D. E. Eyres, “Automatic struc-
tural testing using genetic algorithms,” Software Engineering
Journal, vol. 11, no. 5, pp. 299–306, 1996.

[53] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic test
data generation,” IEEE Transactions on Software Engineering,
vol. 17, no. 9, pp. 900–910, 1991.

[54] A. J. Offutt, Z. Jin, and J. Pan, “The dynamic domain reduction
procedure for test data generation,” Software—Practice and
Experience, vol. 29, no. 2, pp. 167–193, 1999.

[55] R. V. Binder, Testing Object Oriented Systems: Models, Patterns
and Tools, The Object Technology, Addison-Wesley, 1999.

[56] J. Z. Gao, H.-S. J. Tsao, and Y.Wu, Testing and Quality Assurance
for Component-Based Software, Artech House, Norwood, Mass,
USA, 2003.

[57] K. Adamopoulos, M. Harman, and R. M. Hierons, “How to
overcome the equivalent mutant problem and achieve tailored
selective mutation using co-evolution,” in Proceedings of the
Genetic and Evolutionary Computation Conference (LNCS ’04),
vol. 3103, pp. 1338–1349, Seattle, Wash, USA, June 2004.

[58] A. J. Offutt and J. Pan, “Automatically detecting equivalent
mutants and infeasible paths,” Software Testing Verification and
Reliability, vol. 7, no. 3, pp. 165–192, 1997.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

