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The Commercial Aircraft Cooperation of China (COMAC) ARJ21 fuselage’s final assembly process is used as a case study. The
focus of this paper is on the condition based maintenance regime for the (semi-) automatic assembly machines and how they
impact the throughput of the fuselage assembly process. The fuselage assembly process is modeled and analyzed by using agent
based simulation in this paper. The agent approach allows complex process interactions of assembly, equipment, and maintenance
to be captured and empirically studied. In this paper, the built network is modeled as the sequence of activities in each stage, which
are parameterized by activity lead time and equipment used. A scatter search is used to find multiobjective optimal solutions for
the CBM regime, where the maintenance related cost and production rate are the optimization objectives. In this paper, in order
to ease computation intensity caused by running multiple simulations during the optimization and to simplify a multiobjective
formulation, multiple Min-Max weightings are used to trace Pareto front. The empirical analysis reviews the trade-offs between the

production rate and maintenance cost and how sensitive the design solution is to the uncertainties.

1. Introduction

Nowadays, aircraft manufacturers are operating in a global
competitive environment. Increasing production rate and
reducing costs are the key drivers in aircraft manufacturing.
In order to meet the required production rate while meet-
ing high quality requirements, (semi-) automatic assembly
machines (e.g., Flexible Drilling Head [1], GRAWDE (Gear
Rib Automated Wing Drilling Equipment), and HAWED
(Horizontal Automated Wing Drilling Equipment) [2]) are
increasingly being used in the aircraft assembly line. These
machines can deliver significant productivity gains on the
shop floor by reducing the manual multistep processes and
overcoming the restricted worker access [3]. This in effect
has shifted the production throughput to be now very much
dependent on the operational availability of these (semi-)
automatic machines [4]. Consequently, machine breakdowns
and maintenance are therefore a major cause of bottlenecks in

the assembly line. How to manage these machines in an effi-
cient and cost-effective way to maximize the overall product
rate is still a key challenge to the aircraft manufacturers [2].
Maintenance involves fixing when equipment becomes
out of order (corrective maintenance) and also includes
performing routine actions which will keep the equipment
working in order or prevent failures from arising (i.e., preven-
tive maintenance) [5, 6]. A maintenance strategy in general
includes identification of parameters, inspection methods,
plan execution, and repair [7, 8]. In the recent decade,
Condition Based Maintenance (CBM) has increasingly been
integrated as part of the manufacturing system [4, 9-12]. Its
goal is to minimize unscheduled downtime and shift towards
a more forward-looking approach by monitoring deteriora-
tion of equipment conditions. Examples of integrated CBM in
manufacturing system are found in the areas of measurement
equipment [13], plastic injection [14], plastic yoghurt pots
[15], food and drink industry [16], PBL (performance-based



logistics) contracts [17], and generic stochastically deteriorat-
ing systems [18]. In these examples, it has been shown that
CBM can potentially improve the overall cost and production
rate of the manufacturing systems by increasing the machine
availability while reducing the maintenance cost [17, 18].

In many cases, manufacturing for an example, where
many high-value assets (machines) are part of it, is imprac-
tical and economically not feasible to experiment different
manufacturing processes based on the real objects [9]. Simu-
lation could allow complex process interactions of assembly,
equipment, and maintenance to be captured and empirically
studied in a virtual environment without having to build a
real manufacturing system. Agent Based Simulation (ABS)
and Discrete Event Simulation (DES) have been used in
the manufacturing domain. ABS is based on the dynamic
interaction of entities involved in the process. Examples of
the ABS are autonomic manufacturing execution system [19]
and intelligent manufacturing (e.g., enterprise integration
and collaboration, manufacturing process planning, and
scheduling) [20]. DES is on the other hand based on a fixed
sequence of operations or process being performed over
entities [9]. DES is more widely adopted in manufacturing
as fixed sequence of operations can be naturally captured
[9]. However, in a highly complex process it is simpler to
model using ABS; complex interactions between entities (e.g.,
machine, service, and process) can be naturally captured in
ABS without having to reformulate a problem into the queue
theory framework as required by DES [21, 22]. Both DES
and ABS allow the important aspects like quality, cost, and
time to be simulated and analyzed which provide the basis
in Manufacturing System Development (MSD) and Product
Realization Process (PRP) [23].

In simulation, a model comprises several input variables
or model parameters such as scheduling properties, process
leap time, and machine reliability. The aim of MSD or PRP
is to find optimal controllable parameters that will result
in the most desirable outputs of the process. In the case of
(semi-) automatic assembly lines, examples of performance
indicators are maximum production rate and minimum
maintenance cost. To find an optimal solution, the simulation
is iterated until the most optimal combination of variables is
found; at each iteration the controllable variables are adjusted,
the model is simulated, and the simulation output is then
evaluated against the design objectives [24, 25]. Evolutionary
techniques (e.g., scatter search and genetic algorithms) are
often applied to solve difficult simulation optimization prob-
lems [26-28].

In this paper, CBM is exploited as part of a design
solution for a (semi-) automatic aircraft assembly process
that demands high production rate and until now there are
no studies of CBM in an aircraft assembly process reported
in the literature. This and the simulation optimization of
a CBM integrated aircraft assembly process model will be
the contribution of this paper. In this study, Commercial
Aircraft Cooperation of China (COMAC) AR]J21 regional jet
final assembly is used as a what-if representative example to
illustrate the impact of CBM on the aircraft assembly process.
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The outline of this paper is as follows: Section 2 describes
an aircraft assembly process and identifies the key perfor-
mance bottlenecks in the process. Sections 3 and 4 explain
CBM and how a CBM enabled aircraft assembly system is
modelled using agent concepts. A multiobjective simulation
optimization approach is described in Section 5. Section 6
describes performance measures and then evaluates trade-
off between competing objectives and their relation to design
parameters. Finally, the concluding remarks are made in
Section 7.

2. Aircraft Assembly Process

2.1. ARJ2I Structure Assembly. ARJ21 is one of two ongoing
COMACs regional jet development programs [29]. It is a new
type of turbofan short/medium range 78-90 seat regional
aircraft. The ARJ21 program is in the ongoing certification
process and is currently in transition from development stage
to batch serial production. The ARJ21 has received a total of
309 orders as of 2013. COMAC has planned to increase its
production rate to 30 aircrafts per year by 2015. However,
at this state, the production of ARJ21 is heavily relying
on manual processes and inevitably limited to 1-2 aircrafts
per year. To meet the delivery target (i.e., 30 aircrafts per
year) while maintaining quality and cost effectiveness, the
manufacturing and assembly processes of the AR]J21 have to
be less of manual work, but more automated by adopting the
concept of (semi-) automatic assembly process.

Similar to other integrated aircraft manufacturing net-
works like B777, B787, A340, and A380, the main structure
components of the ARJ21 are manufactured and assembled
across China by three other ARJ21 consortium members
(Tier-1) located in Xi'an, Chengdu, and Shenyang. The parts
are then transported and finally assembled by COMAC
itself in Shanghai. This also means any delay from the Tier-
1 airframe component suppliers or in the final assembly
will respectively cause holdup in the production rate or
accumulation of components from the suppliers. Hence, in
order to maximize the overall production rate, it is important
that disruptions in each assembly line at different sites will
have to be minimized.

In this paper, the subfinal assembly of AR]J21 fuselage joint
is used as a case study to illustrate the impact of maintenance
on the assembly process performance. This can be subse-
quently extended to cover the whole final assembly process
or applied to the other Tier-1 component-level assemblies. At
the ARJ21 final assembly line, each ARJ21 arrives in seven
substructures: nose section, front fuselage, central fuselage,
aft fuselage, rear fuselage (including tails), and both wings.
The components are uploaded to transporters and taken to
three specific assembly stations, where in parallel the forward
fuselage is constructed of the nose section and front fuselage,
the wings are joined to the central fuselage, and the aft
and rear fuselages are joined which form the aft fuselage,
see Figure 1. The three main fuselage substructures are then
transported to the final assembly station where they are
joined together into a complete airframe. In this paper, we
will focus on the assembly processes (i.e., Stages 200A and
200B) carried out this station.
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FIGURE 1: COMAC AR]J21 structure assembly.
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FIGURE 2: ARJ21’s main sequence of final joints and related assembly machines.

2.2. Fuselage Joining Process. The main sequence of the final
joints (Stages 200A and 200B) can be divided into 5 steps as
shown Figure 2. The joint work starts by using an overhead
crane to move and prealign the fuselage components into
an assembly jig. These components are then aligned with
high accuracy by adjusting the supported jacks guided by
measurement data from the laser tracking devices. It takes
approximately 67 hours to complete this sequence. The next
assembly step is to drill the joint structures, that is, front and
middle sections and middle and aft sections. In this process,
the skins, frames, stringers, and other joint parts of the struc-
ture pair are drilled together and then deburred. In manual
drilling, this process relies on precision measurements and
drilling skills which is time consuming and often imperfect
(e.g., oblique holes and excessive countersinks). In an (semi-
) automated assembly line, a light weight portable computer
numerical control (CNC) drilling machine (a.k.a Flex Track
[30]) is used to reduce the lead time while maintaining the
required drilling quality. This process is estimated to be 13
hours assuming that 2 Flex Tracks are used. In the third

step, the joint fuselage sections are fastened using hammered
solid rivets. In this process, “Handheld Electromagnetic Rivet
Guns” are used in place of manual riveting to reduce lead time
and noise hazard level. For 2 pairs of rivet guns, the lead time
of this process is estimated to be 13 hours. The fourth step is to
manually inspect the riveting quality such as position, depth,
and angle. This process takes approximately 4 hours. Finally,
the jig and jacks are removed from the completed fuselage.
The fuselage is then towed away from the assembly area. This
final unloading process takes about 8 hours.

Table1 details subprocesses of the main assembly
sequence and their estimated lead time. These values were
obtained from interviews of COMAC engineer. Note that
these estimates do not take into account any of process
disruptions which could be caused by part delays, machine
breakdowns and maintenance, or other factors.

2.3. Bottlenecks. During the design and development phases,
manual work is relevant and sufficient as the assembly process
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TABLE 1: Estimated work process lead time.

Work contents Assembly machines Lead time (Hrs)
Load/locate/align
Load middle section Crane 9
Prelocate and -align Jig and middle section Jacks and lasers 19
Load front section Crane
Load aft section Crane
Locate and align Jig and fuselage sections Jacks and lasers 21
Drill (in parallel)
Front and middle sections
Load flex tracks Flex tracks 2
Drill Flex tracks 10
Unload flex tracks Flex tracks 1
Front and middle sections
Load flex tracks Flex tracks 2
Drill Flex tracks 10
Unload flex tracks Flex tracks 1
Rivet (in parallel)
Front and middle sections
Load rivet guns Rivet guns 2
Rivet Rivet guns 10
Unload rivet guns Rivet guns 1
Middle and aft sections
Load rivet guns Rivet guns 2
Rivet Rivet guns 10
Unload rivet guns Rivet guns 1
Manual inspection 4
Unload 8
is not finalized and the required production rate is limited TABLE 2: Estimated maintenance parameters.
to 1 or 2 aircrafts per year. To meet the delivery target of : - —
30 aircrafts per year, the assembly process of the ARJ21 Assembly MTBM Maintenance Loss time
has to be of less manual work but to be more automated. machines (hrs) time (hrs) (hrs)
However, disruption caused by machine breakdowns and Overhead crane 720 1 169
maintenance is one of the key performance bottlenecks in Flex track 900 2 506
a (semi-) automatic assembly line [2]. From interviews of Rivet gun 1440 1 336

COMAC engineers, an overhead crane, Flex Tracks, and rivet
guns are less reliable in relation to other types of assembly
equipment and will likely be the common causes of machine
breakdown.

From Tablel, it can be seen that three of the main
processes of the ARJ21 fuselage joining process are heavily
dependent on the overhead crane, Flex Tracks, and rivet
guns. Hence, the downtime of these machines will essentially
affect the throughput of the assembly process. Table 2 sum-
marizes estimated maintenance parameters of these assembly
machines. In this paper, the crane, Flex Tracks, and rivet guns
are the focus of an application of CBM.

3. Condition Based Maintenance

3.1. Degradation Process. Machine failures can be divided
into two categories, random failures and those as a con-
sequence of degradation. In this paper, we only consider

'"MTBM: mean time before maintenance; “Loss time: minimum downtime
caused by unexpected breakdown.

the degradation failures in which preventive maintenance
strategies can be applied. A simplified degradation pro-

cess is illustrated in Figure 3. Rpy, Rp, and T1(\2 are the
preventive maintenance threshold, failure threshold, and
required duration to perform the ith maintenance (or repair),
respectively. The degradation process can be represented by a
stochastic process of increasing wear, and hence decreasing
in system reliability, finally leading to machine failure. The
degradation stages can be modelled using either discrete
steps or continuous process in time. The failure occurs when
the machine degradation stage reaches a certain reliability
level. In Figure 3, maintenances are used to intervene with
the degradation process and bring about an improvement
to a certain reliability level before failures occur. However,
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FIGURE 4: Condition based maintenance (CBM) framework.

when there is no ambiguity, the term “maintenance” will also
include “repair” operations in this paper. The randomness
(being stochastic) is from uncertainties in the degradation
rate and maintenance. The latter results from imperfect
maintenance.

3.2. Maintenance Model. The purpose of maintenance is
to increase the mean time to failure. It is assumed that
maintenance will bring about an improvement to the condi-
tions in the previous stage of degradation [31], see Figures
3 and 4. In CBM framework, a maintenance policy relies
on continuous condition monitoring which can be carried
out by embedded sensors or periodic inspection (i.e., té’) in
Figure 4) [11, 14]. This paper assumes that embedded sensors
are used to support online continuous condition monitoring
(CM). In CBM, instead of traditional fix schedule, main-
tenance interventions are performed only when the system
reliability degrades below a certain preventive maintenance
threshold. In this way, unnecessary maintenance actions and
unexpected breakdowns can be reduced; a real-time CM
system provides an estimate for the reliability level due to
degradation. In CBM, when to take maintenance actions,
that is, defining the Rp); level, is essentially the main design
maintenance parameter. This parameter will be based on
both the system reliability level at inspection time and the

potential evolution of the system’s degradation process. Rpy
must be sufficiently high to allow maintenance actions to be
performed before the machine degrades to the failure level
Ry.

4. Agent Based Model

DES is widely used in modelling and simulation of manu-
facturing systems where fixed sequence of operations can be
naturally captured. However, in a highly complex process,
it is simpler to model using ABS; complex active inter-
actions between entities (e.g., machine, maintenance, and
process) can be naturally captured in ABS without having
to reformulate a problem into a series of discrete events as
required by DES [21, 22]. In our case, CM system, whose self-
aware (or active) properties are required in order to trigger
maintenance activities, is an example of entities that cannot
straightforwardly be modeled using DES; the behaviour of
a CM system has to be determined by the system in a DES
model (unintuitively being passive). For this reason, ABS is
preferred to DES in this paper.

In this paper, for simplicity in the analysis, a CBM enabled
ARJ21 assembled system is composed of minimally assembly
machines, maintenance and the assembly process itself, and
the interdependencies among these components. In ABS,
these entities are called agents. Here, we use statechart to
model behaviours of an agent and a messaging concept to
model interactions between agents [32]. The statechart allows
active stochastic behaviours of an agent to be modelled
[33]. In ABS, agents independently evolve in parallel using
the same universal time tick generated by the simulation
environment.

Figure 5 depicts a generic agent based model of the
assembly machines described in Section 2, that is, crane, flex
tracks and rivet guns. At, RUL, AR, (-, ), prur> Orut> Hars
and o, are the simulation time step, remaining useful life,
degradation rate, random variable, mean remaining useful
life after maintenance, uncertainty caused by imperfect main-
tenance, mean degradation rate threshold, and degradation
uncertainty, respectively. A machine can be in either “In
Operation” or “Out of Order” states. When in operation, the
machine is “Idle” if it is not needed by an assembly process.
The changes in state to “Busy” and back to “Idle” are triggered
by the messages “In Use” and “Work Completed” sent from
the process, respectively. When the machine is in use, the
system reliability ~NRUL is decreasing at the rate of AR. Note
that RUL is a function of operating hours not time.

When the RUL falls below the preventive maintenance
threshold Rpy, if have not yet sent one, a maintenance
order, that is, the “Need Maintenance” message, is sent to
the related maintenance service. The machine goes into “Out
of Order” triggered by either the breakdown (i.e., RUL <
0) or “In Maintenance” messages from the related service
and is changed back to be operable (either “Idle” or “Busy”
depending on which one is the last state) after being main-
tained or repaired triggered by the message “Maintained”
After maintenance, the system reliability is brought back to a
certain level randomly defined by the imperfect maintenance
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parameters gy and opy; . Depending on the density func-
tion, 0... can be either abound, standard deviation, or no value
depending on the probability distribution of the random
variable 2 for normal. In this model, the stochasticity in the
degradation process is simulated by randomly resetting AR
according to the degradation parameters pz and o,p.

An agent based model for maintenance services is shown
in Figure 6. Ty, Ty and nypy are the time to maintenance
caused by delay or travel, maintenance time, and number of
machines that require maintenance, respectively. A transition
from “Idle” to “On the Way” is triggered by the message “Need
Maintenance” sent from one of the related machines. On
average, the service needs T, to respond to the maintenance
order. Before the service goes into the “Maintaining” state,

a message “In Maintenance” is sent to the machine at the
first in the requested list for maintenance. It takes on average
Ty for a maintenance action. When the timer expires, the
message “Maintenance Complete” is sent to the maintained
machine which causes a state transition from “Out of Order”
to “In Operation”. It is assumed that every triggered main-
tenance action is completed successfully. The service’s new
state now depends on the number of machines that required
maintenance. If another machine is to be maintained (i.e.,
nygrm > 0), the service chooses the first machine in the
requested list and as before maintains the machine. The
service’s state goes into “Idle” if there are no more machines
in the requested list. Whenever the “Need Maintenance”
message is received, the requested machine will be added to
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the requested list for maintenance. This allows the service to
respond to the maintenance request even though it is not in
the “Idle” state.

Figure 7 depicts an agent based model of the assembly
process. For the sake of explanation, it only shows the drill
subassembly process. T}, Tp, pr,, o1, AD, Ty, and ny
are the loading time, required drill time, mean required drill
time, drilling process uncertainty, drill rate, and number
of machines currently in operation, respectively. After the
load/locate/align process is completed, the state is transi-
tioned to the “Drill” composite state in which “Loading” is the
entry state. On average, it needs T to position the two Flex
Tracks at the font/middle and middle/aft section joints. When
the timer expires, the message “In Use” is sent to the Flex
Track machines which causes a state transition from “Idle”
to “Busy’, and the required drill time is set to a random value
determined by the process uncertainty parameters yr, and
or,. In this paper, it is assumed that maintenance actions
do not interrupt the “Loading” and “Unloading” processes.
When the machine is in use, the required (or remaining) drill
time T}, is decreasing at the rate of ny;oAD. How fast the
task can be completed will depend on how many machines
are available (i.e., in operation) to perform the tasks. When
the drill process is completed (i.e., T, < 0), the message
“Work Complete” is sent to the related machines, and the
processs new state is now “Unloading”. It takes on average
Ty to remove the machines (i.e., Flex Track in the drill
case) from the fuselage. When the timer expires (also means
the drill subassembly process completed), the state is then
transitioned to the “Rivet” composite state.

5. Optimization Considering
Multiple Objectives

5.1. Simulation Optimization. The agent based simulation
model described in Section 4 is used to empirically study the
impact of CBM on the (semi-) automatic fuselage assembly

process. Through simulation, the aim is to find the best
CBM configuration that will maximize the production rate
and at the same time minimize the maintenance cost of
the assembly process. A simulation optimization scheme is
shown in Figure 8. x, A, f(), g(-), and E[] are the design
variable vector, uncertainties, objective function, constraint
function, and mean (or expected) value, respectively. In our
case, the simulation model (i.e., the agent based simulation
model of the fuselage assembly system) takes the controllable
maintenance design variables as the input and outputs the
simulated time series data which are then used to evaluate the
performance objectives of the assembly process. In contrast
to the deterministic simulation, two successive simulations
of the same input variables return two different simulation
results due to the uncertainties in the machine degradation,
maintenance, and process lead time. In the simulation opti-
mization, the optimization objective is therefore the mean of
the objective evaluations E[ f (x,A)] from multiple simula-
tion runs (called Monte-Carlo simulation) of the model [35-
37]. Here, “Optimal” means on average that this is the best
design solution.

5.2. Scatter Search. In this paper, AnyLogic Multimethod
Simulation Software is used to implement the agent based
fuselage assembly model described in Section 4. OptQuest
scatter search package is the only built-in optimization
engine/method in AnyLogic [38]. Scatter search is a
population-based metaheuristics for optimization and
has been successfully applied to many hard optimization
problems [28, 39]. In contrast to Evolutionary Algorithms,
scatter search does not emphasize randomization. It is
instead designed to incorporate strategic responses, both
deterministic and probabilistic, that remember which
solutions worked well (i.e., both high quality solutions and
diverse solutions) and recombined them into new, better
solutions [40, 41].
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Figure 9 outlines a simplified scatter search optimization
method. The search consists of four methods: (1) diver-
sification generation, (2) reference set update, (3) subset
generation and (4) solution combination. The search starts
with the diversification generation method which is used
to generate a large set P of diverse solutions (i.e., scattered
across the parameter space) that are the basis for initializing
the search. The process repeats until |[P| = Pg,.. The
initial RefSet is built according to the reference set update
method, which can take the b best solutions (as regards

their quality or diversity in the problem solving) from P to
compose the RefSet. The search is then initiated by applying
the subset generation method which produces subsets of
reference solutions as the input to the combination method.
The solution combination method uses these subsets to create
new combined solution vectors. The reference set update
method is applied once more to build the new RefSet and
the main loop repeats again. The iteration stops when the
maximum iteration is reached. However, at the end of each
iteration, if no more better solutions are found, the new
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RefSet is partially rebuilt by refilling the RefSet with a new
diverse solution generated using the diversification method
[26, 34, 38, 42].

5.3. Multiple Single Objective Pareto Sampling. In addition
to the production rate, the cost of maintenance is another
important objective in the integrated maintenance (semi-)
automatic aircraft assembly process. In deterministic multi-
objective optimization, nondominated ranking methods are
generally used in finding the Pareto optimal solutions [43-
45]. These methods rely on a large number of populations to
find all Pareto solutions and consequently are practically not
feasible for simulation optimization primarily due to the add-
on computational burden required by the Monte-Carlo sim-
ulation. Moreover, the optimization experiment in AnyLogic
in any case is limited to single objective optimization and
possibly because of the computational reason. This limitation
in fact applies to most of the commercial of-the-shelf (COTS)
DES or ABS software.

In this paper, a multiple single objective Pareto sampling
method described in [46, 47] is used to find the Pareto
optimal solutions. It is based on the classical weighed metric
method. The method locates some specific solutions on the
Pareto front corresponding to a given set of target vectors
vV = {71, ... ,7T}, where 71- = (1/w§1), R 1/waOBD) is
the direction corresponding to the given ith weight vector,
(k
1
each rerun v, the corresponding optimal solution is found
by minimizing the objective function [48-50]

Li(%)=E[fi(%.8)], ©

and w™® is the weight of the kth objective, see Figure 10. For

where
— PG NOBJ) ~(NOB
fi(x,A): max{w§ )Of ),...,wf DO; D}. (2)
The uncertainties A represent a Monte-Carlo simulation
replication. In this way, the multiobjective optimization can
be carried out using the AnyLogic built-in optimization
engine and as well computationally is more plausible.

The primary advantage of this method is that the target
vectors can be arbitrarily generated focusing on the regions of
interest. Note also that if the optimization process converges
to a solution that exactly matches the weight vector, then
whoW = ... = yNOBNOMNOBD Thyg, the angle between

the vectors v and O indicates whether the solution lies in
where it was expected or not. If the vector v lies within
a discontinuity of the Pareto set or is outside of the entire
objective space, then the angle between the two vectors will
be significant. By observing the distribution of the final
angular errors across the total weight set, the limits of the
objective space and discontinuities within the Pareto set can
be identified.

6. Results

6.1. Measures of Performance. The agent based simulation
model described in Section 4 is by design developed to
empirically study the impact of CBM on the (semi-) auto-
matic fuselage assembly process and find a best CBM system
configuration for maximizing production throughput while
keeping related costs minimum. From Table 1, it can be seen
that most parts of the fuselage joint sequence are dependent
on the operational availability of the assembly machines, that
is, crane, Flex Tracks, and rivet guns. The downtime of these
machines will essentially incur loss in the production. For
consistency, “Optimize” means “Minimize” in this paper.

For the first performance measure, in order to maximize
the production rate, we seek to minimize the production loss
objective defined by

Ny -ny
eN,

ny, N, and € are the number of aircrafts produced per year,
maximum number of aircrafts per year without part delays,
machine breakdowns and maintenance or other factors, and
in percentage maximum allowable production loss from
breakdown and maintenance, respectively. The product eN,
is the normalization factor of the incurred production loss.

Besides the production loss, at what cost in keeping the
machines operable is another performance measure in the
integrated CBM aircraft assembly system. In this paper, the
maintenance cost consists of the fixed maintenance cost and
service level related maintenance cost, and its corresponding
performance objective is defined by

Car + Cyirr (Tr)
Cur + Cuigr (Tng)

Cyp» Tr> and Ty and Cyypr(+) are the fixed maintenance cost,
maintenance response time, nominal maintenance response
time, and cost function related to required maintenance
response time defined by pT' /Ty, respectively. The response
time parameters Ty and Ty can be considered as the level
of service required for machine maintenance. In simulation,
these parameters define T, the time to maintenance caused
by delay or travel shown in Figure 6. For this objective,
the nominal maintenance cost C,; + Cypp(Tyg) is the
normalization factor.

o = (3)

o = (4)
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In this paper, CBM is applied to multiple assembly
machines, which will individually be contributing to the over-
all maintenance cost. The fixed and service level maintenance
costs can simply be defined as linearly formulated as

N o
Cy =Y Chh
o 5)
N R .
Cyrr = Y Cyter (T) -
i=1

N and ith are the maximum number of assembly machines
(i.e., 5 =1crane + 2 Flex Tracks + 2 pairs of rivet guns) and
the machines’ index, respectively. ith indexes the machine
specific related costs and required response times.

In CBM, a maintenance order is triggered when the
system reliability falls below a predefined preventive main-
tenance threshold Rpy;, see Section 3. Moreover, together
with Rp),, when the maintenance is actually performed after
being triggered, Ty will essentially determine the operation
availability of the machine, which indirectly determines the
production rate of the aircraft assembly process. The cost
of maintenance is determined by how frequent maintenance
is performed and maintenance service level. These two cost
factors are as well determined by the parameters Ry, and
Tg. In this study, there are 3 types of assembly machines.
Hence, RSy, TS, Riyp Th'» Rh, and TRe will be in total the
6 design variables for the optimization of the CBM enabled
ARJ21 assembly process. RS, and T§ are for the crane. R},
and Tj" are for the two Flex Tracks. Rh and TR* are for the
two pairs of rivet guns. In our ABS, these design variables are
corresponding to the machine i’s Ry and service j’s T'py.

6.2. Trade-Off Analysis. In the paper, AnyLogic and
OptQuest scatter search are employed for the simulation
optimization experiments of the agent based CBM enabled
ARJ21 assembly system described in Section 4. The target
vectors were distributedly formed to outline the Pareto front
using the weights w® € [0.5,0.99] and w® € [0.01,0.5].
In this paper, the uncertainties in lead time, maintenance,
and machine degradation are modelled using the triangular
distribution. The lower and upper uncertainty bounds are
assumed at +25% of the mean values. The design variables
are in the intervals Rf,'l)v[,T}g) e [0, MTBM(')], where the
subscript () is the machine specific type indices C, FT,
or RG. Table 3 summarizes the other related simulation
parameters required for the evaluation of the performance
objectives O and O? defined in (3) and (4). It is not
possible to disclose related costs in term of money figures
due to commercial reasons. In this paper, the ratios and
normalization values are alternatively used to quantify the
parameters related to the maintenance cost.

Figure 11 shows the Pareto optimal solutions obtained by
multiple simulation optimization runs for different weight-
ings (or target vectors). The simulation optimization exper-
iments were based on 20 and 100 Monte-Carlo replications,
see also Sections 5.1 and 5.3. Note that the optimization
process can be rerun to ensure the consistencies of the Pareto
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TABLE 3: Parameters for evaluation of performance objectives.

Values
83.429
Allowable production loss € 0.05

Simulation parameters

Maximum number of aircraft per year N,

Crane
Fixed maintenance cost C$; 1
Ratio for service level maintenance cost p© 1
Nominal response time TgR 168 hrs
Flex track
Fixed maintenance cost Ci; 2
Ratio for service level maintenance cost p*" 15
Nominal response time Tyx 504 hrs
Rivet gun
Fixed maintenance cost CII\{/IG 0.4
Ratio for service level maintenance cost p*° 0.6

Nominal response time Try 336 hrs

Pareto optimal solutions
2.8 T T T T T T T T T

2.6 - DI E E E E E E E . 4
DAL N
22+ : A . . . . . . . 1
2L NN . ]

TR

Maintenance cost O?

1.6 - E o ,te—s;- )

L RN

a\:_‘.:so‘-—o——"——o
0.32 0.34 0.36 038 04 042 044 046 048 0.5 0.52
Production loss O™V

- 20 replications
-e- 100 replications

FIGURE 11: Trade-off surface of optimal CBM configurations.

solution (for both 20 and 100 Monte-Carlo replications). The
uncertainties in the simulation can be observed from the
fluctuations on the Pareto surfaces which is more apparent in
the case of 20 Monte-Carlo replications. The resulting Pareto
optimal solutions are more likely to represent a true Pareto
surface if the optimization objectives are evaluated from a
large number of Monte-Carlo simulation runs, and this can
be seen in the case of 100 replications shown in Figure 11.
The Pareto surface shows the trade-off between the
production loss and maintenance cost conflicting objectives.
A reduction in product loss will generally increase in mainte-
nance cost. This is in particular when the production loss O")
is approximately less than 0.38 (i.e., 1.585 per year); a small
decrease in production loss will result in a very significant
increment in the maintenance cost. As a mean to increase
the machines’ operational availability with less number of
maintenance performed, the response time Ty will have to be
relatively small so that the machines are maintained before
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25 Monte-Carlo simulation

20 -

N

—
w
T
L

Frequency
)

0.25 0.3 0.35 0.4 0.45 0.5 0.55

Production loss OV

FIGURE 12: Monte-Carlo simulation results for production loss O,

breakdowns happen. This will essentially increase the service
level related maintenance cost Cypp. This is an important
insight as for O < 0.38 a decision maker can avoid a
situation where a significant investment on the maintenance
is made for a very small gain in the production rate and
possibly in overall is not worth the investment.

The trade-off surface also outlines the optimal boundary
for the maintenance cost. It can be seen that the maintenance
cost O approximately cannot be lower than 1.3 even when
we deliberately set multiple target vectors to probe in the
>0.5 production loss objective space. This result is from the
fact that the assembly machines are essentially degrading no
matter whether CBM is applied or not. From the ABS model,
maintenance will always be performed on the machines
regardless before or after the breakdown. Consequently, this
will incur the minimum fixed maintenance cost. In addition,
there is also a minimum cost for the required maintenance
service level. These explain why the maintenance cost cannot
be lower than a certain level, and effectively determine the
boundary of the objective space.

6.3. Monte-Carlo Experiment. Suppose the optimal solution
(0.382,1.608) in Figure 11 corresponding to the weights w" =
0.85 and w® = 0.15 is preferred. The resulting design
variables for this optimal solution are RSy, = 390.54, T =
139.8, Rpy, = 452.7, Ty = 254.76, Ry = 458.46, and Tro =
337.02. In paper, a Monte-Carlo simulation experiment is
used to evaluate whether the obtained optimal solution is the
performance expected from the system and how sensitive the
design solution is to the uncertainties.

Figures 12 and 13 show the results of 100 runs of
Monte-Carlo simulation. The mean production loss and
maintenance cost are 0.3817 and 1.6077, respectively, and
these follow what initially expected from the simulation
optimization result. From the histograms, 100 Monte-Carlo
simulation runs (or samples) is sufficient to represent the
true probability distribution of the performance objective
values. With £25% of the mean values for the lower and upper
uncertainties, the standard deviations of the production loss

1

’5 Monte-Carlo simulation

— ‘ = 16077
0 = 0.0339

20 -

—
w
T
1

Frequency
=

1.5 1.55 1.6 1.65 1.7 1.75

Maintenance cost O

FIGURE 13: Monte-Carlo simulation results for maintenance cost
o,

and maintenance cost are 0.04068 and 0.0339, respectively,
11% for the production loss and 2% for the maintenance
cost in relation to the mean values. This indicates very low
sensitivities for this design solution. In terms of number
of aircrafts produced, this means in ~70% of the cases, the
production loss will be between +0.17 aircrafts per year from
the expected value.

7. Concluding Remarks

In a current competitive environment, increasing produc-
tion rate and reducing costs are the key drivers in aircraft
manufacturing. More (semi-) automatic assembly machines
have increasingly been used in the aircraft assembly lines as
a mean to deliver high production rate while meeting high
quality requirements. However, the production throughput is
effectively dependent on the operational availability of these
machines. Integration of CBM into the assembly system has
potential benefits as a way to minimize the production loss
and maintenance related cost. Maintenance are performed as
needed, hence avoiding unnecessary downtime and mainte-
nance cost.

In a CBM enabled aircraft assembly system, there are self-
active interactions between the subsystems, for example, CM
system self-triggers a maintenance order when the system
reliability falls below a certain level. This example of active
self-aware behavior cannot straightforwardly be modelled
using DESs. In this case, where, besides the assembly process,
independent entities are in addition parts of the system, ABS
is proved effective as it allows complex active interactions
between entities to be naturally captured.

Production rate and maintenance cost are the competing
objectives in an integrated CBM aircraft assembly system.
Finding trade-offs between the production rate and mainte-
nance cost is equivalent to finding a Pareto optimal surface.
The conventional nondominated ranking methods will not
be practically feasible due to the computational burden
required by the Monte-Carlo simulation. This limitation can
be addressed by independently sampling the Pareto surface
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using the weighted Min-Max method. The approach allows
less number of populations to be used in the optimization
as it does not need to probe the whole Pareto front, and
hence effectively a reduction in the computation intensity is
required.

In our ARJ21 case study, the preventive maintenance
threshold and required service level are the key design
parameters that determine the overall performance of the
assembly system. Because of uncertainties, increase produc-
tion rate will require a high required service level (i.e., fast
response time) to avoid breakdowns before the maintenance
is performed, and consequently this will increase the main-
tenance cost and sometimes can be significant. However,
compromising on the production rate does not always mean
a further decrease in maintenance cost. The minimum cost
is from the actual cost in maintaining the machines and the
minimum service level. Pareto surface is an important piece
of information to the system designer. Together with Monte-
Carlo simulation, it can be used to support decision making
in terms of cost-benefit of different design solutions and also
what could be achieved.

In this example, even though in small scale, it can be
seen that CBM has potential to be applicable in (semi-)
automatic aircraft assembly lines. However, its claim has to
be further researched in comparison with other maintenance
regimes and with a high fidelity large-scale aircraft assembly
example. Moreover, in terms of optimization, other different
optimization methods like genetic algorithms (GAs), sim-
ulated annealing, and teaching-learning-based optimization
(TLBO) should also be used in the optimization to ensure
that the true Pareto font is found and consequently their
performance in terms of computation and solution can be
compared and analyzed.
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